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Modeling the potential range 
expansion of larger grain 
borer, Prostephanus truncatus 
(Coleoptera: Bostrichidae)
Frank H. Arthur1, William R. Morrison III  1 & Amy C. Morey2

Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), is a beetle that is a member of a family that 
is primarily comprised of wood-boring insects, including forest insect pests. It is native to Mexico and 
Central America, where it has adapted to become a pest of stored maize. It was accidentally introduced 
into Africa in late 1970s, where it quickly spread throughout the sub-Saharan region, perhaps aided 
by adaptation to alternate hosts and the ability to persist in non-agricultural habitats. We used 
the correlative modelling algorithm, Maxent, to identify global areas of potential high suitability 
based on the climate locations with documented populations. predictions using a model trained in 
Mexico + Central America showed potential high climatic suitability extending north into the southern 
United states and southward into south America, including parts of Argentina, but predictions using a 
model built from African occurrences did not include those areas as highly suitable. However, there was 
general agreement in both models that large areas of the tropics in the Western Hemisphere and in Asia 
have climatic conditions that could support P. truncatus if it were to become established. the models 
also showed consistency in capturing potential suitability at sites not used to build a given model. 
Results can be used as an initial guide to establish surveillance programs to monitor for this insect in 
high risk areas where it is not currently found, and to proactively mitigate the biosecurity risk from P. 
truncatus.

The larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), is native to Mexico and Central 
America, where it is a pest of stored maize though it is also found in non-agricultural habitats1,2. However, it was 
accidentally introduced into east Africa and first documented in Tanzania in the late 1970s1,3. It spread rapidly 
through Central Africa to the west coast, and major outbreaks were soon reported in Ghana and Benin4,5. In 
addition, P. truncatus adapted quickly to cassava as an alternate host, and was also able to persist for short periods 
in non-agricultural habitats such as woodland areas, further facilitating dispersion6.

The pest status, spread, and dispersion of P. truncatus have been documented in multiple review articles pub-
lished since the initial introduction1,6–9. It has spread throughout the major agricultural regions of sub-Saharan 
Africa, but most studies involving the sampling of commodities, evaluating the extent of infestations, and deter-
mining population ecology were concentrated in Eastern and Western Africa1,10–12. A possible reason for this is 
the presence of international research institutes in those areas, such as branches of the International Institute 
for Tropical Agriculture in Idaban, Nigeria and Cotonou, Benin, or scientists from the United Kingdom and 
Germany with extensive research experience in Africa. There is a comparative lack of information for Central 
Africa, which could be related to political circumstances in that region, as well as the lack of funding and scientists 
conducting research on stored products and stored product insects.

The invasive P. truncatus appears to be more destructive in Africa compared to damage reported in its native 
range of Mexico and Central America. There are several possible reasons for this increased capacity for damage, 
including the subsistence-level crib storage systems of maize cobs in Africa, adaptation to dried stored cassava 
chips as an alternate host, persistence in non-agricultural habitats, and the lack of native natural enemies in the 

1USDA, Agricultural Research Service, Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, 
KS, 66502, USA. 2Department of Entomology, University of Minnesota, 1980 Folwell Ave., 219 Hodson Hall, St. Paul, 
MN, 55108, USA. Correspondence and requests for materials should be addressed to F.H.A. (email: frank.arthur@
ars.usda.gov)

Received: 8 November 2018

Accepted: 5 April 2019

Published: xx xx xxxx

opeN

https://doi.org/10.1038/s41598-019-42974-5
http://orcid.org/0000-0002-1663-8741
mailto:frank.arthur@ars.usda.gov
mailto:frank.arthur@ars.usda.gov


2Scientific RepoRts |          (2019) 9:6862  | https://doi.org/10.1038/s41598-019-42974-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

invaded area, including Teretrius nigrescens (Lewis) (Coleoptera: Histeridae)13–17. However, since the detection 
of P. truncatus in Africa, there have been multiple studies and repeated introductions of this predator on the 
continent, with varying levels of permanent establishment and success in controlling and limiting P. truncatus 
outbreaks18–20.

