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toxicity and cytopathology 
mediated by Bacillus thuringiensis 
in the midgut of Anticarsia 
gemmatalis (Lepidoptera: 
Noctuidae)
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Bioinsecticides and transgenic plants, based on Bacillus thuringiensis (Bt) toxins are important 
when managing Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), a soybean defoliator pest. 
The interaction of these toxins with the caterpillar’s midgut cells determines their efficacy as an 
insecticide. the objective was to evaluate the toxicity of B. thuringiensis, subsp. kurstaki strain HD-1 
and cytopathological changes mediated by these bacterial toxins in the midgut of A. gemmatalis 
caterpillars. Insecticidal efficacy was determined by calculating lethal concentration values (LC25, 
LC50, LC75, LC90 and LC99) in the laboratory. Midgut fragments from A. gemmatalis were extracted 
after bacterial ingestion and evaluated by light, transmission electron and confocal microscopy. the 
Bt median lethal concentrations showed toxicity [LC50 = 0.46 (0.43–0.49) mg mL−1] to fourth instar 
A. gemmatalis caterpillars after 108 hours. Bt induces severe cytotoxicity to A. gemmatalis midgut 
epithelial cells with increasing exposure over time, causing cellular disorganization, microvillus 
degeneration, cell fragmentation and protrusion, peritrophic membrane rupture, and cell vacuolization. 
the cell nuclei presented condensed chromatin and an increase in lysosome numbers. Apoptosis 
occurred in the midgut cells of caterpillars exposed to Bt. A regenerative response in A. gemmatalis 
caterpillars was observed 8 hours after exposure to Bt, however this response was not continuous. 
toxins produced by Bt are harmful to A. gemmatalis at median concentration with structural damage 
and death of the midgut epithelial cells of this insect.

The velvetbean caterpillar, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae) is the main defoliator on 
soybean plants (Glycine max L. Merrill, Fabaceae)1. In Brazil, this pest occurs throughout the year, especially 
in the vegetative phase of plants and its control is realized mainly with synthetic insecticides2–4. Integrated Pest 
Management (IPM) programs aim at reducing the use of chemicals in pest control1 due to the negative effects 
of these products on non-target organisms5,6 and on the environment7,8. Biological insecticides, such as Bacillus 
thuringiensis (Bt) Berliner (Bacillaceae) strains, specific to target pests, with no toxic effects on other animals or 
the environment9 are an alternative to chemical control10,11. The wide Bt strain and toxin variety allow the produc-
tion of bioinsecticides and the development of transgenic plants12.
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Bacillus thuringiensis is a gram-positive, rod-shaped bacterium that produces insect-toxic proteins during 
sporulations13,14. After ingestion, the toxin crystals are solubilized due to the alkaline pH in the caterpillar midgut 
and their protoxins were activated by intestinal proteases. These protoxins bind to specific receptors in the micro-
villi of the midgut columnar cells, forming pores in the plasma membrane, causing cell lysis and insect death15–18.

The interaction of Bt toxins with the midgut of caterpillars determines its efficacy as an insecticide19, since the 
insect digestive tract is a physical and chemical barrier against invasive pathogens. The A. gemmatalis midgut is 
the largest portion of its digestive tract, having an epithelium consisting of four cell types: columnar or digestive 
cells responsible for the secretion of digestive enzymes and absorption20; goblet cells responsible for ionic home-
ostasis and absorption20,21; regenerative cells responsible for cell turnover22–24 and endocrine cells positioned as 
isolated cells at the baseline of the epithelium25 responsible for endocrine function20.

Columnar and goblet cell alterations and regenerative cell reductions are reported in the midgut of 
Lepidoptera Plodia interpunctella Hübner (Pyralidae)26, Epiphyas postvittana Walker (Tortricidae)27, Bombyx 
mori L. (Bombycidae)28 and Alabama argillacea Hübner (Noctuidae)19 when they were exposed to Bt. It is possi-
ble that every insecticidal protein affects midgut epithelial cells in a unique way, as there are many potential routes 
to cause midgut epithelial cell death. Bt, subsp. kurstaki strain HD-1, parasporal bodies are most used to control 
caterpillars29,30. In this study, we determined toxicity and cytopathological changes mediated by these bacterium 
toxins in the midgut of A. gemmatalis caterpillars.

