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Automatic Localization and Count 
of Agricultural Crop pests Based 
on an Improved Deep Learning 
pipeline
Weilu Li2, peng Chen  1,2, Bing Wang1 & Chengjun Xie3

Insect pests are known to be a major cause of damage to agricultural crops. this paper proposed a deep 
learning-based pipeline for localization and counting of agricultural pests in images by self-learning 
saliency feature maps. our method integrates a convolutional neural network (CNN) of ZF (Zeiler and 
Fergus model) and a region proposal network (RpN) with Non-Maximum suppression (NMs) to remove 
overlapping detections. First, the convolutional layers in ZF Net, without average pooling layer and 
fc layers, were used to compute feature maps of images, which can better retain the original pixel 
information through smaller convolution kernels. then, several critical parameters of the method were 
optimized, including the output size, score threshold, NMs threshold, and so on. to demonstrate the 
practical applications of our method, different feature extraction networks were explored, including 
AlexNet, ResNet and ZF Net. Finally, the model trained on smaller multi-scale images was tested on 
original large images. Experimental results showed that our method achieved a precision of 0.93 with a 
miss rate of 0.10. Moreover, our model achieved a mean Accuracy Precision (mAP) of 0.885.

In recent years, detecting pests in crops-fields has become a hot topic. More and more farmers, governments 
and researchers have focused on pest detection, which is regarded as a useful tool in precision agriculture. 
Automatically monitoring the number of crop pests across large crop area has evolved into one of the important 
means for managing and optimizing agricultural resources1–4. There is a variety of wheat pests that seriously affect 
wheat growth, among which wheat mite is common and much dangerous. Thus, visual mining of crop pests is an 
important research objective, especially in forecasting of the wheat pests and diseases.

Because wheat mites are very small and their count is hard to assess, traditional methods based on visual 
estimation cannot investigate wheat mites accurately. The rapid development of image processing techniques has 
paved a new way for pest recognition. Therefore, collecting images by camera and further counting the number 
of pests in images using advanced image techniques has become the direction of intelligent agricultural systems.

Currently, there are two types of methods in the image-based detection of insects. One method is based on 
traditional image processing and machine learning algorithms; while the other is based on deep learning. A 
detection system based on traditional machine learning algorithms is composed of three sequential phases: image 
capture and annotation5, feature extraction and object detection. However, to design an extractor of features, such 
as color6,7, shape and texture8,9, sparse coding and multi-kernel learning10,11 has to be used. Albeit, the traditional 
machine-learning techniques require precision engineering and considerable domain expertise.

Not only an effective feature extractor, but also a classifier to object detection is needed. Support vector 
machine (SVM) is the most common choice of many researchers, which is a supervised learning method that 
generates input-output mapping functions from a set of labeled training data. Many authors adopted SVM clas-
sifier or bag-of-words approach to classify rice crop pests4. They developed a pest recognition system based on 
image processing techniques, including bio-inspired filtering, LCP algorithm and SVM12. The experimental 
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results showed that representations learned by the recognition system often obtained a better performance than 
hand-designed representations.

Since 2016, deep learning technologies have been successfully applied in many research fields, such as image 
processing, speech recognition and so on. Many researchers have made use of deep neural networks to automat-
ically extract features from original images and learn low-level to high-level features represented by the images. 
The key aspect of deep learning is that features are learned from images using a multi-layer neural network, such 
as ConvNet or ResNet13. For example, Ding and Taylor developed a ConvNet-based pest detection method with 
a novel pose-estimation-dependence and automated identification, which can be applied in recognizing pest 
species14. They proposed an improved pyramidal stacked denoising auto-encoder (IpSDAE) architecture to build 
a deep neural network for moth identification to achieve a good identification accuracy14. Wang et al. developed 
a novel method to identify the pollution of crop pests by combining a near infrared recognition device with the 
technique of Principal Component Analysis3.