Given the destructive nature of P. truncatus in Africa, knowledge relating to the potential spread of this insect 
northward or southward from Mexico and Central America and Africa, and eastward from Africa into tropical 
Asia, as well as knowledge on climatically suitable habitats for invasion would greatly benefit efforts in limiting 
or eliminating future infestations by targeting detection efforts to areas where the pest is likely to establish. There 
have been sporadic interceptions of this insect in the United States and Europe, but no true establishment to 
date. The use of correlative models to estimate species distributions are increasingly viable, in part due to the rise 
in availability of high resolution climatic and environmental datasets and advances in modelling methods21,22. 
These models identify statistical relationships between locations of species occurrence and a set of environmental 
predictors, which are then used to identify other areas with similar environmental conditions23. The simplicity of 
the data inputs needed makes correlative models particularly appealing to estimate suitable habitats for invasive 
species, where often little more information other than records of occurrence are known. However, the extrapola-
tion of correlative model predictions to new areas of space and time – an interest of most applications to invasive 
species – requires caution23,24.

Of the currently available methods, MaxEnt25 has shown relatively reliable performance26. MaxEnt is a 
presence-background (or pseudo-absence) model that compares the environmental space at a list of occurrence 
locations to those at background locations that fall within a user-defined area27. The algorithm minimizes the rel-
ative entropy between a probability density of the environmental variables at the presence data and another from 
the background locations, which provides estimates of relative suitability based on the given variables and suita-
bility in geographical space27,28. The purpose of the current study is to predict areas for potential range expansion 
of P. truncatus from its current documented distribution. To achieve this, we (1) developed a MaxEnt model based 
on the documented presence of P. truncatus in its native range (Mexico + Central America), (2) developed a sec-
ond model based on the presence of P. truncatus in its introduced range (Africa), and (3) compared the similarity 
of the two model projections and identified areas of agreement between both models, which may suggest higher 
risk areas for invasion by P. truncatus in natural areas (e.g., areas outside of grain storage facilities).

Materials and Methods
occurrence records and background. A necessary input for correlative species distribution mod-
els, including MaxEnt, are geographic coordinates of sites where a species has been documented to occur. An 
exhaustive literature search was done through various databases, including Agricola, Web of Science, and Google 
Scholar, to find published, peer-reviewed papers that gave specific names of states, provinces, or regions within 
a country, including towns or villages, where P. truncatus infestations were documented. In some cases, only a 
general location such as a village or town was listed, others gave a specific sampling area. Geographic coordinates 
were then obtained through a Google search by listing the location and obtaining information that gave the lon-
gitude and latitude. Locations with sporadic sightings or incidental infestations or interceptions were excluded 
from the list. For many of the references, the sampling sites were one-time locations, with no information on 
yearly persistence or regularity of infestation but were included in the list because they were in a geographic 
region where other studies had detected P. truncatus, or where P. truncatus could potentially survive, based on 
records of documented establishment in the surrounding geographic region. The literature review yielded mul-
tiple, unique geographic coordinates with documented infestations in grain storages or in the surrounding land-
scape, field crop sites, and forest and woodland sites (Table S1).

Limiting the extent from which MaxEnt draws background locations is recommended to reflect areas accessi-
ble to a species or the sampling bias present in occurrence records28,29. Given that we had no information on the 
specific nature of bias in our occurrence sites, we limited background selection to a minimum convex polygon 
(MCP) with a one-pixel (2.5 arc-minute) buffer drawn around the occurrence points for a given model29,30. The 
package ‘rgeos’31 was used to generate the buffered MCPs in R version 3.5.032 and RStudio version 1.1.45333. A 
random sample of 10,000 locations (i.e., the default for MaxEnt) was taken from these reduced areas to serve as 
background locations for a given model.

Climate data. Characterizing current and predicted distributions of a species based on climate suitability is 
widely used34 especially with the increasing availability of global climate data. We used 19 gridded temperature 
and precipitation variables from the WorldClim dataset (v. 2; www.worlclim.org/bioclim)35 at 2.5 arc-minute 
resolution. This dataset contains average monthly global climate data for 1970–2000. The climate rasters were 
clipped to the extent of a given buffered MCP using the R package ‘raster’ (v. 2.6–7)36. To reduce the confounding 
effects of potential collinearity among climate variables37, we then calculated a Pearson correlation coefficient 
matrix within each MCP space. Only variables with correlations of |r| < 0.70 were retained, leaving the final mod-
els with 5–6 climate variables (Table 1).

