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Fish otoliths, or ear bones, are comprised of the CaCo3 polymorphs (aragonite, calcite and vaterite), 
which can occur either alone or in combination. the polymorph phase abundance in an otolith depends 
on, as yet, unexplained genetic and environmental factors. Most fish otoliths are comprised of the 
densest CaCo3 polymorph, aragonite. Sturgeon otoliths, on the other hand, contain significant 
amounts of the rare and the structurally enigmatic polymorph, vaterite. sturgeon otoliths are 
frequently comprised of agglomerations of small microcrystalline vaterite spherulites (<300 μm in 
diameter), that range in shape from nearly perfect spheres to oblate spheroids. these spherulites 
are similar to the synthetic vaterite microspheres employed in laser trapping applications. Vaterite 
spherulites from both hatchery-reared (juvenile) and wild (adult) Lake sturgeon exhibit extreme 
crystallographic texture as evidenced by X-ray diffraction patterns and their reconstructed pole-figures 
determined here. the vaterite crystallites making up the spherulites have excellent registry in both 
the axial and equatorial directions. Whether synthesized or natural, the texture manifested in these 
spherulites suggests that vaterite nucleates and grows similarly in vivo otolith formation as well as 
from laboratory synthesis. The uniaxial optical character of the vaterite spherulites, confirmed by these 
diffraction experiments and combined with their large birefringence, makes them well suited for laser 
trapping applications.

In the course of our studies of fish otoliths, we have noticed microstructural habits of vaterite that appear to be 
identical to synthetically grown vaterite that is used in optical trapping devices to manipulate and measure prop-
erties of fluids in small volumes. Fish otoliths, or ear bones, are comprised of the CaCO3 polymorphs (aragonite, 
calcite and vaterite), which can occur either alone or in combination. Three pairs of otoliths occur in finfish (class 
Osteichthyes), the sagittae, lapilli, and asterisci. The sagittae, which are typically the largest pair and found just 
behind and approximately vertically level to the eyes, are most often comprised of the densest CaCO3 polymorph, 
aragonite. The typically smaller lapilli and asterisci are located within the semicircular canals and are often com-
prised of vaterite. However, individual otoliths can also be made up of more than one CaCO3 polymorph, and 
the polymorph phase abundance can be variable among individual fish, and even between the otolith pairs in 
individual fish1. The polymorph phase abundance in an otolith depends on, as yet, unexplained genetic and 
environmental factors. The sagittal otoliths of Lake Sturgeon (Ascipenser fulvescens) contain significant amounts 
of the rarer and structurally enigmatic polymorph, vaterite2. Lake Sturgeon otoliths are frequently comprised of 
agglomerations of small microcrystalline vaterite spherulites (<100 μm in diameter), that range in shape from 
nearly perfect spheres to oblate spheroids. The lapilli otoliths of larval and juvenile Lake Sturgeon can consist of a 
single spherulite of vaterite3. These spherulites are similar to synthetic vaterite microspheres frequently employed 
in microrheological systems used to measure properties of complex fluids in small fluid volumes. In these instru-
ments, optical tweezers4 are employed to trap and rotate the birefringent vaterite microspheres, and their diffu-
sional rotation is relatable to the fluid viscosity. Whether synthesized or natural, the texture manifested in these 
microspheres gives clues to how vaterite nucleates and grows.
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Results and Discussion
Both spherulites from both hatchery-reared (juvenile) and wild Lake Sturgeon (adult) exhibit extreme crystallo-
graphic texture. The overall agreements of the Rietveld fits were Rp = 3.46% and 3.06%, respectively. The recon-
structed pole figures show nearly single crystal like appearance with the crystallites having excellent registry in 
both the axial and equatorial directions (Fig. 1). Keep in mind that these spherulites were arbitrarily mounted for 
the diffraction data collections. Their uniaxial optical character would be evident using polarized light micros-
copy, but otherwise their preferred orientation axis cannot be easily discerned. Diffraction patterns of several 
vaterite spherulites larger than 100 μm from Lake Winnebago Lake Sturgeon showed the crystallographic pre-
ferred orientation to degrade for these larger spherulite sizes, which is generally consistent with the observation 
by Parkin et al.5 that the optical retardation of synthetic vaterite spherulites increases with diameter but reaches a 
plateau beyond a diameter of ~10 microns.

Conclusions
We conjecture that vaterite nucleation and growth habit from synthetic recipes5,6 and in vivo Lake Sturgeon oto-
lith formation are similar, resulting in the formation of spherulites in which the component crystallites show 
strong subparallel preferred orientation. This contrasts with the more common spherulitic growths associated 
with radiating or concentric textures.

X-ray diffraction of juvenile and adult vaterite-rich Lake Sturgeon otoliths, constituting single spherulites, 
exhibit pronounced crystallographic preferred orientation, despite that the vaterite spherulites from Lake 
Sturgeon otoliths exhibit daily growth layers (Fig. 2). The uniaxial optical character of vaterite spherulites is con-
sistent with a sheaf-like texture, and this single crystal like form enables them to efficiently couple with laser light 
in laser trapping applications7,8. Fish otoliths themselves are an example where optical trapping has been used to 
move 55 μm size aragonite otoliths of larval zebra fish in vivo to stimulate and map the functional neural connec-
tions to the fish’s body9.