Results
toxicity. The Bt lethal concentrations (X2 = 90.27, df = 5, P < 0.001) (Table 1) showed toxicity [LC50 = 0.46 
(0.43–0.49) mg mL−1] to fourth instar A. gemmatalis caterpillars (Fig. 1). The mortality of A. gemmatalis cater-
pillars, by Bt toxins, depends on the bioinsecticide concentration and the exposure time, being 100% for those 
exposed to the highest concentration of Bt (3.2 mg mL −1) and less than 1% in the control after 108 h of exposure.

Histopathology. The A. gemmatalis caterpillar midgut not exposed to Bt presented epithelium composed of 
high columnar cells, goblet cells and evident peritrophic matrix. The cytoplasm of columnar and goblet cells had 
few vacuoles, vesicles and small granules. The nucleus was elongated, occupying the medial-basal cell portion, 
predominantly with decondensed chromatin (Fig. 2A).

Histological changes were observed in the midgut of A. gemmatalis caterpillars two hours after exposure to Bt 
(Figs 2B–3F). The epithelium presented irregular shapes, cellular degeneration and cellular fragments started in 
the lumen. The vacuolization of the cytoplasm was high and the peritrophic membrane was ruptured (Fig. 2B). 
At 4 h of exposure to the entomopathogen, the amount and size of the vacuoles increased, occupying much of the 

1LC 2EV 3CI 4X2

25 0.37 0.32–0.40

90.27

50 0.46 0.43–0.49

75 0.56 0.53–0.59

90 0.65 0.61–0.70

99 0.86 0.79–0.94

Table 1. Lethal concentrations of Bacillus thuringiensis subsp. Concentrations of 1LC25, LC50, LC75, LC90 and 
LC90 cause 25, 50, 75, 90 and 99% mortality; 2EV estimated value (mg mL−1), 3CI confidence interval (mg mL−1) 
4X2, chi-square value for lethal concentrations and fiducial limits based on a logarithmic scale of significance 
level P < 0. 0001. kurstaki strain HD-1 to fourth instar Anticarsia gemmatalis (Lepidoptera: Noctuidae) 
caterpillars.

Figure 1. Mortality and upper and lower limits for fourth instar Anticarsia gemmatalis (Lepidoptera: 
Noctuidae) caterpillars exposed to different concentrations of Bacillus thuringiensis subsp. kurstaki strain HD-1.
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cell (Fig. 2C). A progressive increase of nuclei with condensed chromatin and cell fragments being released in the 
midgut lumen were observed within the 4–32 h interval (Fig. 2C–F).

Ultrastructure. The midgut cell ultrastructure of A. gemmatalis caterpillars fed on non-Bt diet was well 
organized with dense cytoplasm and intact plasma membrane (Fig. 3A).

Figure 2. Midgut histological sections of fourth instar Anticarsia gemmatalis (Lepidoptera: Noctuidae) 
caterpillars not exposed to Bacillus thuringiensis subsp. kurstaki strain HD-1 (A) showing epithelium (Ep) 
with digestive cells (dc), goblet cells (setae) and preserved peritrophic membrane (pm) in the lumen (L) and of 
caterpillars exposed to Bt after 2 h (B), 4 h (C), 8 h (D), 16 h (E) and 32 h (F) the ingestion showing digestive cells 
(dc) with vacuoles (v), nuclei with condensed chromatin (n) and fragments of cells (**) released in lumen (L).
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Midgut cells of caterpillars fed on Bt contaminated diet presented changes. Increased cytoplasm vacuoliza-
tion and large autophagic vacuoles was observed (Fig. 3B). Donut-shaped mitochondria and numerous lyso-
somes were found in the intestine of toxin exposed insects (Fig. 3C,D). The microvilli were degenerated (Fig. 3E). 
Cellular protrusions and cell content fragmentation were observed in the midgut lumen (Fig. 3E,F).