Direct climate comparisons. For each of the documented occurrences of P. truncatus, the climate variable 
values were extracted and directly compared between populations in Mexico + Central America and Africa to 
understand how conditions differed between the native and introduced range. The mean value for each popula-
tion was compared with a t-test. Climatic variables compared were those included in one or both final models. 
These variables included BIO3 (isothermality, percent), BIO5 (maximum temperature of the warmest month, 
°C), BIO6 (minimum temperature of the coldest month, °C), BIO12 (annual precipitation, mm), BIO15 (precip-
itation seasonality, percent), BIO18 (precipitation of warmest quarter, mm), and BIO19 (precipitation of coldest 
quarter, mm). BIO3, isothermality, is derived by calculating the ratio of the mean diurnal range (BIO2) to the 
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annual temperature range (BIO7) and then multiplying by 100. Isothermality quantifies how large the day-tonight 
temperatures oscillate relative to the summer to-winter (annual) oscillations. Isothermality is generally useful for 
tropical, insular, and maritime environments38. Precipitation seasonality, BIO15, is a measure of the variation in 
monthly precipitation totals over the course of the year. This index is the ratio of the standard deviation of the 
monthly total precipitation to the mean monthly total precipitation (also known as the coefficient of variation) 
and is expressed as a percentage38. For all tests, significance was determined at P < 0.05.

Model development and evaluation. Using MaxEnt version 3.3.3k25, we built two separate models for 
P. truncatus: one based on occurrences and background from the native range (Mexico + Central America) and 
one based on occurrences and background from the invaded range in Africa. MaxEnt models made with default 
settings can result in overfit predictions, so species-specific tuning of complexity is recommended39–41. To address 
this, the regularization multiplier and features classes were selected for each model based on the lowest Akaike 
Information Criterion corrected for small sample sizes (AICc42) using the ‘ENMeval’ R package43. ‘ENMeval’ also 
allows additional methods to partition training and testing data, which we selected based on the recommenda-
tions summarized in Muscarella et al.43. For the model built using native occurrence records, ‘n − 1 jackknife’ 
partitioning was used due to the relatively small number of occurrences (n = 32). This method chooses one occur-
rence point to test a model trained with the remaining (n − 1) occurrences, and it was repeated n times until each 
record has been used for testing. For the model built using invaded occurrence records from Africa, the ‘block’ 
method was used. This method splits approximately equal numbers of occurrence and background points into 
quadrants based on latitude and longitude.

We quantitatively assessed model performance using the conventional metrics of area under the 
receiver-operator curve (AUC), which measures the discriminatory ability of each model, and omission rates, 
which can indicate overfitting. AUC is a threshold-independent performance measure that reflects the proba-
bility that a randomly chosen presence site will rank above a randomly chosen background site25. Values near 
1.0 indicate high discriminatory ability, whereas values of 0.5 (or less) indicate discrimination no better than 
random42. Omission rates (OR) calculate the proportion of test locations with suitability values lower than a 
specified threshold. The ‘minimum training presence’ threshold omission rate (ORMTP) uses the smallest value 
predicted for any training location, indicating the least-suitable environment where a training point was found. 
Similarly, the 10% training threshold omission rate (OR10) uses the smallest value after excluding the lowest 10% 
of training suitability values39,44. In ideal models, the expected ORMTP and OR10 are zero and 10%, respectively, 
and values higher than expected suggest overfitting. The OR10 is less likely to be influenced by extreme/outlier 
occurrence locations44.

Model projections. Logistic MaxEnt outputs were visualized for each model in ArcMap (ESRI® ArcGIS 
Desktop 10.6) to show global and region-specific areas of relative suitability between 0–1.0. Models projected 
into areas with conditions outside of those used to build the model can be unreliable45. To identify areas of model 
extrapolation, multivariate environmental similarity surface (MESS) maps were produced for each MaxEnt 
model using the package ‘dismo’46. The MESS calculates how similar a given point is to a reference set of points for 
a given climate variable28. Values less than zero indicate grids where at least one variable was extrapolated; there-
fore, we limited each projection space to areas with MESS values of zero or greater to reduce uncertainty (Fig. S1).

