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Remotely sensed indicators and 
open-access biodiversity data to 
assess bird diversity patterns in 
Mediterranean rural landscapes
Inês Ribeiro   1, Vânia Proença   1, Pere Serra2, Jorge Palma1, Cristina Domingo-Marimon   3, 
Xavier Pons   2 & Tiago Domingos1

Biodiversity monitoring at simultaneously fine spatial resolutions and large spatial extents is needed 
but limited by operational trade-offs and costs. Open-access data may be cost-effective to address 
those limitations. We test the use of open-access satellite imagery (NDVI texture variables) and 
biodiversity data, assembled from GBIF, to investigate the relative importance of variables of habitat 
extent and structure as indicators of bird community richness and dissimilarity in the Alentejo region 
(Portugal). Results show that, at the landscape scale, forest bird richness is better indicated by the 
availability of tree cover in the overall landscape than by the extent or structure of the forest habitats. 
Open-land birds also respond to landscape structure, namely to the spectral homogeneity and size of 
open-land patches and to the presence of perennial vegetation amid herbaceous habitats. Moreover, 
structure variables were more important than climate variables or geographic distance to explain 
community dissimilarity patterns at the regional scale. Overall, summer imagery, when perennial 
vegetation is more discernible, is particularly suited to inform indicators of forest and open-land 
bird community richness and dissimilarity, while spring imagery appears to be also useful to inform 
indicators of open-land bird richness.

Species diversity patterns are shaped by multiple factors, including environmental factors, such as climate, pri-
mary productivity, habitat area and habitat diversity, and species-specific factors, such as species functional traits 
and evolutionary history1–3. The relative effect of the environmental factors on species diversity may differ with 
scale, according to the spatial extent and grain of their gradient of variation4. For instance, at large spatial extents, 
such as continental or regional extents (>100 km), the environmental gradient of climate variables is broader and 
more pronounced and so are the effects on species diversity3,4. Conversely, the effect of habitat variables tends to 
gain importance at smaller extents, such as landscape or local extents (<10 km), because the gradient of varia-
tion is finer and saturates at larger scales1–4. Regarding species-specific factors, species with different ecological 
requirements will show different responses to environmental factors and to environmental changes. For instance, 
the use of species groups based on habitat preferences may help to unravel different responses to habitat change 
within species communities3,5,6.

Changes in ecosystem area, documented by airborne and satellite imagery, and by the derived map prod-
ucts, have been used to assess human direct impacts on habitat availability and estimate biodiversity change7–9. 
However, the use of area alone as an indicator of habitat change may only partially capture changes in habitat 
availability for species10,11. That is the case when changes at fine spatial grains affect ecosystem structure, but not 
the main features that define the ecosystem type neither its overall extent. For instance, changes in tree density 
or vegetation structure, may affect habitat availability, including its quality and structural diversity, within appar-
ently stable forest patches, and consequently affect species presence and diversity patterns6,12–14. Moreover, habitat 
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structure is often described by coarse grain metrics of landscape configuration based on the size, shape, and type 
of land cover patches, thus overlooking variation at finer spatial grains.

Mapping and monitoring ecosystem structure at a fine resolution in large spatial extents poses an operational 
trade-off, because it requires an intensive sampling effort over a large area15. However, in a time of fast environ-
mental change, the assessment of biodiversity response at large spatial extents, fine spatial resolution and frequent 
time intervals is necessary16–18. Satellite remote sensing offers a tool to overcome such trade-off, as it allows to 
capture variations in ecosystem structure at fine spatial grains across large spatial extents and with high sampling 
frequency18,19. Notably, image texture measures (i.e. measures of the variability of pixel values in a given area) 
from satellite imagery have been used as a surrogate of vegetation and landscape structure15,20, and were found to 
be a good predictor of species richness patterns21–23. For instance, St. Louis et al.22 show that NDVI (Normalized 
Difference Vegetation Index) texture measures from satellite imagery were good surrogates of habitat structure 
and better indicators of bird richness than indices of landscape composition based on land cover maps. Similarly, 
Culbert et al.24 and Wood et al.20 show that NDVI textures measures, used as proxies of vegetation structure, are 
good indicators of bird species richness. Moreover, in a recent study, in Mediterranean forest habitats, Ozdemir 
et al.25 also report that bird richness was best described when using texture measures from NDVI layers than 
textures of individual Landsat TM bands.

This study investigates the importance of variables of habitat extent and structure in explaining the patterns 
of bird species richness and community dissimilarity in the Alentejo region (NUTS II; 31551 km2) in Portugal 
(Fig. 1). This region is characterized by heterogeneous landscapes and seasonal Mediterranean climate. Cropland, 
oak forest and montados (traditional agro-forestry systems) occupy a large share of the territory, providing key 
habitats for bird communities26,27, and forming landscape mosaics with diverse levels of spatial heterogeneity. This 
heterogeneity is maintained both by the habitat mix and landscape configuration, at coarser grains, and by the 
variation in vegetation structure at finer grains. A dataset of bird species occurrences in 40 landscape-sized cells, 
distributed across the region, was compiled for this study using up-to-date data made available by GBIF (Global 
Biodiversity Information Facility; GBIF.org28), and after checking for data quality (Supplementary Fig. S1). 
Furthermore, bird data were sorted into two species groups of habitat affinity, that is, forest birds and open-land 
birds, because of their different ecological requirements.

