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Kinetic Investigation and 
Dissolution Behavior of Cyanide 
Alternative Gold Leaching Reagents
Alexander Birich  , srecko stopic & Bernd Friedrich

Raising social awareness and environmental specifications on cyanide application force gold industry 
to search for alternative leaching reagents. therefore, researchers worldwide investigate cyanide 
alternatives for gold recovery since several decades. often the research activities cannot be compared 
directly, since different input materials and experimental conditions are used. Over the course of this 
study, different promising cyanide alternative reagents were investigated in terms of their capability of 
pure gold dissolution at different temperatures. All experiments took place under identical conditions by 
using uniform samples of 99.99% gold disks, to enable a comparability. Thiosulfate as one of the most 
promising reagent thiosulfate according to literature revealed an insufficient leaching behavior. The 
gold dissolution was hindered due to the formation of a sulfide passive layer. Also in the thiourea trials, 
a surface precipitation took place, though gold dissolution did not stop. the halogens iodine, bromine 
and the well-known gold solvent aqua regia dissolved gold very fast (up to ~1,000 mg·h−1·cm−2). 
Methanosulfonic acid (MsA) was not capable to extract any gold. the experiments were compared with 
cyanide trials at identical conditions. The average dissolution rate of investigated reagents at 25 °C 
shows following order: aqua regia > iodine > bromine > cyanide > thiourea > thiosulfate > MsA.

Gold is a metal of high importance for mankind since several thousand years. Besides its applications in jewelry 
and as currency in former days, nowadays gold experiences a raising importance in electronics and as save funds. 
These fields of application are based on the excellent chemical resistance and electrical conductivity of gold. In 
particular its corrosion resistance is the reason for the challenging development of efficient recovery methods. 
Many potential reagents besides cyanide, e.g. chloride, mercury or sulfur complexes, are mostly aggressive or very 
toxic. Cyanide can cause severe environmental harms if handled carelessly, so through contamination of soils and 
groundwater. Therefore, worldwide we face environmental problems during processing of gold1–4. The industrial 
gold recovery becomes more challenging, since high grade ores are becoming rare. Gold producer are forced to 
use increasingly complex and low grade ores. Especially for refractory and carbonaceous preg-robbing ores cya-
nide leaching shows an insufficient gold recovery2. Besides this, also different process residues from gold winning 
plants and gold containing end of life products experience raising attention. These resources characteristically 
show strongly varying composition with elements hindering an efficient gold extraction by cyanide5,6. Another 
big disadvantage of cyanide is its low dissolution rate compared to alternative leaching reagents (lixiviants), which 
can be more than 10 times faster2,7.

The cyanide process is the dominant method for gold recovery from ores, but due to different technical and 
environmental issues the established cyanide process reaches its limit. In particular to overcome environmental 
problems and technical disadvantages, new leaching agents were increasingly researched in the past decades. 
Many researchers investigated various cyanide alternatives, but these activities often lack in a direct comparabil-
ity, since different experimental setups, input materials and procedures were used7–10. This paper focusses on the 
investigation of the leaching behavior of different promising cyanide-alternative reagents and cyanide at identical 
conditions. In the following a brief description of used leaching reagents takes place8–11.

Cyanide and Alternative Gold Leaching Reagents
The most commonly used cyanide salts are KCN and NaCN, which are easily soluble in water. Cyanide leaching 
is the dominating process for gold recovery from primary resources, due to its simplicity and high cost efficiency. 
Cyanide dissolves gold by forming a soluble dicyanoaurat complex (Eq. 1). The presence of oxygen is essential 
for the gold dissolution. To avoid the formation of volatile hydrogen cyanide HCN, the process takes place in a 
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basic solution (pH 10). Generally, an average gold extraction yield of 50–80% can be obtained by heap or 99% by 
conventional leaching2,12–14