To quantify how similar the final spatial projections were, we used ENMTools (v. 1.4.4) to calculate two 
measures of niche similarity: Schoener’s D and I, a modified Hellinger distance47,48. Both measures compare the 
suitability values predicted at each grid cell between two models, though D assumes the suitability scores are 
proportional to abundance and I does not48. Both measures are bound from 0 (no overlap) to 1 (identical), with 
0.4–0.6 considered moderate overlap49. We also visually identified areas that both models forecasted as suitable, 
with suitability being defined for each model by the 10th percentile training presence logistic threshold (MTP10)49. 
Each model was converted to a binary prediction based on their respective threshold value and then regions that 
both models forecasted as suitable were isolated using the Intersect (Analysis) tool in ArcMap. The resulting con-
sensus map highlighted areas of higher (suitable in both models) and lower (suitable in only one model) certainty 
in global suitability predictions. We also performed a Chi-Sq test to compare the suitability classes within each 
model compared to the null hypothesis that each class would be equally represented.

Model n Environmental variablesa
Regularization 
multiplier (β) Features

Data partitioning 
methodb

Mexico + Central 
America (native range) 32 BIO3, BIO5, BIO6, BIO12, BIO15 1.5 hinge n − 1 jackknife

Africa (invaded range) 69 BIO3, BIO5, BIO6, BIO12, BIO18, BIO19 1.0 linear, product, 
quadratic block

Table 1. Environmental variables and parameters used in MaxEnt models of Prostephanus truncatus. 
Environmental variables were from the WorldClim dataset (www.worlclim.org/bioclim) and limited to those 
with a |r| < 0.7 within the area of model development. Regularization and feature combinations were selected 
for each model based on the lowest AICc value. Resampling method was selected based on sample size and 
study objective (spatial transferability). Model names refer to the dataset (with n occurrences) used to develop 
the model. aBIO3 = Isothermality; BIO5 = Max Temperature of Warmest Month; BIO6 = Min Temperature 
of Coldest Month; BIO12 = Annual Precipitation; BIO15 = Precipitation Seasonality; BIO18 = Precipitation 
of Warmest Quarter; BIO19 = Precipitation of Coldest Quarter. bpartitioning was done using the R package 
‘ENMeval’43.
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Results
Direct climate comparisons. The climate conditions for recorded occurrences of P. truncatus in 
Mexico + Central America, and Africa were similar for variables BIO3, BIO5, BIO6, and BIO12 (Table 2). BIO15 
did not ultimately contribute to the final Mexico + Central America model (Table S2). In the final Africa model, 
BIO19 and BIO5 showed no permutation importance, but did show some percent contribution (Table S2).

Assessment of Mexico + Central America model and global predictions. The model trained in 
Mexico + Central America showed a high degree of discriminatory ability based on the AUC, and closely met the 
expected value for the omission rate (AUC and ORMTP, see Table 3). The AUCdiff and OR10 values for the model 
suggests that there is some degree of overfitting for the model (Table 3). The Mexico + Central America-trained 
model ultimately included four uncorrelated variables from the WorldClim dataset, namely BIO3, 5, 6, and 12.

As expected, the Mexico + Central America-trained model showed that all the recorded occurrences of P. 
truncatus in its native range were highly suitable for potential establishment and population development 
(Fig. 1A). In addition, there are areas in Mid- and Southern California, most of Florida, and large sections of the 
Caribbean that appear climatically highly suitable for colonization by P. truncatus according to this model.

In South America, large areas of Brazil and the northern regions of Argentina, Venezuela, much of Bolivia, and 
western Paraguay appear highly suitable (>0.80) for this species (Fig. 1A). In Southeast Asia, the most probable 
areas of suitability are western and southern India, large sections of Myanmar, Thailand, Cambodia, Vietnam, 
Indonesia, and in sporadic locations in the Philippines. Finally, large sections of northern Australia in a belt 
stretching from the eastern to western coasts of the continent also appear highly suitable for establishment of P. 
truncatus. Much of equatorial Africa from 12°N to −20°S, except for a large area of central Democratic Republic 
of Congo is considered a climatically highly-suitable habitat for P. truncatus according to the Mexico + Central 
America-trained model. The majority of the documented occurrences in Africa (55%) were predicted by the 
Mexico + Central America-trained model.