We expect the richness of a species group to be positively related to the extent and structural diversity of their 
main habitat in the landscape mosaic (i.e., oak forest for forest birds, open-land for open-land birds), with both 
factors being more important than the overall landscape structure. That is, species will be more responsive to the 
features of their preferred habitat, even if they use the whole landscape5,29. Moreover, because the overall distri-
bution range of most species in our dataset covers the study area, we also expect habitat extent and structure to be 
more important than geographic distance or climate gradients when explaining the level of dissimilarity between 

Figure 1.  Distribution of the 40 selected cells in Alentejo (i.e., well surveyed cells with eligible land cover, see 
methods for details on cell selection). An example of the land cover mosaic is shown for four cells.

https://doi.org/10.1038/s41598-019-43330-3


3Scientific Reports |          (2019) 9:6826  | https://doi.org/10.1038/s41598-019-43330-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

communities in the study area. Hence, we expect habitat descriptors, including remotely sensed variables, to be 
good indicators of bird richness at the landscape scale (i.e., the grid cell) and of community dissimilarity at the 
regional scale (i.e., Alentejo). Moreover, we expect summer satellite data, which provides better information 
on perennial tree cover, to be a better indicator of forest bird communities, and spring satellite data, which also 
capture herbaceous cover at its peak productivity, to be a better indicator of open-land bird communities. Finally, 
open-land birds may show stronger responses to habitat structure variables than forest birds because these var-
iables were derived from optical remotely sensed data, which do not capture understory vegetation structure.

Results
We applied a multistep protocol to ensure the quality of the bird occurrence dataset prior to data analyses. 
The final dataset of bird occurrences included 7858 observations of 78 species in 40 landscape-sized cells dis-
tributed across the study area (Fig. 1, Supplementary Fig. S1). Our initial list of candidate descriptor variables 
(Supplementary Table S1) included variables of climate (precipitation, temperature, solar radiation), topography 
(elevation), land cover (relative cover and largest patch area of selected land cover classes), and image texture. 
Texture measures were derived from NDVI (a measure of vegetation productivity) and included first-order tex-
ture variables (NDVI entropy, NDVI mean, NDVI standard deviation) and second-order texture variables (mean 
and standard deviation of NDVI entropy or NDVI variance, measured in 3 × 3 and 9 × 9 pixel moving windows). 
All variables were calculated at the level of the landscape (i.e., grid cell). Second-order texture variables were 
calculated either for all pixels in the grid cell (i.e., landscape) or for pixels of a focal land cover class (forest or 
open-land habitats).

From the initial list of candidate variables, we retained a final set of non-collinear variables (Spearman’s 
rho < |0.7|) per species group (Table 1). Then, we used generalized linear models (GLM) and generalized dissim-
ilarity models (GDM) to investigate the relative importance of the candidate variables in the final sets (Table 1). 
Finally, the most important variables identified by the GDMs were further tested for their indicator value using a 
correspondence analysis to test their association with species communities.

Species richness patterns.  The mean NDVI in summer (NDVI_mn_SU) and the radiation range were 
included in all the best GLMs (i.e., AICc – AICcmin ≤ 2) for forest birds, which suggests that these variables are 
important descriptors of forest bird richness at the landscape scale (Table 2). Moreover, both variables are posi-
tively correlated to forest bird richness (Spearman’s rho = 0.82 and Spearman’s rho = 0.40, respectively) (Table 1). 
Other variables included in the best models were the standard deviation of second-order NDVI variance in 9 × 9 
pixel windows in spring (NDVI_var9X9_sd_SP), the standard deviation of second-order NDVI variance in 3 × 3 
pixel windows in oak forest in spring (NDVI_var3x3_sd_OF_SP) and the area of the largest patch of oak forest 
(LgtPtch_OF) (Table 2). Regarding land cover variables, which are associated with habitat extent, the % cover of 
oak forest (main habitat) was collinear with LgtPtch_OF (Spearman’s rho = 0.95), and both variables were mod-
erately correlated to NDVI_mn_SU (Spearman’s rho = 0.56 and Spearman’s rho = 0.60, respectively), and to forest 
bird richness (Spearman’s rho = 0.53 and Spearman’s rho = 0.55, respectively).

