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A practical adaptive moving-mesh 
algorithm for solving unconfined 
seepage problem with Galerkin 
finite element method
Qianwei Dai1,2, Yi Lei1,2, Bin Zhang  1,2, Deshan Feng1,2, Xun Wang1,2 & Xiaobo Yin1,2

One of the great challenges of unconfined seepage through a dam lies in the accurate determination 
of free surface that depends on the complexity of the seepage model, especially if the model is 
characterized with complex geometry and sharp variations in permeability distribution. this study 
presents a practical methodology that combines the adaptive moving-mesh algorithm and the 
Galerkin finite element method (FEM) to solve an unconfined seepage problem with high efficiency and 
precision. The methodology employs a set of improvement terms, such as remainder factor, step-size 
parameter and termination condition, all of which guarantee that the simulation and the refinement 
fitting can be implemented efficiently until the free surface converges within a given allowable error. In 
particular, a specialized discussion is presented for the significant relation between the location of the 
exit point and the corresponding grid fineness. To validate the practicability of the proposed method, a 
series of examples are performed. Comparing the result with those of other numerical approaches, we 
conclude that even though the unconfined seepage model may be complicated with arbitrary complex 
geometry and sharp variations in permeability distribution, the proposed algorithm provides a great 
improvement in efficiency and accuracy in free-surface searching.

Analysis of free-surface seepage problems has been attracting more attention in the past few decades due to its 
wide variety of scientific and engineering applications, such as geotechnical slopes, earth dams, underground 
caves, and groundwater movement, and is also beneficial for analysing the interaction and coupling between 
seepage field and stress field1,2. To date, one of the most difficult challenges in solving the unconfined seepage 
problem is the determination of the free surface of unconfined seepage flow, which still challenges the reinforce-
ment and treatment of dam seepage. Many previous experimental studies have been conducted to investigate the 
free surface analysis of unconfined seepage problems with different classical numerical approaches3,4.

Since the residual flow method and the variational inequality methods were introduced5–7, significant 
improvement has been made with respect to the fixed grid method8–13. Desai and Li5 analysed the unconfined 
seepage problem with a fixed mesh technique using a relaxation-type iterative algorithm, called the residual flow 
method. The main advantage of this technique lies in its capability of treating porous (soil) media with arbitrary 
inhomogeneity. Bathe and Khoshgoftaar10 proposed the unit osmotic matrix adjustment method, which employs 
a non-linear pressure-dependent permeability description of the material, and Newton-Raphson iterations to 
avoiding iterations with the finite element mesh. The results demonstrated that this technique is highly effective 
in analysing free surface flow problems by means of transient seepage analysis. García-Ruíz and Steven11 con-
ducted a study to investigate the computational consumption of using the fixed grid finite element method (FEM) 
and the classical FEM, respectively, and the comparisons results revealed that the fixed method provides a great 
improvement in saving calculation resources. Zheng et al.12 gave a new variational inequality formulation to the 
saturated zones and no-flow zones. The new formulation imposed a boundary condition of Signorini’s type on 
the potential seepage boundary and eliminated the singularity of the seepage point, upon which the seepage point 
turned out to be a point that makes both inequalities in Signorini’s complementary condition become equalities. 
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Daneshmand and Kazemzadeh-Parsi13 modified the fixed-grid FEM with a new approach for computing the stiff-
ness matrix of boundary intersecting elements. The findings confirmed that, besides the high accordance with the 
analytic solutions and other numerical solutions, the proposed method possesses the unique advantages of high 
accuracy and effective convergence.

These approaches more or less modified the potential of each node by means of calculating the seepage dis-
charge that flowed through the free surface, and executing a sustained calculation process until the discharge was 
less than a certain given value. That is to say, the common characteristic of these approaches, whether fixed-grid 
or modified fixed-grid method, is the uniform grid chosen that formulates the boundary intersecting elements. 
As the exact position of the free surface is interpolated between the different computational nodes, in most case, 
the calculated results of the free surface cannot be presented as a smooth curve.