Assessment of the African model and global predictions. The second model was trained on the 
recorded occurrences of P. truncatus from the invaded range in Africa. This model showed a moderate degree of 
discriminatory ability based on the AUC (Table 3). Notably, there were several recorded occurrences in the native 
range that the African-trained model did not predict as potential suitable areas, but 68% of the occurrences were 
still predicted by the Africa-trained model (Table 5). Further, this model had a higher AUCdiff value and omission 

Climate 
Variablea

Mexico and 
Central America Africa

t PMean ± SE Mean ± SE

BIO3 203.9 ± 4.8 220.4 ± 4.6 1.97 0.05

BIO5 229.2 ± 11.4 241.9 ± 11.1 0.64 0.52

BIO6 12.0 ± 1.8 9.8 ± 1.3 0.83 0.41

BIO12 129.5 ± 3.2 118.1 ± 2.3 2.44 0.02*
BIO15 332.6 ± 4.5 — — —

BIO18 — 245.2 ± 3.2 — —

BIO19 — 232.4 ± 5.4 — —

Table 2. Summary of climatic variables in the native (Mexico and Central America) and introduced (Africa) 
range of P. truncatus. Means (±SE) are presented for variables provided to one or both of the models. An 
asterisk indicates a significant (P < 0.05) difference between the regions for a given variable if it was used in both 
final models. aFor a definition of each variable and associated units, please see the materials and methods.

Model AUCTEST
a AUCDIFF

b ORMTP
c OR10

d MTP10
e Schoener’s D I

Mexico + Central 
America (native range) 0.751 0.116 0.031 0.219 0.342 0.606 0.883

Africa (invaded range) 0.593 0.179 0.059 0.294 0.216

Table 3. Evaluation and similarity metrics for MaxEnt models of Prostephanus truncatus. Metrics were 
generated in R (‘ENMeval’43 and ENMTools48. Similarity indices (Schoener’s D and I) compared the projection 
areas remaining after MESS exclusion (see methods) between the two models. aAUCTEST measures the ability of 
the model to distinguish the occurrence points used in model testing from background points with 1.0 being 
perfect discrimination. bAUCDIFF is the difference between the AUC using test and training occurrences; high 
differences indicate model overfitting. cORMTP is the omission rate for the proportion of test locations with 
suitability values lower than the smallest value predicted for any training location (minimum training presence; 
MTP); overfitting is indicated by deviations from the expectation of zero. dOR10 is the omission rate for the 
proportion of test locations with suitability values lower than the smallest value after excluding the lowest 
10% of training suitability values (10% training omission rate); overfitting is indicated by deviation from the 
expectation 0.10. eMTP10 is the minimum predicted logistic value for the training sites after excluding the lowest 
10% of training site values.
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Figure 1. Forecasted geographic suitability of Prostephanus truncatus based on temperature and moisture. 
The first two columns show the predicted suitability projected in various regions from two different MaxEnt 
models: (A) a model trained using occurrence and background locations from the native range of P. truncatus 
in Mexico + Central America and, (B) a model trained using occurrence and background locations from the 
invaded range of P. truncatus in Africa. The third column (far right) shows regions where the two models 
overlap (dark grey) in projected suitability based on their respective 10% minimum training thresholds 
(Table 3). Light grey areas in all maps indicate areas removed from model projection based on MESS (see 
Materials and Methods and Fig. S1). Green dots are documented records of occurrence (see Table S1).
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rate than the Mexico + Central America-trained model, with a ORMTP roughly near zero, but an OR10 rate near 
30% (Table 3), indicating some degree of overfitting. The Africa-trained model included six variables instead of 
four, namely BIO3, 5, 6, 12, 18, and 19 (Table 1).

Overall, fewer areas within our projection space were predicted as highly suitable in the African-trained model 
(>0.80 suitability; Table 4, Fig. 1B). In addition, overall there was also more land area considered to have low suit-
ability (<0.21 suitability) for P. truncatus in the African model compared to the Mexican + Central American 
model.