+ + + = +− − −4Au 8CN O 2H O 4Au(CN) 4OH (1)2 2 2

Thiosulfate is the most promising non-cyanide leaching reagent and the only reagent which found industrial 
application on gold recovery from a highly carbonaceous preg-robbing gold ore at Barrick Gold. Besides this, the 
nontoxic reagent is highly discussed and there is a multitude of publications and conference papers presenting 
auspicious results, also for different gold containing waste types7,15–17. For gold extraction usually ammonium 
or sodium thiosulfate salts are used in an ammonia-copper leaching solution. Copper sulfate acts as a catalyst, 
while ammonia is a stabilizing agent for the aurothiosulfate and copper complexes. In spite of its potential envi-
ronmental benefits, it is relatively slow and shows a high reagent consumption. Furthermore, the thiosulfate 
leaching reaction is quite complex due to several reactions taking place in parallel (oxidation of gold, redox 
reaction of copper, formation of copper thiosulfates and other). The stability of thiosulfate and copper complexes 
is strongly depending on pH-level (Figs 1 and 2). The dissolution reaction can be summarized by the following 
equations17–20.

+ + ↔ + +− + − −Au S O Cu NH Au S O NH Cu S O5 ( ) ( ) 4 ( ) (2)2 3
2

3 4
2

2 3 2
3

3 2 3 3
5

+ + + ↔ + +− + − −Cu S O NH O H O Cu NH OH S O2 ( ) 8 1
2

2 ( ) 2 6 (3)2 3 3
5

3 2 2 3 4
2

2 3

Figure 1. Eh-pH diagram for Au-NH3-S2O3
2− system (1 M S2O3

2−, 10−4 M Au; 1 M NH3/NH4
+)54.

Figure 2. Eh-pH diagram of Cu-NH3-S2O3
2− system (0.1 M NH3/NH4

+; 0.1 M S2O3
2−; 5 × 10−4 M Cu2+)54.
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Sulfurized urea, better known as thiourea, is the next promising cyanide alternative to thiosulfate. Research 
activities of the past decades show considerably promising results. Thiourea (SC(NH2)2) is an organosulfur com-
pound that forms a soluble cationic complex with gold in a sulfuric acid solution. Iron(III)sulfate is added as 
catalyst, facilitating the oxidation of precious metals. The dissolution reaction is described Eqs 4 and 5. Thiourea 
has several advantages like a fast leaching rate and a low toxicity compared to cyanide. On the other side, a high 
reagent consumption occurs due to the oxidation to disulfide formamidine and precipitation of sulfur. This can 
cause a surface passivation5,21–25.

+ + + ↔ ++Au SC NH O H Au SC NH H O2 ( ) 1
4

[ ( ) ] 1
2 (4)2 2 2 2 2 2 2

+ + ↔ ++ + +Au SC NH Fe Au SC NH Fe2 ( ) [ ( ) ] (5)2 2
3

2 2 2
2

The halogens present a group of elements which show a strong tendency to form metal salts. Especially iodine, 
bromine and chlorine are known for their high gold dissolution rate, which is similar to aqua regia. One advan-
tage of iodine and bromine is their high selectivity in terms of separation of precious metals from base metals. 
Besides their direct use as leaching reagent, a positive effect on gold recovery as additive in different leaching 
solutions was reported. Due to its low volatility and low hazardousness, iodine is the most convenient halogen for 
gold leaching. The dissolution reaction takes place in neutral or weakly alkaline solutions. Because of its rareness 
and high price, iodine was not used for gold recovery in industrial scale yet. Despite their advantage of a higher 
dissolution rate, bromine and chlorine are strongly corrosive, highly volatile and hazardous. The gold dissolution 
reaction is similar for all halogens (Eqs 6 to 8). The best-known gold solvent is aqua regia. In presence of the 
oxidant nitric acid, hydrochloric acid forms a soluble tetrachloroaurate complex5,26–31. In further notations aqua 
regia will be counted as halogenic reagent, even though strictly seen it is not. Similar to iodine and bromine, also 
chlorine forms a Au(I)-compound first, which afterwards reacts to A(III)-chloride with a higher stability.

+ + ↔− − −Au I I AuI2 2 (6)3 2

+ = +− − −Au 4Br AuBr 3e (7)4

+ = +− − −ClAu 4Cl Au 3e (8)4

Methoanosulfonic acid (MSA) belongs to the class of organosulfur compounds and is a non-oxidizing reagent. 
By adding a strong oxidizing agent like hydrogen peroxide, the dissolution of precious metals can be achieved. 
This was already reported for noble metals like silver and copper but not for gold. Following equation shows the 
silver dissolution of MSA. Potential advantages of MSA would be its biodegradability and the low toxicity32,33.