All Species rho Forest bird species rho Open-land bird species rho

%OpnAr −0.14 %WterAr −0.15 TmeanT 0.10

NDVI_sd_SP 0.14 NDVI_mn_SP −0.17 NDVI_var9x9_sd_OP_SP −0.13

Elev_mn −0.20 NDVI_ent9x9_sd_OF_SP 0.20 NDVI_ent9x9_mn_OP_SP −0.14

NDVI_ent9x9_mn_SP 0.20 NDVI_var9x9_sd_SP −0.21 NDVI_var9x9_mn_OP_SP −0.15

NDVI_mn_SP −0.25 %OthFor 0.32 NDVI_var3x3_mn_OP_SU 0.17

%OthFor 0.26 NDVI_var3x3_sd_OF_SP −0.35 %WterAr 0.22

AnPrecip_mn 0.28 NDVI_ent3x3_sd_SP −0.37 NDVI_mn_SP −0.24

RadRg 0.30 %UrbnAr 0.37 NDVI_sd_SP 0.25

NDVI_var3x3_mn_SU 0.36 RadRg 0.40 %UrbnAr 0.32

TmaxJ −0.38 NDVI_ent3x3_mn_OF_SU 0.53 NDVI_ent3x3_sd_SU 0.35

NDVI_sd_SU 0.38 LgtPtch_OF 0.55

%UrbnAr 0.48 TminA 0.59

NDVI_mn_SU 0.82

Table 1.  Sets of non-collinear candidate variables per species group. Variables are ordered by the absolute 
value of the Spearman rank correlation (Spearman’s rho) with the richness of the species group. Climatic (mean 
annual precipitation - AnPrecip_mn; solar radiation range - RadRg; maximum temperature in June - TmaxJ; 
minimum temperature in April - TminA and mean trimestral temperature - TmeanT), topographic (mean 
elevation - Elev_mn) and land cover variables (percentage cover of open land - %OpnAr; percentage cover of 
urban area - %UrbnAr; percentage cover of water areas - %WterAr; percentage cover of other forest - %OthFor 
and Largest patch of oak forest - LgtPtch_OF) were measured at the landscape scale (i.e., full grid cell). NDVI 
variables were measured in spring (SP) and summer (SU) at the landscape scale and at the main habitat scale 
(i.e., pixels overlapping patches of oak forest (OF) or open-land (OP)). The final sets of candidate variables 
include first order measures of NDVI mean (mn) and standard deviation (sd) and second-order measures 
of entropy (ent) and variance (var) in pixel windows of 3 × 3 or 9 × 9. Variables full name is presented in 
Supplementary Table S1.
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Open-land bird richness, was best described by models including the standard deviation of second-order 
NDVI variance in 9 × 9 pixel windows in open land in spring (NDVI_var9x9_sd_OP_SP), the standard deviation 
of second-order NDVI entropy in 3 × 3 pixel windows in open land in spring (NDVI_ent3x3_sd_SU), and the 
mean NDVI in spring (NDVI_mn_SP) (Table 2). From these, the spring variables are negatively correlated with 
open-land bird richness, while the summer variable is positively correlated (Table 1). The mean of second-order 
NDVI entropy in 9 × 9 pixel windows in open land in spring (NDVI_ent9x9_mn_OP_SP) and the mean of 
second-order NDVI variance in 3 × 3 pixel windows in open land in summer (NDVI_var3x3_mn_OP_SU) were 
also included in the best models (Table 2). Regarding land cover variables, both the proportion of open-land 
(main habitat) and the area of the largest patch of open-land were collinear to NDVI_ent3x3_sd_SU (Spearman’s 
rho = 0.81 and Spearman’s rho = 0.81, respectively). Deviance explained by the best models varied between 66% 
and 67% for the forest species and between of 46% and 41% for the open-land species (Table 2).

Total bird species richness was weakly described by the best models, with deviance explained varying between 
33% and 30%, and no clearly dominant variables (Table 2). The variables included in the best models were radi-
ation range, the mean of second-order NDVI variance in 3 × 3 pixel windows in summer (NDVI_var3x3_mn_
SU), mean elevation (including its quadratic term), maximum temperature in June, and the mean NDVI in spring 
(NDVI_mn_SP). The model-averaged parameter estimates and variable importance of all candidate variables 
across all candidate models are presented in Supplementary Table S2.

Species dissimilarity patterns.  Results from the GDMs suggest that the most important variables explain-
ing species dissimilarity patterns in the study area (i.e., community dissimilarity between landscapes within 
the region) were, for forest birds, the NDVI_mn_SU and the geographical distance, and, for open-land birds, 
the NDVI_ent3x3_sd_SU and the geographical distance. For both species groups the compositional changes 
explained by the changes in vegetation structure, implicit in the gradient of the NDVI variable, mainly occurred 
below a threshold value becoming negligible above it (Fig. 2a,c). For instance, changes in forest bird communities 
appear to stabilize above a threshold value for the NDVI_mn_SU, which is possibly related to the availability 
of arboreal habitat. Also, the NDVI variables, related to vegetation structure, were more important than geo-
graphical distance in explaining compositional change (Fig. 2a–d and Table 3), especially for forest birds. The 
GDM fitted for forest birds explained 36.9% of deviance, while for open-land birds the model explained 23.9% of 
deviance. The partition of community dissimilarity in the components of species replacement and differences in 
species richness (Supplementary Fig. S2) suggests that both play a role in explaining compositional differences. 
Still, species replacement is in general more important for open-land birds, while differences in species richness 
gains importance for forest birds.

The GDM model for all species (39.8% deviance explained) included a land cover variable (% cover of open 
land, which, in our dataset, is collinear and inversely related to the % cover of oak forest, Spearman’s rho = −0.93), 
a first-order texture variable (standard deviation of NDVI in summer, NDVI_sd_SU), a second-order texture 
variable (NDVI_var3x3_mn_SU) and the geographical distance, all of similar importance (Table 3). The partition 

AICc D2

Forest bird species richness

Independent 
variables NDVI_mn_SU RadRg NDVI_var9X9_

sd_SP LgtPtch_OF NDVI_var3x3_
sd_OF_SP

Models

43.82 0.03 x x x 205.2 0.66

42.82 0.04 − 0.02 x x 205.8 0.67

41.39 0.04 x x −0.03 205.9 0.67

38.13 0.04 x 0.14 x 206.1 0.67

Importance 1.00 0.98 0.34 0.25 0.24

Open-land bird species richness

Independent 
variables

NDVI_var9x9_
sd_OP_SP

NDVI_ent3x3_
sd_SU NDVI_mn_SP NDVI_ent9x9_

mn_OP_SP
NDVI_var3x3_
mn_OP_SU

Models

−0.04 27.97 −54.39 −1.63 x 220.4 0.46

−0.04 28.06 −44.39 −1.71 0.01 221.9 0.42

−0.05 28.39 −52.55 x x 222.0 0.41

Importance 1.00 0.99 0.81 0.58 0.29

Total species richness

Independent 
variables RadRg NDVI_var3x3_

mn_SU Elev_mn2 NDVI_mn_SP TmaxJ Elev_mn

Models
0.002 0.001 4 × 10−6 −1.38 x −0.001 268.0 0.33

0.002 x 5 × 10−6 −1.30 −0.07 −0.001 270.0 0.30

Importance 0.69 0.65 0.45 0.43 0.35 0.24

Table 2.  Best generalized linear models of species richness (AICc - AICcmin ≤ 2), the coefficient estimate of 
the variables included in models are shown (x - variable not included in the model). The relative importance 
across all candidate models is indicated for each independent variable. Variables full name is presented in 
Supplementary Table S1.
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of community dissimilarity (Supplementary Fig. S2) indicates that compositional changes are mostly explained 
by species replacement.