Figure 3. Midgut transmission electron microscopy of fourth instar Anticarsia gemmatalis (Lepidoptera: 
Noctuidae) caterpillars not exposed to Bacillus thuringiensis subsp. kurstaki strain HD-1 (A) showing digestive 
cells with a cytoplasm rich in mitochondria (m) and lipid droplets (ld) and of Bt exposed caterpillars (B–F) 
for 32 h showing digestive cells (dc) with vacuoles with cellular debris (v), lysosomes (ly), donut-shaped 
mitochondria (md), peritrophic membrane (pm) microvilli (mv), apical cell protrusions (p) some liberated (**) 
in the lumen (L).
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Immunofluorescence. Cleaved caspase-3 was randomly distributed in the A. gemmatalis caterpillar midgut 
exposed or not to Bt (Fig. 4), but an increase of this protease was observed in the midgut of caterpillars at 8, 16, 
and 32 h after exposure to Bt (Fig. 4B–D).

An increase in the number of proliferating cells in the midgut of A. gemmatalis caterpillars was observed at 8 h 
after Bt exposure. However, this regenerative response was not observed at 16 and 32 h following bioinsecticide 
ingestion (Fig. 5).

Discussion
Anticarsia gemmatalis susceptibility to Bt confirms bacterium efficacy when controlling this pest, however, this 
can vary according to the insect species31,32. Spodoptera frugiperda J. E. Smith33, Helicoverpa armigera Hübner34 
and Spodoptera litura Fabricius35 (Lepidoptera: Noctuidae) are susceptible to different Bt concentrations. The 
mortality of A. gemmatalis caterpillars, due to Bt toxins, depends on the bioinsecticide concentration demonstrat-
ing the toxicity of this bacterium through ingestion.

Irregularly shaped epithelium, increased cytoplasmic vacuolization, nuclear chromatin condensation and cel-
lular fragments with cytoplasmic and nuclear contents being released into the midgut lumen were typical char-
acteristics of cell degeneration observed in midgut of A. gemmatalis fed on Bt toxin contaminated diet. Cellular 
degeneration in the midgut due to exposure to toxic compounds has been reported for Alabama argillacea 
Hübner (Lepidoptera: Noctuidae)19 and Plutella xylostella L. (Lepidoptera: Plutellidae)36. The release of cellular 
fragments, including nuclei, from epithelium into the midgut lumen observed in A. gemmatalis midgut after 2 h 
of Bt exposure can reduce the digestive capacity of insects as observed for H. armigera37 and suggests a detoxifica-
tion response to the toxic effect of Bt and the cell death process38. The higher vacuolization in the A. gemmatalis 
digestive cells, exposed to the entomopathogen, suggests cell death39. The vacuole presence in the midgut cells 
is common in insects40,41, but its greater numbers in the cytoplasm has been characterized as autophagy42,43. The 
histological effects observed in A. gemmatalis midgut suggest an attempt to detoxify the entomopathogen infected 
cells.

Figure 4. Immunofluorescence of Anticarsia gemmatalis (Lepidoptera: Noctuidae) midgut using the caspase-3 
antibody (green - arrows). Sections of the caterpillars intestine not exposed to bacteria (A) and fed on Bacillus 
thuringiensis subsp. kurstaki strain HD-1 contaminated diet after 8 h (B), 16 h (C) and 32 h (D).
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Morphological changes observed in A. gemmatalis goblet cells showing deformed cells with numerous vacu-
oles in the cytoplasm19 are similar to those observed in other Lepidoptera44, suggesting a similar action mode of 
B. thuringiensis in these insects.

Bt induced the A. gemmatalis midgut peritrophic membrane rupture. This membrane was also destroyed in 
some midgut parts in Alabama argillacea (Lepidoptera: Noctuidae) fed on Bt cotton leaves19. Nutrient absorp-
tion is reduced due to the damage to the peritrophic membrane that plays a fundamental role in digestion45 and 
protects the epithelial cells from mechanical damage caused by the food bolus45–47, hindering pathogen entry and 
partitioning the digestion process45,48. The peritrophic membrane acts as a barrier against Bt toxins49,50 delaying 
contact with digestive cells51. However, these toxins can penetrate the peritrophic membrane52, bind to the recep-
tors of the columnar cell microvilli and infect A. gemmatalis midgut epithelial cells.