Another alternative approach is the conventional adaptive mesh method (AMM), which calculates and 
meshes the domain underneath the free surface. The changes in a variable domain can be conveniently confirmed 
with an adaptive mesh technique by relocating the boundary elements through successive iterations. This distinc-
tive characteristic makes it one of the most suitable methods for free surface analysis. Starting with the research of 
Taylor and Brown14, Finn15, Neuman and Witherspoon16, great improvement has been made concerning the seep-
age modelling technique with the AMM17–21. Based on the previous studies and the mass conservation equations, 
Bardet and Tobita17 derived finite difference (FD) equations by a flux conservation. The greatest contribution is 
that it does not require the formation and reformation of a global matrix system to solve a nonlinear system of 
equations. Inevitably, it would encounter challenges in enforcing the boundary conditions that result from the 
complicated shape of the domain. Darbandi et al.19 proposed the moving-mesh finite volume method (FVM) by 
assuring a mass conservation over modelling cells, it revealed that, regardless of the type of mesh strategies uti-
lized (i.e. fixed-mesh or moving-mesh), the calculation accuracy with FVM is substantially improved.

In the present work, we focus solely on economic and accurate solutions to handle complicated model cases, 
and present a practical and innovative methodology that combines the Galerkin FEM with the AMM, where the 
main parameters of seepage area can all be calculated at each node (e.g. water head, hydraulic gradient, and seep-
age velocity). In particular, for further improving fitting accuracy and convergence rate, an irregular-mesh scheme 
of quadrangle grids, as well as a new step-size parameter λ and a novel termination factor ξ, are introduced in the 
fitting process of upper surface boundary selection, and as a result, the calculation area is reduced dramatically. It 
is worth noting that the impact of the unsaturated region on the search results can also be eliminated.

Results and Discussion
The experiments were conducted with four models, e.g. Model 1, the first standard model, is presented as an earth 
dam 26 metres high and 16 metres wide, the water head is 24 metres high in the upstream reservoir, and 4 metres 
high in the downstream pool, respectively, as shown in Fig. 1; Model 2, which is established as an earth dam 10 m 
high and 5 m wide, the head of water is 10 m high in the upstream reservoir, and 2 m high in the downstream pool, 

Figure 1. Schematic diagram of Model 1.
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as shown in Fig. 2; Model 3, the irregular model, is constructed as an earth dam with a slanted downstream sur-
face, the water head is set to 5 m high in the upstream reservoir, and 1 m high in the downstream pool, as shown 
in Fig. 3; Model 4, an inhomogeneous media model, is constructed with different permeability distributions in 
each side of two rectangular vertical blocks (i.e. upstream and downstream vertical block), as shown in Fig. 4.

Model 1, the first standard model. In this study, a mesh distribution with 64 × 128 grids are chosen as a 
default distribution to solve the free surface problem by comparing the result with that of the measured data and 
the other numerical solutions.

In order to highlight the characteristics of different approaches, the most sensitive part of the solution (i.e. the 
free surface and exit point position) is selected to present the comparison results.

As shown in Fig. 5, the position of free surface calculated by the proposed method has good coincidence with 
the measurement data by Shaw and Southwell22, the FVM by Darbandi et al.19, and the FD method by Torabi 
and Tajrishi23. In addition, it revealed that, except for the FD method by Torabi and Tajrishi23, the position of 
free surface along with the exit point agree well both with the measured data and the other numerical solutions. 
Hence, it can be concluded that the proposed method suitably predicts the exact position of free surface, as well 
as the exit point.

As a moving mesh method is adopted to locate the free surface, the position and the shape of the element will 
change dynamically during every iteration. The factor ζ is set, in particular, to control the movement direction of 
the nodes on the free surface (e.g. vertically ascending or descending). Figure 6a shows the position of the initial 
free surface and the final free surface. Figure 6b shows the distribution of elements at the beginning and in the 
final iteration step. The dashed lines represent the initial distribution, and the solid lines represent the final cal-
culated distribution. In order to highlight the difference, three shadowed grids are marked in the initial meshes, 
which are located on the initial free surface near the vicinity of the downstream boundary. As demonstrated in 
Fig. 6b, there is obviously a drastic change in the shape, size, and position of the shadowed grids.

Figure 7 shows the impact of mesh fineness on the convergence rate and the relative error. This calculation is 
performed by five different mesh fineness values to obtain different resolutions with 1500 iterations: 8 × 16 grids, 

Figure 2. Schematic diagram of Model 2.
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16 × 32 grids, 32 × 64 grids, 64 × 128 grids, and 128 × 256 grids, respectively. Taking the 8 × 16 grid case for 
example, as shown in Fig. 8, the calculation process converges to a steady state when it reaches roughly the 300th 
iteration, which is approximately 4 times the convergence rate of that of the 128 × 256 grid case. It seems that the 

Figure 3. Schematic diagram of Model 3.