+ + ↔ +Ag CH SO OH H O AgO SCH H O2 2 2 2 (9)3 2 2 2 3 3 2

Table 1 summarizes stability constant, standard reduction potentials and pH working area of relevant Au(I) 
and Au(III) complexes. An Eh-pH diagram for the different lixiviants is shown in Fig. 3.

Results and Discussion
thiosulfate. The thiosulfate leaching experiments revealed a gold dissolution rate of 0.295–1.179 mg·h−1·cm−2  
at 25 °C in the first 3 hours. After 2–3 h the gold dissolution completely stopped in all experiments (Fig. 4). A 
subsequent mass increase was measured for all samples. The experiments were repeated, showing similar results. 
In all thiosulfate leaching experiments a darkening of the gold specimen surface was observed. At higher solution 
temperatures the surface became darker than in the 25 °C trial. This effect was clearly visible especially for the 
trials at 65 °C (Fig. 5). The color indicates the presence of sulfidic copper or gold compounds34,35, which was con-
firmed by an EDS analysis. On different positions, there was a significant peak for Cu and S, as shown in Fig. 6. 
The surface layer was insoluble, as 48 and 72 h experiments showed. The elements Na and K, which are displayed 
in the EDS diagram, origin from the used reagents (purity >98%) and de-ionized water. Since these elements are 

Ligand Complex Log βi E0/V pH

S2O3
2− Au(S2O3)2

3− 28.7 0.17 8–10

SCN−
Au(SCN)2

− 17.1 0.66
<3

Au(SCN)4
− 43.9 0.66

I−
Aul2

− 18.6 0.58
5–9

Aul4
− 47.7 0.69

Br−
AuBr2

− 12.0 0.98
5–8

AuBr4
− 32.8 0.97

Cl−
AuCl2

− 9.1 1.11
<3

AuCl4
− 25.3 0.99

CN− Au(CN)2
− 38.3 −0.57 >9

Table 1. Stability constants and standard reduction potentials for relevant Au-complexes54.
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present in most systems, no negative effect is expected or was reported in literature. The thiosulfate leaching of the 
Au80Ag20 alloy did not improve dissolution behavior.

The occurrence of a surface layer can be explained by the formation of a passive layer. The stability of the 
ammonia thiosulfate system is strongly dependent on the concentration of copper amines, oxygen and the ammo-
nia. The atmospheric leaching setup enables a permanent supply of oxygen, which not only facilitates the gold 
oxidation but also increases thiosulfate decomposition at the same time. Polythionates or sulfate compounds are 
formed by oxidation of thiosulfate. These products are adsorbed on the gold surface and hinder further the disso-
lution reaction. Furthermore, the permanent ammonia evaporation causes a drop of the pH level, in particular at 
higher temperatures. This effect strongly influences the stability of soluble copper complexes and may lead to the 
precipitation of copper sulfides or oxides (Fig. 2). In particular at elevated temperatures the formation of insoluble 
compounds is facilitated due to the reagent instability and reduced reaction energy36–40. The precipitate leads to an 
increasing sample mass and a slowing down or stopping of the dissolution reaction.

thiourea. The thiourea leaching experiments show a continuous and constant gold extraction over the time 
in all experiments (Fig. 7). A significant effect of leaching temperature was observed in these experiments. The 
mean dissolution rate of the trial at 45 and 65 °C were up to two times faster than that of the 25 °C trial (25 °C: 
0.516 mg·h−1·cm−2; 45 °C: 1.142 mg·h−1·cm−2; 65 °C: 0.774 mg·h−1·cm−2). At 65 °C a conspicuous decrease in leach-
ing rate took place after 2 hours. Unlike trials at lower temperatures, at 65 °C a strong evaporation took place caus-
ing a drop of pH from 0.9 to 0.6 and lower. To stabilize the pH value, deionized water was added after 3 and 6 hours, 
enabling to maintain and temporarily increase the dissolution rate. The addition of de-ionized water during the 

Figure 3. Eh-pH diagram of promising gold lixiviants and their working areas55.