Site scores in the first principal axis (CA1) of correspondence analyses conducted for forest species and 
open-land species were correlated with the NDVI_mn_SU (Spearman’s rho = 0.82) for forest species (Fig. 3a), 
and with the NDVI_ent3x3_sd_SU (Spearman’s rho = −0.64) for open-land species (Fig. 3b). Forest specialist 
species, such as Phoenicurus phoenicurus, Aegithalos caudatus or Dendrocopus minor, had high CA1 scores thus 

Figure 2.  Generalized dissimilarity model-fitted I-splines (partial regression fits) for variables significantly 
associated with community turnover of forest bird species (a,b), open-land bird species (c,d) and all species 
(e–h). The maximum height reached by each function indicates the total amount of compositional turnover 
associated with that variable, holding all other variables constant.

https://doi.org/10.1038/s41598-019-43330-3
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being more related to landscapes with high NDVI_mn_SU values (Fig. 3c). For open-land species, the analysis 
suggests two groups: farmland species, such as Tetrax tetrax, more associated to higher values of NDVI_ent3x3_
sd_SU, and edge species, such as Emberiza cirlus and Petronia petronia, more associated to lower values (Fig. 3d).

Discussion
We used open-access satellite imagery and biodiversity data to investigate the relationship between the rich-
ness and dissimilarity of forest and open-land bird communities and variables of habitat extent and structure. 
We found that NDVI texture variables, with a 30m-pixel resolution, were in general good indicators of species 
richness at the landscape level, performing better than land cover variables of the extent of the main habitat. Our 
results also suggest that the availability of tree cover in the landscape is more important for forest birds than the 
extent or structure of the forest habitats present in the landscape, and that open-land birds respond both to the 
structure of their main habitat and to the overall structure of the landscape. Moreover, structure variables were 
more important to explain community dissimilarity patterns of the two species groups in the study region than 
climate variables or geographic distance. Finally, we tested the use of satellite imagery collected in spring and 
summer, as the images from different seasons capture different landscape elements according to the phenological 
stage. We found that summer images are particularly useful because they capture the distribution of the green 
perennial vegetation, to which both forest and open-land birds respond. Moreover, spring images appear to be 
relevant for open-land birds to monitor vegetation within open-land habitats.

More specifically, forest birds’ richness was best described by models that included the mean NDVI in summer 
(NDVI_mn_SU) and the range of solar radiation in the landscape. In Mediterranean systems, NDVI_mn_SU 
mostly captures the vegetation that stays green in the dry summer season, that is, perennial trees and shrubs30. 
NDVI_mn_SU was strongly correlated to forest birds’ richness, but only moderately correlated to the proportion 
of oak forest and to the area of the largest oak forest patch in the landscape. Moreover, forest bird richness was 
only moderately correlated to these land cover variables (Table 1). Hence, NDVI_mn_SU probably provides a 
more accurate measure of the tree cover in the landscape, and therefore of habitat availability for forest birds, 
being a better descriptor of forest bird richness. Wood et al.15 also show that mean NDVI is a good indicator of 
vegetation structure among habitats, because it captures the transitions in the landscape, especially if the habitats 
clearly differ in terms of structure, such as in grassland – woodland mosaics.

The strong association between forest bird richness and the NDVI_mn_SU could also be related to eco-
system productivity, as areas of high plant productivity would be associated to a higher availability of foraging 
resources22. However, even if this is the case in our study, the results are not explicit enough to confirm it. First, we 
did not find a similar association for open-land bird richness or for the total species richness. Second, the correla-
tion of species richness with the mean NDVI in spring (NDVI_mn_SP), which represents vegetation productivity 
at its peak, was not only weak but also negative for all the species groups, possibly because this variable is captur-
ing the signal of both forest and open-land habitats. Regarding solar radiation range, this variable is related to the 
complexity of landscape morphology, characterized by parameters such as slope, aspect, and surface roughness. 
Hence, our results suggest that forest birds are more associated to landscapes with a more complex morphology, 
with diverse slopes and solar exposition that create the microclimate favorable to the growth of oak trees31,32.

Contrary to our expectation, our results suggest that the availability of tree cover in the landscape, indicated by 
NDVI_mn_SU and by LgtPtch_OF, may exert a stronger influence on forest bird richness than the within-habitat 
structure of oak forest patches (e.g., tree density, tree cover arrangement). A similar result, also for Alentejo, 
was reported by Santana et al.33; the authors found a strong association of woodland bird species richness to the 
amount of woodland in the landscape but not to landscape configuration. This finding is further supported by 
the GDM results, which suggest that the composition of forest bird communities tends to stabilize, with limited 
addition of new species or species replacement, above a threshold value of the NDVI_mn_SU (Fig. 2a).