Figure 4. Schematic diagram of Model 4.
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method runs faster with coarser grids. Meanwhile, the location of the free surface closely approximates that of 
the fine grids. Nonetheless, the location of the exit point turns out to be lower, as shown in Fig. 8, which mainly 
resulted from the fact that, the position of the exit point is strongly related to the former node. From the presented 
results, it can be concluded that the coarser grids cannot meet the requirements for computational precision, and 

Figure 5. Solutions of free surface for Model 1 calculated by the proposed method.

Figure 6. (a) The final free surface calculated by the proposed method and the initial free surface for Model 1 
(left). (b) The meshing of the calculation domain for the initial free surface and final free surface for Model 1 
(right).
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the proposed methodology combining the adaptive mesh strategy and Galerkin FEM with finer grids is more 
sufficient and accurate for the free surface search.

No matter what kind of mesh fineness is chosen, the minimum relative error occurs at approximately the 
1300th iteration, as shown in Fig. 7. Moreover, it is worthy to note that the curve of the relative error exhibits 
strong fluctuations over a fixed interval near the position where the minimum relative error occurs. On account of 
its balance between efficiency and accuracy, a 64 × 128 grid case is again chosen to validate the effectiveness of the 
proposed termination condition. As far as the accuracy is concerned, Fig. 9 shows that the calculated result using 
a termination condition remains almost unchanged, which suggests that the precision is not affected by the cho-
sen termination condition. For this reason, the selected termination condition is proven to be valid and feasible.

Furthermore, the selected termination condition accelerates the convergence rate of the free surface search, as 
comparison results demonstrate in Fig. 8 and Fig. 10. The total number of iterations needed to reach a steady state 
with the termination condition added, take the 64 × 128 grid case for example, is considerably reduced from 610 
to 220, by which we conclude that the choice of termination condition brings about a great reduction in calcula-
tion costs, and an excellent improvement in algorithm performance.

Model 2, the second standard model. Similarly, for efficiency and accuracy consideration, as validated 
in the former example of Model 1, a 64 × 128 grid mesh distribution is again chosen. As shown in Fig. 11, except 
for the result by Oden24, the determined free surface with the proposed method is in good agreement with results 
provided by Lacy and Prevost25; Bardet and Tobita17 and Darbandi et al.19.

Model 3, the Irregular model. For this irregular model, analogously, the Dupuit assumption is first applied 
to determine the initial free surface. Nonetheless, the calculated result (i.e. curve AC) bends beyond the down-
stream boundary, as shown in Fig. 12a, which may lead to an incorrect search result. Therefore, another substitu-
tional boundary needs to be implemented. Herein, the curve AC is substituted by the curve AB as the initial free 
surface for calculation, which is shown in Fig. 12b.

The comparison results are shown in Fig. 13a, which presents good coincidence with the other four methods. 
Most importantly, one can observe that due to the fact that the height and width of every element is dynami-
cally changing, accordingly, the nodes of the free surface move along a set of straight lines with a different fixed 

Figure 7. Impact of mesh fineness on the convergence rate and the relative error for Model 1.

Figure 8. Impact of mesh fineness on the location of the free surface for Model 1.
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slope, as shown in Fig. 13b. The result of the calculation accuracy by the proposed method is not affected by the 
geometrical shape of model change, which validates the suitability and effectiveness of the present method for free 
surface search in the irregular geometric model.

Model 4, the complex inhomogeneous model. This classic model, proposed by Oden and Kikuchi24, 
has been used as a benchmark by many researchers to test the accuracy of their numerical methods when drastic 
singularity exists on the free surface.

In this experiment, we also compare the results of the proposed method with those of traditional methods. 
With the same initial free surface chosen, and was as done for Model 2, the results of the free surface calculated 
by different methods are shown in Fig. 14.

Even though there is no analytical solution available for reference regarding this model, the result calculated 
by the proposed method shows good agreement with that by Zheng et al.26, who validated the correctness of 
results by utilizing the fact (i.e. flow conservation) that the rate of flow through distinct vertical sections in the 
dam should be equal to each other.

In this inhomogeneous model, because the Galerkin method based on the weak formulation is employed in 
the proposed algorithm, as well as that by Zheng et al.26, to discretize the control equations, an excellent effect for 
treating the drastic singularity of the free surface is guaranteed. Conversely, a strong solution which applies both 
the FDM and FVM may lead to a sharp discontinuity at the interface of the two blocks.