Figure 4. Sample dissolution vs time in thiosulfate test series (Ammonium Thiosulfate 0.3 M, Ammonia 0.3 M, 
Cu(II)sulfate 0.01 M).

Figure 5. Passivation of gold surface in thiosulfate leaching experiments (from left to right: initial sample, 65 °C 
after 8 h leaching, optical microscopy magnification x500).
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experimental procedure causes a condition, which differs from other experiments. This precludes the compara-
bility to lower leaching temperatures or other reagents. Therefore, the dissolution course after 3 hours have to be 
considered with reservation. For the 25 and 45 °C trials the pH value remained constant between 0.8–1.1.

In all thiourea leaching experiments the specimens became slightly darker with time, but unlike the thio-
sulfate experiments the dissolution reaction did not slow down or stop. The change in color can be explained 
with the formation of a passive layer, which origins from the oxidation of thiourea with oxygen and due to a 
redox-reaction with the catalyst iron. This mechanism leads to adsorption of polysulfides and sulfate ions on the 
gold surface. By controlling pH and oxygen concentration, this effect can be reduced. The high thiourea concen-
tration in conducted trials facilitate the reagent decomposition. Unlike the thiosulfate system, the passive layer is 
soluble and enables further gold leaching41–44.

Besides pure gold samples, also a gold-silver specimen was used in one trial to determine the influence of the 
alloying element silver in thiourea leaching systems. As can be seen in Fig. 7, silver does not have distinct effect 
on the sample dissolution. The rate determining step is the diffusion of Au- or Ag-thiourea complexes though 
the passive layer. Since the diffusion constants are similar for both complexes, the dissolution of the gold alloy 
was not substantially faster than for pure gold. In general, silver was found to be more sensitive in Fe2+/Fe3+ cata-
lyzed thiourea leaching systems. The dissolution of pure gold was observed to be 2–4 times faster than for pure 
silver24,25,41,45,46.

Iodine. Iodine experiments revealed a fast gold dissolution reaction (Fig. 8). At 25 °C 0.26 g/h (80 mg·h−1·cm−2) 
and for 85 °C even 2.16 g/h (702 mg·h−1·cm−2) of gold were leached at the beginning. The slowing down of the 
dissolved gold mass per hour can be explained with the decreasing surface and the decreasing free iodine-ions in 
solution. So the increasing diffusion zone of iodine to the gold surface is limiting the leaching reaction with the 
time. Just the trial at 85 °C shows a nearly lineal trend in mass decrease, but this is most probably results from the 
low quantity of measurement points. The experiments showed a strong temperature influence on the gold-iodine 
reaction due to increasing diffusion and/or decreasing activation energy. In one experiment at 25 °C hydrogen 
peroxide was added to raise the oxidative property of the solution. The oxidant increased the reaction kinetics 
slightly in the first hours. After 8 hours the dissolution reaction is more than 25% faster (first hour 10% devia-
tion: 80 and 87 mg·h−1·cm−2; after 8 hours 25% deviation: 62 and 78 mg·h−1·cm−2). This observations reveals that 
another reason for the decreasing reaction kinetics may be the consumption of dissolved oxygen and herewith 
lower oxidative solution properties. The solubility of gases like oxygen in solution is negatively correlated to the 
temperature and concentration of other dissolved compounds, like metal salts47,48. Since with progression of time 
the metal ion concentration increases, a de-aeration of oxygen takes place.

Kinetical calculations were conducted to determine the dissolution model and activation energy of the gold 
leaching with iodine. After comparing different models, it was found that the shrinking core model for a cylin-
drical geometry suits to the experimental data (Fig. 9)49,50. A reaction controlled system was determined for 
gold-iodine leaching. The activation energy was found to be 35.57 kJ/mol, which fits in the range of calculations 
from other researchers51,52.

Figure 6. Results of EDS Analysis of passive layer on gold surface of 45 °C thiosulfate sample.