Although these methods yielded good results, few methods have been developed for recognizing small pests. 
This paper proposes a deep learning-based system to identify and count a very small pest, wheat mites. First, 
original images were transformed into multi-scale images and further input into a stack of convolution layers 
called fully convolutional network (FCN), to extract efficient features. Second, specialized convolutional layers 
were added after the last convolutional layer of FCN to construct a set of positive-sensitive score maps. Third, 
the outputs of the last convolutional layer in FCN were input into an RPN that produced region proposals, which 
were then applied on the positive-sensitive score maps. Finally, these region proposals and score maps were 
input into PoI Pooling to output classifications and target boxes. Figure 1 illustrates the result cases of our deep 
learning-based system, which is capable of estimating the number and class of pests.

Methodology
Datasets. Our database contains 84 images with 1440 × 1080 pixels each, taken by digital cameras to cap-
ture wheat mites at any angle in wheat fields. The original database is separated into two sets: training dataset 
(64 images) and test dataset (20 images). The images of the training dataset were transformed into two levels: 
single-scale images and multi-scale images. Next, each of the original images from the datasets was cropped into 
smaller images of various sizes (e.g., 150 × 250, 240 × 400, 300 × 500 and 600 × 1000), where images cropped by 
one multi-scale have the same aspect ratio (e.g., 3: 5). Finally, as shown in Table 1, 850 and 378 smaller images that 
were identifiable by naked eye were generated from the training and test datasets, respectively.

Data augmentation. For deep learning methods, typically, larger the dataset, the better is the model’s per-
formance. Since there were only 850 images in our training dataset, which cannot make full use of the power of 
deep learning models, a data augmentation technique was adopted to increase the size of the dataset. Moreover, 
each image was transformed by flipping across the horizontal-axes and by adding salt-and-pepper noises. As a 
result, three times as many as images, in the form of augmented images, were obtained containing the original 
small images. As a result, the transformed training dataset comprised of 3,400 transformed images, while the 
transformed test dataset had 378 images, which is regarded as “Dataset A”. However, the original 20 images com-
prised the test dataset (see Table 1) and were regarded as “Dataset B” in this work.

Caffe. Caffe is a deep learning framework that contains an expressive architecture for encouraging applica-
tion and innovation, extensible code for fostering active development and the speed. Caffe has been successfully 

Figure 1. Classification and localization of wheat mites. Our method aims to detect both the classification 
and localization of wheat mites. At the same time, this method outputs the total number of wheat mites in the 
original images. The left graph shows the case of original image, while the right one illustrates classification 
and localization of wheat mites. Here, the location of wheat mite in the image is shown as a red bounding box 
containing the identified wheat mites, the possibility of detected bounding box is shown in blue box, and the 
total number of 35 detected wheat mites is also shown in the right graph.
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applied in many research experiments and industry deployment, such as in academic research projects, start up 
prototypes. Caffe has also been used in large-scale industrial applications in vision, speech and multimedia. In 
this work, we used the framework to implement and train different ResNet and ConvNet models. Caffe has many 
predefined neural network layers and packages that enabled us to run deep learning algorithms on GPUs.

Deep convolutional neural network. Overall Architecture. Our method consists of ZF (Zeiler and 
Fergus model15) and RPN (Region Proposal network) networks. Figure 2 illustrates the overall architecture of 
these networks, and Fig. 3 shows the individual architecture of ZF and RPN. The ZF network adopted a part of 
the Zeiler and Fergus model (ZF model)15, pre-trained on ImageNet. ZF is composed of 5 sharable convolutional 
layers and 2 4096-d fc layers. Removing the average pooling layer and the two fc layers, only four convolutional 
layers were retained to compute the feature maps, from conv1 to conv4, as shown in Fig. 2. The modified ZF 
network can be thought of as a self-learning progression of local image features, from low- to mid- to high-level. 
The last convolutional layer, conv5, was 256-d. Also, a randomly initialized 1 × 1 convolutional layer, conv6, was 
attached to increase the dimension to 1024-d. Then, the k2(C + 1)-channel convolutional layer was applied to 
compute Position-sensitive score maps, where k denotes the dimension of the unified feature map, and C is the 
number of classes. For each Region of Interest (RoI), the k × k feature map can be obtained, which pools from the 
Position-sensitive score maps.