From this, it can be also concluded that, compared to the method of Zheng et al.26, the proposed method 
avoids the optimization experiments to determine R value (the radius of the influence domain of kth φ − node) 
and S value (the span of φ − node), as an inappropriate R and S value will affect the bandwidth of the matrix K, as 
well as the condition number of matrix K. As a result, the proposed method has characterized with simple pro-
gramming, high computational efficiency, and excellent fitting accuracy, which is more sufficient and suitable for 
a complex inhomogeneous model with different permeability distributions.

Figure 9. The calculated results with and without termination condition added to Model 1.

Figure 10. Impact of appropriate termination conditions on the convergence behaviour of Model 1.

https://doi.org/10.1038/s41598-019-43391-4


8Scientific RepoRts |          (2019) 9:6988  | https://doi.org/10.1038/s41598-019-43391-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Conclusion
In this work, unconfined seepage problems were studied in four models with different complexities. The calcula-
tion process for the free surface solution is investigated with the standard model, irregular geometric model, and 
complex inhomogeneous media model. The major conclusions from this study are listed as follows:

As the most crucial part of the seepage problem is the precise confirmation of free surface position and the 
exit point location, the Dupuit assumption is employed to determine the initial free surface, by introducing two 

Figure 11. Free surface solution by proposed method to Model 2.

Figure 12. (a) The initial free surface intersects with the downstream boundary of Model 3 (left). (b) The initial 
free surface selection and grid subdivision schemes for Model 3 (right).
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novel factors ζ, λ (i.e. the remainder factor of the normal vector and the step-size factor, respectively), the mesh 
can be dynamically reshaped to match the new location of the free surface during the next iteration, and subse-
quently, the accurate location of the exit point can eventually be fitted. Hence, it can be concluded that given the 
proper mesh fineness, the proposed algorithm shows better performance on the minimum error of free surface 
and exit-point position.

Figure 13. (a) Solution for free surface search by proposed method for Model 3 (left). (b) The initial free 
surface and the final free surface in the seepage domain for Model 3 (right).

Figure 14. The current result by the proposed method for Model 4.

https://doi.org/10.1038/s41598-019-43391-4


1 0Scientific RepoRts |          (2019) 9:6988  | https://doi.org/10.1038/s41598-019-43391-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

As ascertained above, if the search algorithm is run without any terminal condition, oscillating errors may 
occur, and subsequently, the errors accumulate over the entire iteration process which may lead to a waste in 
computing resources, or even worse, the accuracy may not improve. As a new solution, an innovative termi-
nal condition was introduced, and the simulation result demonstrates that the number of iterations required to 
converge to a steady state in 64 × 128 grid case of Model 1 is considerably reduced from 610 to 220, which could 
bring about a great reduction in calculation costs, and a significant improvement in algorithm performance in 
free surface search.

An irregular grid technique was employed to fit the discrete domain of the irregular model. By virtue of smoothly 
fitting the data with this technique, the quality of mesh generation could be considerably improved. The simulated 
result of Model 3 shows that the proposed method is not affected by the change in the geometrical shape of the 
model, which validates the suitability and effectiveness of the application of an irregular geometric model.

For a more complex model case, in particular, our experiment shows that, by virtue of implementation of com-
bining the weak formulation of Galerkin FEM with the AMM, the proposed algorithm achieves a better trade-off 
between efficiency and accuracy in dealing with inhomogeneous models with a sharp variation in the permeabil-
ity distribution, which could provide a practical solution for the free surface search with complex models.

Methods
Free surface of unconfined seepage problem. Free surface seepage problems can be described as a 
generic condition, which is shown in Fig. 15, where zone ABDEC represents the saturated seepage domain17.

where hU and hD represent the total heads at upstream and downstream boundaries, respectively. ED is the 
seepage face, which means that when water seeps out of the dam the total head is equal to the elevation head 
because the pressure head is equal to zero on this face. L represents the length of the dam27.

The governing equation and boundary conditions of the free surface can be expressed as follows:

Γ = = AC BDh x y h x y h h h( , ) ( , ) ( ) on boundary or on boundary (1)U D1 0 0

∂
∂

Γ = ABh
n

0 (on boundary ) (2)2

Γ = .CEh x y y x( , ) ( ) (on boundary ) (3 1)3

∂
∂

Γ = ⋅ =
.