Microvilli degeneration in A. gemmatalis columnar cells can be explained by the toxin effect on the cytoskel-
eton actin, therefore Bt can interact with membrane proteins during initial action stages53 inducing cytoplasm 
leakage into the midgut lumen54. Cellular protrusions released into the midgut lumen of A. gemmatalis caterpil-
lars fed on Bt contaminated diet suggest a cytotoxic effect of this bacterium causing apoptosis, a morphological 
pattern of programmed cell death55. Elimination of cells by death38 would be a response to damage to midgut 
epithelial cells after Bt ingestion. Donut-shaped mitochondria were observed in the insect intestine exposed to 
Bt. This change in shape is caused by respiratory chain inhibition and is an early marker of cellular stress56 caused 
by entomopathogen.

The higher number of caspase-3 positive cells cleaved in the caterpillar midgut that ingested the bioinsecticide 
indicates apoptosis occurrence43,57. Cells showing a positive result for cleaved caspase-3 in the midgut of caterpil-
lars fed on uncontaminated diet indicate normal cell renewal43,58.

The increase of proliferating cell numbers in the A. gemmatalis midgut after 8 hours of bacterial ingestion was 
indicated by anti-PH3 antibody, a mitosis cell-specific marker59,60. Damage to the insect’s digestive system by Bt 
toxins activating defensive responses were reported for Heliothis virescens Fabricius (Lepidoptera: Noctuidae)61,62. 

Figure 5. Immunofluorescence of Anticarsia gemmatalis (Lepidoptera: Noctuidae) midgut using the fosfo-
histona H3 (PH3) antibody (green - arrows). Sections of the caterpillars intestine not exposed to bacteria (A) 
and fed on Bacillus thuringiensis subsp. kurstaki strain HD-1 contaminated diet after 8 h (B), 16 h (C) and 32 h 
(D).
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Epithelium regeneration with dead cells replaced by newly differentiated ones depends on the proliferation and 
differentiation of the regenerative cells and allows resistant insects to recover and survive after exposure to the 
biotic agent63. Cell replacement is important for the homeostatic maintenance of midgut integrity64–66. Bombyx 
mori Linnaeus (Lepidoptera: Bombycidae) responds to Bt infection with a regenerative mechanism67,68 by the 
asymmetric division of regenerative cells44. Anticarsia gemmatalis caterpillars do not have a continuous regener-
ative response as observed by the absence of cellular proliferation process in the midgut epithelium after 16 and 
32 hours of Bt ingestion, possibly due to cell lysis and epithelial rupture providing a favorable medium for spore 
germination leading to severe septicemia and insect death16,69.

Toxins produced by Bacillus thuringiensis subsp. kurstaki strain HD-1 are harmful to A. gemmatalis at median 
lethal concentration and cause severe histological and ultrastructural changes degenerating the epithelium and 
causing the death of midgut epithelial cells in this insect.

Material and Methods
Insects. Anticarsia gemmatalis caterpillars were obtained from the insect biological control laboratory (LCBI) 
of the Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil and maintained at 25 ± 2 °C, 75 ± 5% relative 
humidity and 12-hour photophase. These caterpillars were fed on an artificial diet consisting of 10 g of agar, 15.6 g 
of brewer’s yeast, 25 g of wheat germ, 25 g of soy protein, 31.2 g of beans, 12.5 g of casein, and 2.5 mL of vitamin 
solution (1.2% ascorbic acid, 0.03% calcium pantothenate, 0.015% niacin, 0.008%, riboflavin, 0.004% thiamine 
and 0.004% HCl)70. Twenty A. gemmatalis caterpillar groups were placed per polystyrene pot (15 × 9 cm) until 
pupa stage. Cleaning the pots and food replacement were performed every 48 hours. Anticarsia gemmatalis fourth 
instar larvae without amputations or apparent malformations were used in the bioassays.

toxicity test. Bacillus thuringiensis (Bt), subsp. kurstaki strain HD-1 Dipel® (Abbot Laboratories Chemical 
and Agricultural Products Division, North Chicago, IL, USA) was used in the toxicity test, diluted in 1 L of 
ultrapure water deionized in a Milli- Q (Millipore) to produce a stock solution, adjusting 100 g L−1 to obtain the 
required concentrations. The insecticidal efficacy was determined with lethal concentrations (LC25, LC50, LC75, 
LC90 and LC99) in the laboratory. Six Bt concentrations, besides the control (deionized ultrapure water) were 
adjusted in 10 mL stock solution (treatments and water): 0.1; 0.2; 0.4; 0.8; 1.6 and 3.2 mg mL−1 (w/v). Different 
concentrations of Bt were applied in 0.5 μL solution on 1 g of artificial diet. Fifty fourth instar A. gemmatalis 
caterpillars were used for each concentration individualized in Petri dishes (90 × 1.5 mm). The number of dead 
caterpillars after the exposure to Bt was counted every 12 h for 108 h.