Region proposal network (RPN). RPN is used for generating region proposals in detectors such as Faster R-CNN 
(Regions with CNN) and R-FCN (Region-based Fully Convolutional Networks). After obtaining feature map 

Transformation Pixel Size of training dataset Size of test dataset

Original images 1440 × 1080 64 20 (Dataset B)

Transformed images

Cropped images with multi-scales

600 × 1000 98 37

300 × 500 178 78

240 × 400 243 111

150 × 250 331 152

Total 850 378

Flip transformation

600 × 1000 98

300 × 500 178

240 × 400 243

150 × 250 331

Total 850

Noise transformation

600 × 1000 196 × 2

300 × 500 356 × 2

240 × 400 486 × 

150 × 250 662×2

Total 3400 378 (Dataset A)

Table 1. The distribution of the training and test datasets.

Figure 2. Flowchart of our deep learning-based method. The method consists of four convolutional layers 
(1~4) for extracting feature maps, two convolutional layers (5~6), a RPN containing k2(C + 1) ROIs to detect 
position-sensitive score maps and make final results, as well a softmax layer to output classifications and 
localizations.
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from the conv4 of the pre-trained model, region proposals could be implemented over the feature map. A 3 × 3 
window was made to slid over the feature map, and each sliding window was mapped to a 256-dimensional 
sub-feature map. Afterwards, these sub-feature maps were fed into the following two fully convolutional layers: 
box-regression layer (reg) and box-classification layer (cls). In each sliding window, k region proposals and the 
corresponding k detection boxes were obtained. Thus, 2k scores were generated in the cls layer and 4k outputs 
in the reg layer. Since each proposal is associated with four coordinates, each proposal is centered at the sliding 
window in question and associated with a scale and aspect ratio. Three scales with box areas, 4, 8 and 16, as well 
as three aspect ratios of height-to-width, 0.8, 1 and 1.5, were used, respectively. As a result, 3 × 3 = 9 anchor boxes 
for each sliding position were yielded. For a convolutional feature map with size W × H, there were (W × H × k) 
anchors in total.

The anchors were then input into the two fully connected layers, namely the classification layer (Lcls)and the 
regression layer (Lreg). Lreg was used to predict the proposal position of the anchor, i.e., coordinates x and y, as well 
as the width w and the height h, while Lcls was used to identify the proposal as a wheat mite. Finally, according to a 
region proposal score, the top 200 region proposals were selected as an input to the classifier for object detection.

In addition, the loss function used in this network follows the multi-task loss to minimize the objective func-
tion, as defined in Faster R-CNN16. The loss function is stated as follows:

∑ ∑λ= +⁎ ⁎ ⁎L p t
N

L p p
N

p L t t( , ) 1 ( , ) 1 ( , ),
(1)

i i
cls i

cls i i
reg i

i reg i i

where i is the index of an anchor in a minibatch, and pi is the prediction probability of anchor i being an object. 
The ground-truth label ⁎pi  is 1 if the anchor is positive and 0 if the anchor is negative. Moreover, ti is a vector rep-
resenting the four parameterized coordinates. The classification loss Lcls is the log loss over two classes (object or 
not object), and Lreg is the regression loss.

Position-sensitive score maps. To explicitly encode position information for each RoI, the rectangle of each RoI 
can be divided into k × k bins using a regular grid. For an RoI rectangle with size w × h, a bin was set to the size ≈ 

×( )w
k

h
k

17,18. In our method, the last convolutional layer of the ZF Net was constructed to produce k2 score maps 

for each category of pest objects. Inside the (i, j)-th bin (0 ≤ i, j ≤ k − 1), a positive-sensitive RoI pooling opera-
tion, which follows the Region-based Fully Convolutional Network (R-FCN) that pools only over the (i, j)-th 
score map, is defined as follows:

Figure 3. Architecture of ZF and RPN. The top part shows the adopted structure of ZF, which consists of four 
convolutional layers, conv1 to conv4, and a maxpool layer. The bottom part shows the adopted structure of 
RPN, which contains a convolutional layer and two output layers, reg and cls.
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Here rc (i, j) is the pooled response in the (i, j)-th bin for the c-th class, Zi,j,c is a score-map out of k2 (C + 1) 
score-maps, (x0, y0) denotes the top-left corner of an RoI, n is the number of pixels in the bin and θ denotes all 
learnable parameters of the network.