CEk h
n

n v0 or 0 (on boundary ) (3 2)3

|Γ = EDh x y y x( , ) ( ) (on boundary ) (4)4

where n denotes the normal direction.

Accuracy simulation using Galerkin FEM method. As the finite element equation of 2D seepage is a 
partial differential equation, the boundary conditions and initial conditions must be satisfied for the solution to 
the partial differential equations. The derivation of the Galerkin method automatically satisfies the Neumann 
boundary conditions, namely, the derivative of an unknown function has a known value on the boundary. Hence, 
the Galerkin method is employed to deduce the control equation of the seepage problem.

Making use of the trial function, it yields:

Figure 15. Schematic diagram of seepage flow.
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The first and second item of equation 5 can be transformed by the Green formula transformation:
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According to the boundary conditions given above, the boundary integral of the first item on the right side of 
equation 6 is equal to zero. Substituting equation 6 into equation 5, it yields:

ϕ ϕ
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∬ x
k h

x y
k h

y
d 0

(7)
x y

As shown by equation 7, the weak solution of the control equation is obtained for the seepage field.
To clearly demonstrate the seepage field, the solution area is separated by irregular quadrangle grids, as shown 

in Fig. 16.
The evaluation of element matrices and vectors using bilinear quadrilateral elements. The governing interpo-

lation functions for a bilinear quadrilateral element are given by28:

ξ η ξ η

ξ η ξ η

= − − = + −

= + + = − +

N N

N N

1
4

(1 )(1 ), 1
4

(1 )(1 )

1
4

(1 )(1 ), 1
4

(1 )(1 )
(8)

1 2

3 4

Using an isoparametric representation, the x, y space coordinates of a point inside a quadrilateral and the 
primary unknown quantity are expanded in terms of the same interpolation functions, i.e. = ∑ =x x Ni i

e
i1

4 , 
= ∑ =y y Ni i

e
i1

4  and = ∑ =h h Ni i
e

i1
4 , where x y,i

e
i
e for i = 1, 2, 3, 4 are the node coordinates of the quadrilateral ele-

ment, and hi
e for i = 1, 2, 3, 4 are the values of the primary unknown quantity at the four nodes, as shown in 

Fig. 17.
Using the Jacobian transformation determinant, the differential relation of the two units can be expressed as 

follows:

Figure 16. Schematic diagram of mesh subdivision and its node number for seepage field.
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The Jacobian transformation determinant |J| can be expressed as:
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Substituting equation 8 into equation 10, we obtain:

αη βη
αξ βξ
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+ +
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c c
c c

A B C J1
16

( , )
(11)
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3 4
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α β
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Applying the Galerkin method in equation 10, a new function N is introduced and treated as a basic function 
for expanding and testing. The seepage in the cells can be expressed as he(x, y) = Nhe, substituting this expression 
into equation 7, the ordinary differential equations of the seepage field equations can be obtained:

∑ =
=

A h 0
(12)e

NE
e e

1

where NE represents the total number of elements, he represents the seepage head of the unit, and the matrix Ae 
can be expressed as:

= + =
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Substituting the differential expression into the corresponding items in equation 13 yields:

∫ ∫
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1
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where ξ η = −
η ξ ξ η

∂
∂

∂
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∂
∂

F ( , )ix
y N y Ni i , and ξ η = − +

η ξ ξ η
∂
∂

∂
∂

∂
∂

∂
∂

F ( , )iy
x N x Ni i , which can be obtained by equation 8 and 

equation 10, respectively. Hence, the element matrix can be obtained by equation 14 using Gaussian numerical 
integral.

Figure 17. Schematic diagram of (a) Quadrilateral master element in ξη-plane (left). (b) Quadrilateral element 
in xy-plane (right).
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By expanding the unit column vector he to the column vector h of all nodes, as well as expanding the unit 
matrix Ae to matrix A of the whole region and merging the elements, the finite element equation of the whole 
seepage solution domain can be obtained:

=Ah 0 (15)

where A represents the stiffness matrix, and h represents the total head vector.
In fact, the Dirichlet boundary condition is generally determined by the multiplied bigger number method 

(MBNM) using FEM29. The MBNM has proven to be the most efficient and straightforward technique in solv-
ing a stiffness matrix. However, it does not allow the elimination of equations associated with the nodes on the 
boundary, which may result in an increase in the number of conditions and consequently, an increase in the bur-
den of iterations29. To solve this problem, a classic method, named direct method (DM), is introduced to impose 
the boundary conditions which reduce the order of matrix, simplify the process of iteration, and re-encode the 
unknown node.