Figure 7. Sample dissolution vs time in thiourea test series (Thiourea 0.26 M, 0.02 M Fe(III)sulfate, 0.15 M 
H2SO4).
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Bromine. Due to their chemical similarity but higher corrosiveness, it is expected that bromine will have 
better leaching characteristics as iodine. Especially at the beginning of the 25 °C trial, the dissolution rate of 
bromine was much higher than for all other reagents (154.042 mg·h−1·cm−2) (Fig. 10). The strong evaporation 
of bromine already in the first hours lead to a decreasing leaching rate. This results in an average leaching rate 
of just 57.765 mg·h−1·cm−2. With increasing temperature the bromine evaporation intensified, so that the 85 °C 
trial showed the lowest gold dissolution. Since the significant evaporation of bromine does not enable a repre-
sentative observation of its gold leaching properties, the experiments at higher temperatures than 25 °C were 
stopped already after 5 or 3 hours. At 65 °C a slightly stronger mass decrease than in the 45 °C trial was observed, 
which can be explained with increased leaching kinetics at higher temperatures. The increased leaching kinetics 
at this temperature change were also observed in the iodine experiments (Fig. 8). To prove that the dissolution 
reaction slows down due to a reagent loss by evaporation, in the trials at 45 and 65 °C 5.14 ml bromine was 
added after 5 hours (not displayed). This led to an eminent improvement of the gold dissolution from 6.36 and 
2.96 mg·h−1·cm−2 to 298.05 and 262.72 mg·h−1·cm−2.

Aqua Regia, MsA and Cyanide. Leaching experiments with aqua regia revealed that the reagent has the 
highest average dissolution rate of all reagents at 25 °C (84.239 mg·h−1·cm−2). The trials showed a very similar 
leaching behavior to the iodine and bromine experiments. At high chlorine concentrations in solution, the mass 
transport of chloride ions to the gold surface by diffusion is negligible2. This is the case for the present system. 
Therefore the dissolution rate determining step is the gold-chlorine reaction, which is much faster than for other 

Figure 8. Sample dissolution vs time in iodine test series (iodine 0.08 M, potassium iodide 0.80 M).

Figure 9. Adaption of shrinking core model on cylindric object.

Figure 10. Sample dissolution vs time in bromine test series (bromine 0.20 M, potassium bromide 0.67 M).
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reagents, in particular non-halogens (Fig. 11). This is approved by the linear mass decrease of the gold specimen. 
Although it is expected that higher temperatures will enable accelerated leaching conditions, as observed for 
iodine, no trials above 25 °C were conducted. Similar to bromine, also hydrochloric acid has a low boiling point 
(45 °C), which would lead to a reagent loss and a slowing down of gold extraction.

The average dissolution rate of cyanide leaching (1.032 mg·h−1·cm−2) fits the expectation from literature2. Also 
in the cyanide system a change in color of the specimen was observed. On the surface a dark layer was formed in 
the first hours, which slows down dissolution rate already in the first two hours. Unlike the thiosulfate experi-
ments, this coating is nor compact neither stable. Already by the flow stream caused by stirring, the coating was 
removed and dissolved completely (Fig. 12). The occurrence of this dark coating is based on the formation of 
AuCN, which is formed in an intermediate reaction. The AuCN reacts with CN− and form soluble −Au(CN)2 . 
Under certain conditions, like in systems with high cyanide and oxygen concentrations, the AuCN formation is 
faster than its evacuation, causing a precipitation on the gold surface due to exceeding the local solubility limit53. 
To prove this explaination, three cyanide leaching experiments with a lower KCN concentration of 0.07, 0.004 and 
0.002 M KCN were conducted. The lower cyanide concentration provides a reduced AuCN formation rate. For 
0.07 M cyanide just a very weak coating was observed, for 0.04 and 0.02 no coating was visible anymore. By reduc-
ing the KCN concentration also the dissolution rate dropped significantly to around 60, 40 and 20% respectively, 
compared to the initial leaching test (0.14 M KCN).

The organic and non-oxidizing reagent MSA was not capable to extract any gold over 8 hours. Neither in 
experiments with addition of hydrogen peroxide nor the use of a gold-silver specimen or increased leaching time 
enabled a measureable mass decrease of the gold specimen. Unlike for silver, the oxidizing conditions do not 
suffice the gold leaching32,33.