The lack of response from forest birds to within-habitat structure may also be related to data limitations, since 
previous studies have reported such effect. For instance, grazing management and changes in tree density have 

Significant variables
Relative 
importance

% Deviance 
explained

Forest species 36.947

NDVI_mn_SU 0.514

Geographic distance 0.090

Open-land species 23.874

NDVI_ent3x3_sd_SU 0.240

Geographic distance 0.154

All species 39.844

% OpnAr 0.208

NDVI_var3x3_mn_SU 0.169

Geographic distance 0.122

NDVI_sd_SU 0.120

Table 3.  Significant variables and their relative importance in the GDMs of forest species, open-land species 
and all species. Relative importance is determined by summing the coefficients of the I-splines from GDM. 
The percentage of null deviance explained by the fitted GDM model is also presented. Variables full name is 
presented in Supplementary Table S1.
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been reported to affect bird communities in wood-pastures34,35. In our study, bird data were aggregated for the 
landscape mosaic and the satellite data probably misses most or part of the signal of the forest understory, even if 
understory features are correlated to canopy features or affect the reflectance of the canopy layer15,24. Moreover, 
the selection of the NDVI_mn_SU by both the GLM and the GDM analyses, and the partition of community 
similarity (Supplementary Fig. S2a), suggest that differences in species richness are an important component of 
community dissimilarity in the study area. This is could be due to the resolution of the bird data, as discussed 
above, but also to the extent of the study area. That is, species replacement will be moderated when communities 
within landscapes with identical forest cover are compared at the scale of the Alentejo region. Moreover, the effect 
of geographic distance on community dissimilarity was found to be smaller than the effect of landscape structure 
for forest birds (Fig. 2b). On the other hand, the species found to be more associated to high NDVI_mn_SU val-
ues were forest specialists (Fig. 3c), such as Phoenicurus phoenicurus, Aegithalos caudatus and Dendrocopos minor, 

Figure 3.  Relationship between site scores in the first principal axis (CA1) of the correspondence analysis and 
the environmental variables retained by the GDMs for forest bird species (a) and open-land bird species (b). 
Species scores (c,d) in the first principal axis (CA1) of the correspondence analysis. Species with a score > 1 are 
identified. Species full name is presented in Supplementary Table S3.
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suggesting that these species preferentially occur in landscapes where NDVI_mn_SU, an indicator of tree cover, 
reaches higher values.

Open-land bird richness was best described by models that included second-order texture variables related to 
the arrangement of the vegetation in the landscape in general (NDVI_ent3x3_sd_SU, NDVI_mn_SU) and in the 
open-land habitats (NDVI_var9x9_sd_OP_SP, NDVI_ent9x9_mn_OP_SP, NDVI_var3x3_mn_OP_SU). At the 
landscape scale, NDVI_ent3x3_sd_SU was moderately correlated to open-land bird richness (Table 1) and was 
collinear to the proportion of open-land habitats and to the area of the largest patch of open-land. Higher values 
of NDVI_ent3x3_sd_SU correspond to coarse-grained landscapes composed of large patches of homogenous 
land with sharp transitions between them (i.e., high variation of the NDVI entropy measured in moving windows 
within the landscape), for instance, where large patches of crop land are delimited by edge habitats. Regarding 
NDVI_mn_SP, this variable is associated to landscapes with high oak forest cover, just like NDVI_mn_SU, and 
was negatively correlated with open-land bird richness (Table 1). All the variables selected at the habitat level, 
NDVI_var9x9_sd_OP_SP, NDVI_ent9x9_mn_OP_SP, and NDVI_var3x3_mn_OP_SU were weakly correlated 
to open-land bird species richness (Table 1). Therefore, their indicator role should be interpreted with caution, 
especially the last two last that have low relative importance (Table 2). As regards NDVI_var9x9_sd_OP_SP this 
variable is relatively important (Table 2) and therefore, a potential indicator of open-land bird richness (Table 2), 
with higher values of richness being associated to homogenous open-land patches (i.e., similar values of NDVI 
variance in moving windows).

As observed for forest birds, the dissimilarity between open-land bird communities was mostly explained 
by the gradient of a key descriptor of species richness, here NDVI_ent3x3_sd_SU (Fig. 2). Also, community 
composition appears to stabilize above a threshold value. In this case, the partition of community dissimilarity 
(Supplementary Fig. S2b) suggests that species replacement is an important component of community dissim-
ilarity, which, as discussed next, could be associated to a gradient between different types of open-land habi-
tats. Nevertheless, the deviance explained by the model and the relative importance of NDVI_ent3x3_sd_SU are 
relatively low (Table 3), leaving a large share of compositional dissimilarity unexplained. As found in previous 
studies, the composition of open-land bird communities is very responsive to management and to the composi-
tion of crops33,36,37, factors that were not tested in this study but likely to be relevant. Another important aspect 
regards the structure of the species group, which encompasses both farmland and edge species that have different 
ecological preferences within the open-land habitats. This may prevent the detection of a strong response pattern 
for the group as a whole. In fact, farmland species appear to be more associated to landscapes with high values 
of NDVI_ent3x3_sd_SU (Fig. 3d), which are also richer in species, and edge species to finer-grained landscapes, 
with higher edge density and less sharp transitions, that have lower values of NDVI_ent3x3_sd_SU (Fig. 3d).

The best models for total species richness were less effective in explaining richness patterns than the models 
for the species groups (Table 2), possibly because forest and open-land birds respond differently to landscape 
attributes. Overall, the positive association with the radiation range and with NDVI_var3x3_mn_SU suggests 
that total species richness is higher in landscapes with high heterogeneity at the landscape and the local scale (i.e., 
3 × 3 pixel windows). This result agrees with previous studies that reported the effect of habitat heterogeneity 
in species richness3,22,38. The remaining variables included in the best models have low relative importance and 
therefore their indicator value is less clear and of marginal importance to explain total species richness. In contrast 
to species richness patterns, community dissimilarity was well described by the GDM for all species (Table 3). 
The turnover in community composition is distinct and well explained by a land cover gradient between forest 
and open-land habitats (note that the two variables are inversely correlated in our sample), with species replace-
ment slowing down (i.e., flatter slope) at intermediate levels of the gradient (Fig. 2). NDVI_var3x3_mn_SU and 
NDVI_sd_SU were also identified as significant descriptors of community dissimilarity. The effect of these texture 
variables is probably related to compositional changes driven by landscape heterogeneity. Also, both are summer 
variables which highlight the importance of perennial vegetation in shaping landscape structure and providing 
habitat diversity for bird communities.