Non-Maximum Suppression. Non-Maximum Suppression (NMS) is usually used object detection, whose main 
purpose is to remove overlapping detections by ignoring smaller overlapping bounding boxes and returning those 
with larger overlaps. In this work, the NMS was adapted to iterative bounding box regression in the RPN Net, at 
the last test stage. The RPN Net could generate approximately 20,000 proposals. The proposals were then ranked, 
and approximately 6,000 of top scoring proposals were retained when the score threshold was set as 0.7. Only 200 
of the retained top scoring boxes were kept and input to the RoI Net. Finally, these proposals were passed through 
the reg and the cls layers, which output the classification and regression scores for each proposal.

In the test stage, many high-score detection boxes were output, whose overlapping detection boxes were to be 
kept or removed according to the Intersection over Union (IoU) ratio16 (see Fig. 4). First, these overlapping detec-
tion boxes, with scores greater than the score threshold, were kept if the IoU was less than the NMS threshold. 
Otherwise, they were removed by ignoring the overlapping bounding boxes with smaller scores and returned only 
those with larger scores as the final detections. The IoU was defined as follows:

= .IoU Area of Overlap A
Area of Union B

( )
( ) (3)

Optimization. Each input image was preprocessed as 600 × 1000 pixels uniformly. All the new layers of network 
were randomly initialized, and their weights were initialized from a zero-mean Gaussian distribution with stand-
ard deviation 0.01, which were then updated by Adam19, a method for efficient stochastic optimization. All the 
other layers were initialized by pretraining a model for ImageNet classification. All the layers of ZF net besides the 
conv1 layer were fine-tuned. The learning rate was initially 0.001 and was successively decreased by a factor of 10 
during 2,500 step sizes, each of which consisted of 5,000 iterations. The momentum was set as 0.9 and the weight 
decay as 0.0005. The implementation was based on Caffe. The model was trained on a single NVIDIA GTX1080 
4 GB GPU equipped on a desktop computer with an Intel i7 CPU and 16 GB of memory.

evaluation methods. Since pest detection in agriculture is still a relatively “niche” field in computer vision, 
no standard evaluation protocol is defined. This paper adopted the evaluation metrics from the literature20 con-
taining the statistics of true positives, true negatives, false positives and false negatives, which are illustrated in 
Fig. 5. The metrics were used to test if an image contained any mites. Instead of simply calculating the Mean 
Average Precision (mAP) of the predictions, the precision, recall, miss rate and F1 score were used as the four 
main evaluation metrics, defined as follows:

=
+

=
+

= −

=
× ×

+
.

ecision True positives
True positives False positives

call True positives
True positives False negatives

Miss Rate call

F score ecision call
ecision call

Pr

Re

1 Re

1 2 Pr Re
Pr Re (4)

Accession codes. The source code for the methods are accessible at http://deeplearner.ahu.edu.cn/web/
zfPest.htm.

Figure 4. The IoU between two detection boxes. Here, (A) denotes the area of overlap between the two boxes, 
while (B) is the area of union of the two boxes. Therefore, the IoU is the ratio of (A to B).
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Results
In this work, the original images were taken from crop-fields by agricultural experts. There are only 64 original 
training images with pixels 1440 × 1080 and 20 original test images. To extend the dataset, data augmentation 
was adopted, leading to 3400 images for the training dataset and 378 for the test dataset. This paper adopted a 
simple model, i.e., pre-training deep learning model. The model used data augmentation to avoid the over-fitting 
problem. Our model was tested on the original images (20 images) and also on the transformed small images (378 
ones, see Table 1). The experimental results showed that no over-fitting was observed in the test experiments.

Comparisons with other feature extraction networks. The depth of a network greatly impacts the 
performance and training speed of the network. In this work, different feature extraction networks were inves-
tigated, such as ZFnet15, Alexnet21 and ResNet22, on different data types. These three networks are variations of 
convolutional neural networks. Since wheat mites contain two main features, i.e., very small wheat mites in the 
images, and a flat color for the foreground with a very complex background, a shallow network was developed to 
generate the feature maps of images and to minimize the loss of information as much as possible.