Methods
samples. Sagittal otoliths from adult Lake Sturgeon used in this study were voluntarily contributed by 
state-licensed anglers in a sustainably-managed Lake Sturgeon sport fishery on Lake Winnebago, Wisconsin. 
Worldwide, many sturgeon species are either threatened or endangered, however, the Lake Winnebago stur-
geon fishery has been sustainably managed for more than a century10. No live animals from Lake Winnebago 
were handled by the authors for the purposes of this study. A survey of sagittal otoliths from a number of adult 
Lake Sturgeon of the Lake Winnebago fishery show them to be primarily vaterite (~80 wt%) with some calcite 
(~20 wt%)5. The vaterite in these otoliths often occurs as spherulites ranging from <1 to 300 μm (Fig. 2). For this 

Figure 1. Reconstructed pole figures for vaterite spherulites from (a) hatchery-reared juvenile Lake Sturgeon 
otolith, University of Manitoba (b). Adult Lake Sturgeon otolith, Lake Winnebago, Wisconsin. Colors represent 
the frequency of the indicated crystallographic directions, (006), (110), and (106), and their equivalents, with 
the hot colors showing the highest frequency.
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study, a spherulite ~30 μm in diameter was used. In thin section (30 μm thick), this vaterite is uniaxial (+) and 
shows 5th order interference colors corresponding to a birefringence of ~0.08, which compares reasonably well 
with the range of 0.094–0.100 reported in mineralogical databases11.

A second sample used in this study was from a juvenile fish, hatchery-reared by one of the authors (AL) using 
eggs and milt from wild fish of the Winnipeg River system in northern Manitoba, Canada. This lapilli otolith 
consisted of a single spherulite (~100 μm) of vaterite from an individual 78 days old4. All procedures conducted 
on these fish were approved by the Animal Care Committee at the University of Manitoba permit# F15-007 in 
accordance with guidelines established by the Canadian Council for Animal Care.

X-ray diffraction. Individual spherulites were mounted in the manner of single crystals, using a 300 μm 
diameter Molecular Dimensions LithoLoop with a drop of Paratone oil. Data were collected using a Rigaku 
XtaLAB PRO diffractometer equipped with graphite monochromated Mo Kα radiation, a Dectris Pilatus 200 K 
detector, and the Rigaku Oxford Diffraction CrysAlisPro software. The flat-plate detector center, distance, and 
orientation, as well as the peak shape parameters were calibrated using the NIST LaB6 Standard Reference 
Material 660C powder on the same style mounting loop. Crystallographic texture is manifested in the diffraction 
pattern by incomplete Debye-Scherrer rings (Fig. 3). Data for the texture analysis of the vaterite spherulites were 
collected at 7 ω angles −60°, −40°, −20°, 0°, +20°, +40° and +60° for 2θ = 0°. Each image was recorded for 300 s, 

Figure 2. Optical micrograph (crossed polarizers) of vaterite spherulites in a matrix of a large calcite crystal 
from an adult Lake Sturgeon otolith, Lake Winnebago, Wisconsin (standard polished thin section 30 μm thick). 
The onion-like rings of the spherulites are interpreted to be the daily growth rings. One spherulite in the right 
center is oriented such that the isogyres of a uniaxial interference figure are seen.

Figure 3. X-ray diffraction patterns (Mo Kα radiation): (a) of a lapilli otolith consisting of a single vaterite 
spherulite (~100 μm in diameter) from a juvenile hatchery-reared Lake Sturgeon, University of Manitoba. (b) 
Ideally random powdered vaterite from a Lake Sturgeon otolith, Lake Winnebago, Wisconsin. The images were 
recorded for 300 s while rotating the samples 1°/s around the vertical φ axis. The detector consists of 2 segments 
with a horizontal dead space between them. The shadow of the beam stop extends upward to the right. A faint 
shadow of the sample mounting pin extends down from center.
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for a total data collection time of 35 mins per sample. Each of these detector images was processed into radial 
scans every 5° of η (angular coordinate around the diffraction rings). Those scans that intercepted the beam-stop 
shadow or the dead-space of the detector segments were not used. Texture analysis was determined by Rietveld 
refinement12 with the software package Materials Analysis Using Diffraction (MAUD 2.78)13 using the WIMV 
method (see review by Matthies et al.14) and following the analysis procedure of Lutterotti et al.15. The orientation 
distribution function resolution used was 5°. Although the exact crystal structure of vaterite has been the subject 
of discussion for over 50 years, see reviews by Christy16, Makovicky17, and Wang et al.18, we have adopted the 
P6522 model proposed by Wang and Becker19 which gives a sufficiently good fit to both neutron and X-ray diffrac-
tion data20,21 (Fig. 4). The structural parameters were held fixed during the refinement, but the background, scale 
factors, and sample shifts were refined. The data for at least 3 values of ω angles were used in the final analysis to 
ensure sufficient pole figure coverage. The datasets generated during and analysed during the current study are 
available from the corresponding author on reasonable request.
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Figure 4. Rietveld refinement fit of ideally random powdered vaterite spherulites from an adult Lake Sturgeon 
otolith, Lake Winnebago, Wisconsin. Crosses are the experimental data, the solid line is the model fit, the 
vertical bars mark the reflection peak positions, and the lower curve is the difference between the model and the 
observed intensities. The P6522 space group model of Wang and Becker19 was used, and although not perfect, it 
is sufficient for analyzing the texture model.
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