Our results agree with the findings from previous studies that demonstrate the potential of open-access data to 
be used in ecological research and biodiversity monitoring, and inform land management and decision-making, 
especially when financial resources are limited39–41. However, there were limitations that restricted the data poten-
tial to describe species response to vegetation structure. First, although NDVI texture variables appear to be good 
indicators of vegetation horizontal structure, the use of optical imagery is not adequate to capture vertical struc-
ture, especially in multilayered systems, notably forests. The use of data from active sensors, such as the Synthetic 
Aperture Radar (SAR) and the Light Detection and Ranging (LiDAR), could help to address this limitation and 
produce enhanced spatial layers of habitat structure14,16,24. However, while promising, current data availability 
from active sensors is limited, and data processing and interpretation still require advanced technical skills that 
constrain their use16,17. Moreover, while spring images appeared to be relevant to monitor vegetation within 
open-land habitats, the adequacy of the data at the landscape scale is affected by the simultaneous reflectance, at 
peak productivity, of the herbaceous and the woody components. The extraction of the herbaceous component 
from spring images could provide a solution to work around this limitation30.

Second, regarding biodiversity data, the quality of data from open-access data repositories is affected by sev-
eral problems, namely the uneven sampling effort, in space and time, and biases related to species detectability 
(i.e., conspicuous species are reported more commonly)39,40. To address these issues we performed a multistep 
protocol to ensure data quality prior to data analyses (the steps are described in detail in the Methods and sum-
marized in Supplementary Fig. S1). Briefly, we restricted our species pool to resident birds, defining a priori the 
species to include in the dataset, we aggregated data spatially (i.e., landscape-sized cells) and temporally (i.e., time 
windows) to enhance spatial accuracy and taxonomic coverage, we used species richness estimators to check 
inventory completeness per cell and selected only the well-surveyed cells and we defined land cover rules to avoid 
confounding effects from land cover types other than oak forest and open-land habitats. After implementing 
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these filters, only 20% of the available records, retrieved from GBIF, were kept in the final dataset. Moreover, 
the cost of enhancing data spatial accuracy was losing spatial resolution, which, as already discussed, may have 
impaired the detection of species responses to vegetation structure at the finer scales. Unsolved issues include the 
uneven coverage of the study area and potential errors in species identification by data providers, which would be 
difficult to detect since the distribution range of most species, in the selected species pool, covered the study area.

Systematic field sampling, as counterpoint to open-access data, is not affected by the above data limitations 
and provides more reliable data, yet it is constrained by the costs involved, especially if a high sampling effort is 
required at a large spatial extent. In those cases, open-access data may provide a cost-effective alternative. At the 
same time, it is necessary to promote data sharing, reward data providers and establish data quality standards to 
enhance the availability and the quality of data from public databases18.

This study illustrates the potential of open-access biodiversity data and satellite imagery as cost-effective data 
sources to address trade-offs between sampling extent and sampling effort and to support biodiversity monitor-
ing. In particular, our findings suggest that NDVI texture variables can be used to monitor the effects of changes 
in vegetation structure on bird communities.

Methods
Study area.  Our study area is the Alentejo region (NUTS II) in Portugal (Fig. 1). This is a predominantly 
rural region with low population density. The climate is Mediterranean with hot and dry summers42. The land-
scape has a gentle topography with extensive land uses, but intensification is increasing with potential impacts on 
biodiversity43–46. Most notably, montados (dehesas in Spanish) cover a significant share of the landscape. These are 
traditional systems with a silvo-pastoral use, where cork oak (Quercus suber) and holm oak (Q. rotundifolia) are 
the dominant trees, forming pure or mix stands with a tree cover varying between 10% and 30%47. Montados are 
managed for multiple productive purposes, the most important being cork extraction, pastures and livestock48,49. 
The multifunctional use promotes habitat structural diversity, which combined with the large regional extent and 
the generally low human population density enables the persistence of many species, including endangered spe-
cies38,49. For the purpose of this study, all forest stands of the Portuguese land cover map, COS2007v2.047 (http://
www.dgterritorio.pt/) that are dominated by oaks (≥75%), and with a tree density of at least 10% were designated 
as oak forest. For data analysis, we used a level 5 geohash grid (www.geohash.org), to divide the study area in land-
scape-level cells of approximately 4.89 km × 4.89 km (Fig. 1, see Supplementary Fig. S1).

Study design.  To account for differences in habitat use by forest and open-land species, we assigned a dis-
tinct set of candidate variables to each species group (Supplementary Table S1), including NDVI texture variables, 
measured in spring or in summer, at the landscape (i.e., using all pixels in the grid cell) or at the habitat scale (i.e., 
using only the pixels overlapping the preferred habitat, either forest or open-land habitats, in the Portuguese land 
cover map layer). The spring imagery is expected to provide a better signal of the vegetation cover of open-land 
habitats, when the herbaceous vegetation is at peak productivity, while the summer imagery, will capture the 
contrast between the senescent herbaceous cover and the perennial vegetation, thus providing better information 
on tree cover. Regarding the two scales, the landscape and the habitat scale, the aim is to account for species’ 
responses to the overall surrounding landscape and to the preferred habitat. In addition to NDVI measures, 
all sets of candidate variables included other environmental variables, measured at the landscape scale, namely 
climatic, topographic and land cover variables. From the initial list of 70 candidate variables (see Supplementary 
Table S1), we retained a final set of non-collinear variables per species group (Table 1). Variable selection is 
described in the section Data analysis.