The total coefficient matrix can be divided into two parts, yielding:

Α



























=
A
A A

h
h 0

(16)

bb bf

fb ff

b

f

where b represents the node number of the known boundary, and f represents the node number of unknown 
grids.

The flow values on the boundary can be determined by equations 1–4.
Expanding equation 16 yields:

= −A h A h (17)ff f fb b

Adaptive strategy for free surface analysis. To determine an initial seepage model, an initial free seep-
age value needs to first be confirmed. The saturated domain is comprised of zone ABDEC, as shown in Fig. 15, 
where the location of free seepage (i.e. curve CE) is unknown.

Assuming the media that seepage flows through is homogeneous and isotropic, the location of the initial free 
surface (i.e. curve CE) can be obtained by the Dupuit assumption30:

= − −y H x
L

H H( )
(18)1

2
1
2

2
2

where H1, H2 represent the upstream water head and downstream water head, respectively. L represents the length 
of curve AB.

As mentioned above, equations 1–4 are the required boundary conditions that restrain the calculation, equa-
tion 1 is employed to define the water head at the left boundary (i.e. curve AC) and right boundary (i.e. curve 
BD). If the boundary ED appears as a part of our solution domain boundaries, equation 4 can be utilized to spec-
ify the water head on the boundaries. Meanwhile, equation 3.1 can be used to implement the required boundary 
condition at the free surface. As the condition of free surface needs to be modified during each iteration, the speed 
of free seepage in normal direction must satisfy equation 3.2.

Assuming cell PJ is a boundary element on the free surface, as shown in Fig. 18, the boundary condition can 
be written as:

α α⋅ = ⋅ − ∇ =
∂
∂

−
∂
∂

=h k h
x

k h
y

n v n K[ ( )] (sin ) (cos ) 0
(19)x y

where line T represents the tangent line.
As the location of the initial free surface may not be accurate at this stage, the boundary condition of equa-

tion 19 is not equal to zero. Considering a non-zero gradient on the left side of equation 19, a novel remainder 

Figure 18. A boundary element on the free surface.
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factor ζ is introduced to determine the normal vector of the elements on the free surface. In this regard, the 
parameter ζ can be defined as:

ζ α α=






∂
∂

−
∂
∂







k h
x

k h
z

(sin ) (cos )
(20)

J x y
J

where J denotes the J-th element on the free surface. If ζ > 0J , it implies a node above the free surface. On the 
contrary, the case ζ < 0J  implies a node within the saturated domain. The factor ζ provides a general judgment 
criterion to determine the movement direction of the node on the free surface. The iterations will be continued 
until the factor ζ less than a tolerable error. Therefore, the magnitude of factor ζ is employed to relocate to a new 
position on the free surface:

λζ= ++h h (21)J
i

J
i

J
1

where i denotes the number of iterations, and λ denotes the step-size parameter which is specially designed and 
capable of controlling the iteration speed.

In the iteration process, although a large value λ here can guarantees a high convergence rate, it will cause 
oscillation and thus cannot achieve the specified tolerance. In contrast, although a small large value λ represents a 
higher precision solution, it might indicate an increasement of the iterations and deceleration of the convergence 
rate. Hence, an appropriate step-size parameter should be determined according to the model size, computation 
efficiency and calculation accuracy. For the models in the present work, the experience and test process showed 
that λ = 1.28*L/(NX − 1) (where L represents the length of earth dam, NX represents the number of nodes in x 
direction) would provide a suitable convergence behaviour.

tolerable error and termination condition. Due to the boundary condition requirements that the free 
surface needs to meet, note that a specified tolerance with respect to the magnitude of ζ is unavoidable. Hence, a 
tolerable error ψ is introduced specifically to determine whether the free surface meets the boundary conditions 
or not, and which will lead to great improvement in saving computational resources and high efficiency in the 
search process. Equation 3.2 can be rewritten and a termination condition is defined as:

ζ ψ≤ (22)

where tolerable error ψ is defined as:

ψ = . N0 001/ (23)

where N represents the number of grids in the x-direction.
In the case where equation 22 is workable, we can confirm that the correct and accurate position of the free 

surface has been determined.
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