As shown in Fig. 6, it is observed that the improved ZF network achieved the best performance among the 
four networks, while ResNet-50 was the second best. Here, ResNet-50 and ResNet-101 have the same structure 
of shortcut connections, which can be used in learning residual functions. Since network information is always 
passed through different layers, the difference between ResNet-50 and ResNet-101 is in the number of layers. 
In this work, shortcut connections were also applied to our models, obtaining good results (mAP: ResNet-50: 
0.885; ResNet-101: 0.889). It was also observed that ResNet-101 contains a deeper network, but only achieved an 
improvement of 0.4% over ResNet-50. AlexNet and ZFNet consisted of the same number of convolutional layers, 
but contained different filter size in the conv1 layer. ZF Net, using a smaller size of convolution kernels, saved 
rawer pixel information, and thus more obvious edges than AlexNet. It can be observed from Fig. 7 that the loss 
of pixel information for AlexNet was significant. Moreover, ZF Net had fewer parameters than ResNet; thus, ZF 
Net could reduce computation burden in the training process. All in all, ZF Net was regarded as a good choice in 
generating feature maps for our dataset.

Figure 5. Definitions of true positive, false positive, false negative and true negative. For example, “False 
Positive” means that one actual negative instance was predicted to be positive by one method.

Figure 6. Prediction comparison of the four networks in feature extraction on the Dataset A. Here, ZF Net and 
ResNet performed better than AlexNet.

https://doi.org/10.1038/s41598-019-43171-0
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the roles of thresholds on counting the results. In order to show the power of our method in reducing 
the losses between the ground-truth and the estimated results, and in decreasing the presence of false positives in 
the final predictions, experiments with score threshold and NMS threshold were investigated.

First, experiments with score thresholds, sth, from 0.6 to 0.9, with a stepsize of 0.05, were implemented on the 
Dataset B, and the detection boxes with scores larger than the threshold were visualized. A large sth means that 
the detection boxes with scores less than a given sth will be ignored, while the larger values will indicate presence 
of wheat mites. The performance on counting the number of wheat mites was calculated in terms of the precision, 
F1 score and miss rate, as illustrated in Fig. 8, where the model achieved maximal values of precision. The model 
also achieved an F1 maximal score at a score threshold of 0.6, where over 90% of counting results met the above 
restrictions and achieved the maximal miss rate.

In Fig. 8, it can be observed that the precision curve becomes flat during 0.5 ≤ sth ≤ 0.8 and then starts to 
decrease when sth > 0.8. On the contrary, the miss rate increases all the time. While sth increases from 0.5 to 
0.9, the number of true positives and false negatives decreases. Moreover, the number of false positives gradually 
declines to 0 when sth = 0.75, which can also be observed from the counting performance in Fig. 9. In general, 
sth = 0.5 is a relatively good choice for score threshold, given the tradeoffs among precision, F1 score and miss 
rate. The experimental results showed that our model can successfully detect the wheat mites of original images 
with 1440 × 1080 pixels (see Figs 9 and 10).

Moreover, models with NMS thresholds, nth, from 0 to 0.8, with a step size of 0.1, were investigated on the 
dataset A, where detected boxes with NMS scores less than the threshold were kept. The mAP curve is shown in 
Fig. 11. The mAP curve becomes flat when 0.1 ≤ nth ≤ 0.5, and it decreases when nth > 0.5. Here nth = 0 means 
that the overlap between detection boxes is not allowed, while a larger nth means that more detection boxes will 
be kept and the overlapping boxes will be suppressed as much as possible by setting nth to an appropriate value 

Figure 7. Visualization of the first convolutional layer using different feature extraction nets. (a) ZF Net; (b) 
AlexNet; (c) ResNet-50; (d) ResNet-101. Input images for this example were of the size 600 × 1000 pixels.