Conclusions
The conducted experiments revealed important information about the leaching behavior of different gold leach-
ing reagents at defined temperatures under identical conditions. Most experiments indicate a significant influence 
of oxygen on the dissolution behavior of investigated gold leaching reagents. The oxygen activity in solution is 
varying over time depending on the metal salt concentration and temperature. Another important observation is 
the negative influence of temperature on volatile leaching reagents or on for different reagents.

•	 Thiosulfate as most promising cyanide alternative lixiviant was not capable to dissolve pure or silver-al-
loyed gold samples. The thiosulfate leaching experiments caused the formation of a stable passive layer after 
2–3 hours, which led to a mass increase (0.3 M thiosulfate and ammonia, 0.01 copper sulfate). This compact 
coating hindered any further gold dissolution. An EDS analysis revealed the composition of the passive layer: 
it consists of an Cu-S-complex.

•	 Thiourea showed a continuous gold dissolution over time (0.26 M thiourea, 0.02 M iron sulfate, 0.15 M sulfuric 
acid). The average dissolution rate of thiourea at 25 °C was lower than cyanide (0,516 and 1,032 mg·h−1·cm−2). 
Silver as an alloying element did not affect the sample dissolution. At temperature above 45 °C, the thiourea 
solution evaporated non-equimolar, causing a drop in pH and herewith slowing down leaching kinetics.

Figure 11. Sample dissolution vs time for MSA (0.5 M), KCN (0.14 M) and aqua region (right axis) at 25 °C.

Figure 12. Gold specimen in cyanide test (0.14 M KCN) after 3 h (left) and after 6 h (right picture).
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8Scientific RepoRts |          (2019) 9:7191  | https://doi.org/10.1038/s41598-019-43383-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

•	 The leaching experiments with iodine, bromine and aqua regia showed the fastest and continuous gold dis-
solution over time. A significant influence of temperature on gold leaching was observed in all experiments.

•	 Iodine is capable to extract gold a very fast (average dissolution rate of 65.679 mg·h−1·cm−2 at 25 °C). At 
higher temperature the dissolution rate increased up to 806.161 mg·h−1·cm−2. It was found that the iodine 
dissolution of gold is reaction controlled. An activation energy of 35 kJ was determined for the iodine 
leaching reaction.

•	 Bromine leaching was faster than any other reagent in the first 3 hours at 25 °C. But with time the dissolu-
tion rate dropped due to the evaporation of bromine. The lixiviant has a high vapor pressure of 20 kPa35, 
causing a strong reagent loss into the gas phase. Leaching in closed pressure reactor would be favorable 
for bromine to avoid the reagent evaporation. For iodine and bromine a significant amendment of the 
leaching kinetics was observed at a temperature increase from 45 to 65 °C.

•	 Aqua regia showed a higher average dissolution rate over eight hours than iodine, bromine or any other 
reagents at 25 °C.

•	 MSA is not capable to extract gold, neither by addition of the oxidizing agent hydrogen peroxide.

The extremely fast gold dissolution rate of iodine and bromine solutions can be compared with aqua regia, 
which is already used in small scale gold recovery processes. In contrast with aqua regia these reagents are 
more stable, less corrosive and have a lower toxicity, thus are promising reagents for industrial gold recovery. 
Nevertheless, due to high reagents prices of iodide and bromide a loss-free process has to be developed to enable 
an economic process. Thiosulfate is reported to be the most promising cyanide alternative, but shows some sig-
nificant drawbacks which are based on the low reagent stability and may cause a surface passivation. This may be 
the reason for the limited industrial application of thiosulfate. With a quite similar dissolution rate as cyanide, the 
experiments did not show an advantage of thiourea for the gold recovery from gold ores.

Figure 13. Schematic diagram of the reaction vessel.