Climate, elevation and land cover data.  Precipitation, temperature, and solar radiation data were 
collected from WorldClim database (http://www.worldclim.org/)50 on a 1 km resolution, elevation data were 
obtained from the Digital Terrain Model (30 m × 30 m) for Portugal in ArcGis Online 10.3.1 (https://www.
arcgis.com/) with an accuracy of 7–14 m. Land cover data were extracted from the Portuguese land cover map, 
COS2007v2.0 (minimum mapping unit 1 ha). For this study, we aggregated land cover classes into five categories: 
open land (permanent and temporary pastures, sand dunes, vineyards, shrubs and sparse vegetation), oak forest 
(open or closed forests and agro-forestry systems dominated by oaks), other forests (open and closed forests 
dominated by species other than oaks), urban (all the areas described at COS2007v2.0 -level 1 as artificialized 
territory, including industries and roads), and water bodies (all the areas described at COS2007v2.0 - level 1 as 
water bodies). To better capture species response to oak forest systems and reduce the influence of other forest 
types in the landscape, we defined eligible cells as those with a maximum of 20% cover of other forest types and 
where the cover of oak forest was not smaller than the cover of other forests (i.e., max 20% cover of other forest 
and oak forest cover ≥ other forest cover). The final sample included 59 cells.

Remote sensing data.  Six Landsat-5 images, free of clouds, corresponding to 20th March 2011 and 
20th July 2011 (path 203 and rows 33 and 34); 25th April 2010 and 18th August 2011 (path 204 and row 33), 
were used. These images were downloaded from the United States Geological Survey (USGS) Earth Explorer 
server, selecting the Landsat Surface Reflectance Level-2 Science Products (https://landsat.usgs.gov/
landsat-surface-reflectance-data-products). Surface Reflectance products (at 30-meter spatial resolution) provide 
an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmos-
pheric scattering or absorption51. In order to monitor vegetation structure, the NDVI was computed. This index 
is based on the normalized ratio between absorbed red light and reflected near infrared light52. NDVI values 
range from −1 (non-photosynthetically active vegetation) to +1 (highly photosynthetically active vegetation). 
This index has been used successfully in several studies to evaluate land cover performance53 or phenological 
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information54 or plant-community degradation55 or to supply information about crops56. Urban and water areas 
(NDVI ≤ 0) were masked from the original NDVI images to remove their signal from image texture analysis.

Image texture measurements quantify the spatial variation and arrangement of the reflectance values of neigh-
boring pixels, expressing the level of spectral heterogeneity in a given area57. Three first-order texture variables 
(NDVI entropy, NDVI mean, NDVI standard deviation) and two second-order texture variables (NDVI entropy, 
NDVI variance) were calculated for each cell and for the main habitat subsets, as listed in Supplementary Table S1.

First-order texture variables do not consider pixel neighbor relationships and are measured using the orig-
inal image values within a certain group of pixels57, which in our case was the full cell. On the other hand, 
second-order variables consider the spatial relation between neighboring pixels within a moving window22, using 
a gray-level co-occurrence matrix (GLCM), which contains the probabilities of co-occurrence of values for pairs 
of pixels58. The GLCM R package was used to extract second-order texture measures within a 3 × 3 and a 9 × 9 
moving window in four directions (0°, 45°, 90°, 135°). The Zonal Statistics Tool from ArcGIS 10.3.1 was used to 
summarize the mean and standard deviation and obtain a single texture value for each cell.

Bird data.  Georeferenced bird occurrence data was retrieved from the digital database of GBIF (Global 
Biodiversity Information Facility, http://www.gbif.org/)59. We searched for species with resident populations in 
the study area and that use open-land and oak forest habitats (Supplementary Table S3). The taxonomic nomen-
clature and the species distribution were retrieved from Catry et al.60. We excluded from our list exotic species, 
species with wide territories, such as eagles and hawks, species with nocturnal habits, such as owls and nightjars, 
and insectivorous aerial birds, such as swallows and swifts61.

For the selected species, we collected species occurrences dated from April to June, to cover the birds’ nesting 
and reproduction periods27, between 2005 and 2015. Only records with no geospatial issues and under the CCO 
1.0 use license were used. The retrieved bird occurrence dataset, for the total number of searched years (i.e., 
2005–2015), consisted of 122110 records (dataset available at, https://doi.org/10.15468/dl.pwrz9h).

Selection of well-surveyed cells.  Following this, an identification of the cells for which species occur-
rences provided adequate inventories62,63 was performed. For this purpose, data were analysed for each individual 
year, and aggregated in 2-year and 3-year time windows to increase sample size and taxonomic coverage. The 
following steps were repeated for all possible 1-year, 2-year and 3-year contiguous time windows to identify 
well-surveyed cells. First, cells with less than 20 observed species were excluded64. Second, two complementary 
methods were applied to estimate total cell species richness: non-parametric estimators based on the number of 
rare species (Chao 2 and Jackknife 1)10, and the number of estimated species at the 95% upper confidence interval 
of the accumulation curve produced with the Mao Tau analytical function65. The three estimates were obtained 
with EstimateS 9.1.066. Based on the assumption that a higher number of records in a grid cell represents a higher 
survey effort, the total number of occurrence records in each cell was used as a surrogate of sampling effort67.

Inventory completeness was calculated by relating the maximum estimated species richness among the three 
estimators (i.e., Mao Tau, Chao 2 and Jackknife 1) and the observed richness, that is, observed/maximum esti-
mate × 100. Only the cells with completeness equal to or greater than 75% were considered as well-surveyed62. 
From a total of 1839 grid cells in the study area (Fig. 1), 1060 cells had GBIF records for the selected bird species. 
The number of cells suited for analysis decreased sharply after assessing inventory completeness. The best results 
(i.e., higher number of well-surveyed cells) were found for the 3-year time windows: 94 cells in 2007–2009, 91 
cells in 2010–2012 and 68 cells in 2013–2015. By intersecting the 59 cells with adequate environmental data (see 
Climate, elevation and land cover data section) with the cells with well-surveyed bird data, we were able to match 
a maximum of 41 cells for the 2010–2012 time window (Fig. 1, see Supplementary Fig. S1 and Supplementary 
Table S4). Finally, after fitting generalized linear models (see section Data analysis), an over influential cell that 
had a Cook’s distance larger than 1 was detected. This cell was removed from the sample, resulting in a final sam-
ple of 40 cells (7858 records) that were used in data analyses.