Figure 8. Performance of Precision, F1 score and miss rate under different score thresholds on the Dataset B. 
Score threshold is 0.7.
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Figure 9. Comparison of the counting results under different score thresholds, sth. All the images for this 
experiment are from the Dataset B sampled with 1440 × 1080 pixels.

Figure 10. Case studies of a visual comparison of localization and counting results under different score 
thresholds, sth. (a) sth = 0.5, (b) sth = 0.55, (c) sth = 0.6, (d) sth = 0.65, (e) sth = 0.7, (f) sth = 0.75, (g) sth = 0.8, 
(h) sth = 0.85 and (i) sth = 0.9. NMS threshold is 0.5. All the images are from the dataset B stored with 
1440 × 1080 pixels.
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(see Fig. 12). The above analysis showed that the two parameters significantly influenced the performance of our 
model in counting the number of wheat mites.

Effects of the RoI output size. The size, k, of RoI outputs is also an important factor in our model. Four 
other models, ZF net, ResNet-50, ResNet-101 and AlexNet, were investigated with respect of the size of RoI 
outputs. The performance comparison of these four models in terms of k is shown in Fig. 13. Setting k = 1 means 
that the role of the RoI layer was ignored, which is equivalent to global pooling within each RoI. The four models 
with k = 1 performed poorly and achieved an mAP lower than 50% because the model was unable to converge, as 
shown in Fig. 13. All the models conferred the biggest change in mAP when k increased from 1 to 3, with a small 
change in mAP when k increased from 3 to 5 or from 5 to 7. The ZF Net and ResNet-50 performed the best when 
k = 7, where the mAP curves achieved their maximal values of approaching 90%.

Comparison with other methods. In Table 2, we compared our model with previous methods on the 
Dataset A. The models Faster R-CNN with ZF and VGG_CNN_M_1024 achieved mAPs lower than 0.80. Faster 
R-CNN with VGG16 achieved an mAP of 0.847 under the same learning rate of 0.001. This method required half 
an hour to obtain the final trained-model, while the time spent by our method was no more than ten minutes. 
Our method yielded an mAP of 0.885, which is an improvement of 3.8% over Faster R-CNN.

The SSD (Single Shot MultiBox Detector) method handles the problem of object detection using separate 
predictors for different aspect radio detections. SSD also further applies these predictors to multiple feature maps 
from the later stages of a network to perform object detection at multiple scales. The method achieved an mAP of 
0.874 under a learning rate of 0.0001. The training time for SSD was >4 hours, which is more than twenty times 
higher than that of our method to generate a trained model. In our model the objects’ features were relatively 
simple. We demonstrated that our method achieved a slight improvement of at least 0.1 over SSD and greatly 
reduced the training time.

Figure 11. The mAP under different NMS thresholds on the dataset A.

Figure 12. An example of the visual comparison of localization and counting results under different NMS 
thresholds, nth. (a) nth = 0. (b) nth = 0.1, 0.2, 0.3, 0.4, 0.5. (c) nth = 0.6. (d) nth = 0.7. (e) nth = 0.8. All the 
images for this example are from the dataset A taken with 600 × 1000 pixels.
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Conclusion
This work adopted ZF Net because its architecture strikes a nice balance in depth: it is deep enough to self-learn 
the progression of local image features from low- to mid- to high-level, and it is also shallow enough so that 
the experiments can be conducted quickly. Alternatively, deeper architectures such as VGG, GooleNet, 
Squeeze-and-Excitation Net and Residual network have been used and have shown relatively good performance 
in the challenges of computer vision. However, the purpose of this work is not only to achieve high perfor-
mance on the original images but also to optimize the tradeoff between detection accuracy and processing speed. 
Moreover, in the real world, datasets are usually limited. To achieve a good performance, original images needed 
to be processed as multi-scale images. Furthermore, in this work, the effects of some important parameters on the 
results are discussed, and the best performance parameters were selected.

Our approach can be improved in the future as follows: (1) The training dataset may be augmented, for exam-
ple, by changing the background of objects; (2) More layers of the model can be added that can help the model 
learn more features from images; (3) The training model could be improved by training the model with different 
scaled images under a larger dataset; (4) Identifying different growth processes of wheat mites and evaluating the 
damage-grade.
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