Histology. Twenty fourth-instar A. gemmatalis larvae were fed either on control or Bt contaminated diet with 
the median lethal concentration (LC50), for different time periods (2, 4, 8, 16 and 32 h) and cryoanesthesiated at 
−4 °C. The midgut was dissected in saline solution for insects (0,1 M NaCl + 0,1 M KH2PO4 + 0,1 M Na2HPO4) 
and transferred to Zamboni’s fixative solution71 for 12 h at 5 °C. The samples were dehydrated in increasing eth-
anol series (70, 80, 90 and 95%) and embedded in Leica historesin (Leica Biosystem Nussloch GmbH, Wetzlar, 
Germany) and sectioned at 3 μm thickness in Leica RM2255 microtome. Sections were stained with hematoxylin 
and eosin and analyzed under an Olympus BX-60 light microscope (Olympus Corporation, Tokyo, Japan).

Ultrastructure. Twenty fourth-instar A. gemmatalis larvae were fed on Bt contaminated diet with the median 
lethal concentration (LC50) for 32 h and cryoanesthesiated at −4 °C. The midgut of these caterpillars was dissected 
and transferred to 2.5% glutaraldehyd in 0.2 M sodium cacodylate buffer, pH 7.2 containing 0.2 M sucrose for 
4 h at room temperature. Samples were post-fixed in 1% osmium tetroxide in the same buffer for 2 h, washed in 
buffer, dehydrated in an increasing ethanol series (70, 80, 90 and 99%) and soaked in LR White resin (London 
Resin Company Ltd.). Ultra-fine sections (80–90 nm thick) were obtained with a diamond power razor in Power 
Tome-X ultramicrotome (Boeckeler Instruments, Tucson, AZ, USA), contrasted with 1% aqueous uranyl ace-
tate and lead citrate72 and examined under transmission electron microscope Zeiss Libra 120 (Carl Zeiss, Jena, 
Germany).

Immunofluorescence. Twenty A. gemmatalis caterpillar midguts, fed either on control or Bt contaminated 
diet with median lethal concentration (LC50) for 8, 16 and 32 h, were dissected in 0.1 M phosphate buffer sodium 
(PBS) (Sigma-Aldrich, St. Louis, MO, USA) and transferred to Zamboni fixing solution for 2 h. Then, the samples 
were washed with PBS containing 1% Triton X-100 (PBST) and incubated with cleaved anti-caspase 3 antibody 
(Cell Signaling Technology, Danvers, MA, USA) diluted at 1: 500 in PBS for detection of apoptosis, or with 
anti-histone H3 phosphoric (PH3) antibody (Cell Signaling Technology, Danvers, MA, USA) diluted at 1:400 
in PBS for 24 h at 4 °C for cell proliferation detection. After incubation, the samples were washed in PBS and 
incubated with rabbit anti-IgG secondary antibody conjugated with fluorescein isotiosinate (Sigma-Aldrich, St. 
Louis, MO, USA) diluted 1: 500 in PBS for 24 h in the dark at 4 °C. The samples were then washed in PBS and the 
cell nuclei stained with TO-PRO-3 iodide (Life Technologies, Carlsbad, CA, USA) for 1 h. Samples were mounted 
on 50% sucrose glass slides and examined on Zeiss LSM510 META (Carl Zeiss, Jena, Germany) laser scanning 
confocal microscope.

statistical analysis. The lethal concentrations LC25, LC50, LC90, LC99 and confidence intervals were deter-
mined by regression based on probit-mortality concentration73 (Finney, 1971) with the PROC PROBIT proce-
dure of the SAS User v. Program. 9.0 for Windows74.
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