Species groups.  The information in Pereira et al.27 was used to divide the 78 species present in our sample 
of 40 cells into two species groups: 27 forest bird species (10 specialists and 17 generalists) and 51 open-land bird 
species (8 farmland specialists, 12 farmland generalists, 22 edge species and 9 species requiring special landscape 
elements associated to farmland).

Data analysis.  From each set of candidate variables per species group, we selected a group of non-collinear 
variables to be used in the statistical models (Table 1). First, we calculated the Spearman’s pairwise correla-
tions among all pairs of candidate variables, and among candidate variables and the response variables (i.e., the 
observed species richness of each species group and all species (Supplementary Table S5)). The candidate vari-
ables that were weakly correlated with the response variable (−0.1 < Spearman’s rho < 0.1) were removed68. For 
the remaining candidate variables, if two or more variables were strongly correlated (Spearman’s rho > |0.7|), we 
only kept the one most correlated with the response variable68,69. Finally, we checked that the variation inflation 
factors (vif function in R-package car) of the remaining variables was lower than 5. We also tested for the presence 
of spatial autocorrelation in the response variables using Moran’s I statistic (dnearneigh, nb2listw, and moran.test 
functions in R-package spdep). None of the response variables was spatially auto-correlated.

Generalized linear models (GLM), with Poisson error distribution and log link function, were used to assess 
the importance of the environmental variables in shaping species richness patterns. We used GLMs because our 
response variables (count data) were fit to a Poisson distribution. The variables listed in Table 1 were also tested 
for quadratic relationships. For each candidate variable, we compared the corrected Akaike Information Criterion 
(AICc) of the regression model comprising only the linear term of the variable against the response variable, or 
the linear plus the quadratic term. If the regression model with the quadratic term had a better fit, both the linear 
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and the quadratic term were included in the full GLM with the final set of candidate variables. Quadratic terms 
were retained for mean elevation for all species and for percentage of water areas for the forest species group.

We used the R-package glmulti70 to test all possible combinations of the variables listed in Table 1 per species 
group (i.e., full model) and rank the best models using AICc. Best GLMs (difference from AICcminimum < 2)71 were 
used to identify the most important variables affecting species richness patterns. Because we had a small sample 
size of 40 cells we only tested for main effects. If a quadratic term was retained in one of the best models, the lin-
ear term was forced in the model72. We selected the most parsimonious model with the lowest AICc to check for 
overdispersion (dispersiontest function in R-package AER); no evidence of overdispersion was found. The relative 
importance of each candidate variable was estimated by summing the Akaike model weights over all models in 
the confidence set71. The model-averaged parameter estimates, the unconditional standard errors and the 95% 
confidence intervals (coef.glmulti function in R-package glmulti70) are presented in Supplementary Table S2.

To identify the variables driving species turnover in bird communities, we applied generalized dissimilarity 
modelling using the R-package gdm73. GDM uses generalized linear modeling to accommodate the curvilinear 
relationship of both non-linear distance relationship and non-constant rate of turnover along gradients74. This 
regression allows dissimilarities to be estimated for all pairs of sites (grid cells) and the inclusion of environmental 
data. Also it makes the reasonable assumption that compositional dissimilarity can only increase with increasing 
separation of sites along the environmental gradient75,76.

First, to fit GDMs, we used the final set of non-collinear variables to create a GDM site-pair matrix for 
each species group. In addition to the environmental variables, geographical coordinates of cell centroids were 
included in the matrix to compute geographical distance. Variable significance was tested by combining Monte 
Carlo sampling and stepwise backward elimination as executed in the gdm.varImp function, with 250 permuta-
tions per step until only significant (α < 0.05) variables remained in the model. Second, to assess the amount of 
variance explained by each variable and the model, we fitted GDMs using gdm function, using only the significant 
variables obtained with the gdm.varImp function. We used the default of three I-spline basis functions per varia-
ble. We summed the coefficients of the I-splines, which are partial regression fits, to assess the relative importance 
of each variable in describing patterns of beta diversity77. We also plotted the I-splines to visualize the variation 
and magnitude of species turnover along gradients of the significant variables. The maximum height obtained 
by the curve represents the total amount of compositional turnover associated with that variable, holding all 
other variables constant. The slope of the I-spline indicates the rate of species turnover77. To better understand 
the processes underlying compositional changes, we used the beta.pair function in the R-package betapart78 to 
decompose the overall community dissimilarity in the two additive components of species replacement and dif-
ference in species richness79.

To further test the explanatory role of the environmental variables found to have a significant effect on com-
positional dissimilarity, a correspondence analysis was applied to the matrix of species presence per site (i.e., cell), 
and the scores of the sites in the first principal axis were correlated against the environmental variables to test 
their association with species communities. Then, species scores were used to identify the species more related to 
the communities at the ends of the environmental gradient (i.e., with extreme scores). Only the species observed 
in at least 5 cells were included in the correspondence analyses, which excluded three of the 27 forest species and 
20 of the 51 open-land species.

Data Availability
The datasets generated and analyzed during the current study are available in the GBIF.org repository, at https://
doi.org/10.15468/dl.pwrz9h. The remaining data generated or analyzed during this study are included in this 
published article (and its Supplementary Information files).
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