Test Solution composition (Σ 500 ml) T (°C)

1–3 Ammonium Thiosulfate 0.3 M, NH3 0.3 M, CuSO4 0.01 M 25, 45, 65

4 Amm. Thiosulfate 0.3 M, NH3 0.3 M, CuSO4 0.01 M, Au80Ag20 25

5–8 Thiourea 0.263 M, Fe2(SO4)3 0.02 M, H2SO4 0.15 M 25, 45, 65

9 Thiourea 0.263 M, Fe2(SO4)3 0.02 M, H2SO4 0.15 M, Au80Ag20 25

10–13 Iodine 0.08 M, KI 0.80 M 25, 45, 65, 85

14 Iodine 0.08 M, KI 0.80 M, 7.5 ml H2O2 25

15–18 Bromine 0.20 M, KBr 0.67 M 25, 45, 65, 85

19 Methane sulfonic acid 0.5 M 25

20 Methane sulfonic acid 0.5 M, H2O2 1 M 25

21 Methane sulfonic acid 0.5 M with Au80Ag20 25

22 Aqua Regia (HCl:HNO3 = 3:1) 25

23 Potassium cyanide 0.14 M 25

24 Potassium cyanide 0.07 M 25

Table 2. Conducted leaching experiments and respective parameters.
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Materials and Methods
All leaching experiments took place in an open to atmosphere beaker (1 L) on a stirred heating plate (SLR, SI 
Analtics) by controlling the solution temperature with a PTFE coated thermocouple. The pH value was measured 
with a pH/mV measuring device (ph1970i, WTW). A schematic diagram of the experimental setup is shown in 
Fig. 13. The investigated reagent grade lixiviants were acquired from AlfaAesar and SigmaAldrich.

As material of investigation, identical cylindrical gold samples were provided by Varinor SA. The samples 
showed following properties: a gold purity of 99.99 wt%; a surface area of 3.393 cm² (diameter 12.0 mm, height 
3.0 mm) and a mass of 6.526 g +/− 0.005. For selected experiments a gold disk containing 20 wt% silver was used 
to investigate the leaching behavior of a common gold alloy. The Ag20Au-disks were produced at the IME and 
are identical in geometry compared to the pure gold specimens. The initial mass of the Ag20Au disks is lower 
(5.621 g +/− 0.012). For sample weighting a special accuracy weighing device was used (XS603S DeltaRange, 
Mettler Toledo). Surface analysis and microscopy scanning electron microscopy (SEM) and electron dispersive 
spectroscopy (EDS) took place with a FEI SEM (Quanta-650F SEM, Thermo Fisher Scientific).

All experiments were conducted at identical conditions. A solution volume of 500 ml (solid liquid ratio of 
~1/80) was adapted at an agitation speed of 250 rpm. The reagent grade lixiviants were added in excess to enables 
a permanent reagent excess over the experimental time. After reaching aimed temperature the experimental time 
started. The gold samples were always put on the same position to enable comparable stirring conditions. The 
samples were measured in an hourly time interval to determine mass and volume decrease over time. The meas-
urement consisted of taking out the sample from leaching solution, drying with compressed air, measurement of 
weight and geometry and putting it back. This procedure took 1 min on average, which is not considered in the 
total leaching time (i.e. there is a negligible deviation between of displayed and real leaching time of ~1.7%). To 
avoid a slowing down of the dissolution reaction due to a lack of free reagents, all lixiviants were added in a stoi-
chiometric ratio of 3–5 to 1 mole gold. Table 2 gives an overview of conducted experiments and their respective 
parameters.

Main parameter of investigation is the temperature, so leaching experiments took place at 25, 45, 65 and 85 °C. 
In case of thiosulfate and thiourea, leaching at 85 °C did not take place, since a non-equimolecular evaporation 
took place causing a significant change in pH, which was already observed at 65 °C. For both reagents a defined 
pH interval is necessary to enable suitable leaching conditions. Since these two reagents are the most promising 
cyanide alternatives for gold ores, a gold-silver alloy was used to see the effect of alloying elements onto the dis-
solution reaction.

Besides the four promising cyanide alternatives, also MSA was tested at 25 and 45 °C with and without the 
addition of hydrogen peroxide. To enable a comparability of the alternative reagents, the established lixiviants 
cyanide and aqua regia were also tested at 25 °C and identical leaching conditions.
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