With regards to North America, most areas in the United States, were outside the range of our data, but 
Mexico the Caribbean Cuba, most of Haiti and the Dominican Republic, and Jamaica and Puerto Rico were 
considered potential areas of establishment (Fig. 1B). Similar to the Mexico + Central American-trained model, 
large areas of Brazil, Bolivia, Paraguay, and northern Venezuela were considered climatically highly-suitable 
for establishment of P. truncatus by the African-trained model, though not northern Argentina. In southeast-
ern Eurasia and Oceana, Thailand, Cambodia, Vietnam, southern India, and northern Laos were considered 
highly suitable by the model, with sporadic high climatic suitability in the Philippines and Indonesia. Similar 
to the Mexican + Central American-trained model, the African-trained model considered regions of northern 
Australia climatically suitable for P. truncatus. Much of equatorial Africa was also considered to be climatically 
highly-suitable by the African-trained model, and included all the recorded occurrences of the species, but also 
similarly predicted less climatic suitability in the central Democratic Republic of Congo.

Assessment of dual model consensus and global predictions. There was moderate to strong overlap 
in areas considered climatically highly-suitable by the models depending on whether Schoener’s D or I is consid-
ered. Both models assessed much of Western and Southern Mexico, as well as much of Central America, and the 
larger Caribbean islands as potential habitats for establishment and dispersal of P. truncatus, though some of the 

Model

Occurrence record dataset

Mexico/Central America (n=32) Africa (n=69)

Within modeled 
suitability space*

Outside modeled 
suitability space <0.21

0.21–
0.40

0.41-
0.60

0.61–
0.80

0.80–
1.00

Within modeled 
suitability space

Outside modeled 
suitability space <0.21

0.21–
0.40

0.41–
0.60

0.61–
0.80

0.80–
1.00

Africa 22 10 6 14 1 1 0 69 0 7 28 13 14 7

Mexico + C. 
America 32 0 0 7 9 15 1 38 31 1 13 9 14 1

Consensus 16 16 n/a n/a n/a n/a n/a 24 45 n/a n/a n/a n/a n/a

Table 5. Counts of occurrence records for Prostephanus truncatus (see Table S1) in relation to various 
categories of predicted suitability in each model. See Material and Methods for full description of each model. 
*The suitability space for the binary Consensus model was considered here as those areas that both models 
predicted suitable, based on their respective 10 percent minimum training presence logistic threshold (i.e., dark 
grey areas in Fig. 1c). The suitability space for the remaining two models were those areas with a continuous 
suitability value >0 (i.e., colored areas in Fig. 1a-b).

Model training region
Suitability 
Class Area (km2)

Proportion of total 
projection areaa

Mexico + Central America

<21 376,379 0.013*
21–40 8,426,985 0.281

41–60 12,285,599 0.410*
61–80 7,803,100 0.260

81–100 1,066,489 0.035

Total 29,958,552

Africa

<21 4,505,269 0.170

21–40 15,324,383 0.577*
41–60 4,389,318 0.165

61–80 1,844,947 0.069*
81–100 513,238 0.019*
Total 26,577,154

Table 4. Areas of suitability for P. truncatus as predicted by the Mexico + Central America and African 
models. Suitability class, area, and proportion of total global projection area are listed for each model. Expected 
proportion of total projection area was assumed to be 0.2 for each class within each model under the null 
hypothesis. Significant deviations from the null hypothesis are denoted by an asterisk (χ2-test, Bonferroni 
correction). For both models, there were no areas predicted as 0 suitability within our areas of projection. aTotal 
area where overlap between the two models forecasted suitability >0.0 was 18,509,504 km2. The proportion 
of the Africa model in agreement with the Central America model was 0.70. The proportion of the Central 
America model in agreement with the Africa model was 0.62.
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recorded occurrences fell outside the consensus zones in the native range (Table 5). In South America, consensus 
zones of climatic suitability included large areas of Brazil, Bolivia, western Paraguay, and coastal Venezuela. Both 
models overall predicted that much of tropical Africa was highly suitable for P. truncatus. In Eurasia and Oceana, 
both models agreed that most of Cambodia, northern Laos, large areas of Thailand, southern India, sporadic 
locations in Indonesia, and northern Australia were moderately suitable (0.40 to 0.80) areas for P. truncatus. Both 
models overall predicted that much of tropical Africa was highly suitable for P. truncatus.

Discussion
Our MaxEnt models utilized four to six different climatic variables to predict areas where P. truncatus could 
potentially establish outside of storage facilities, based on either the current distribution in Mexico + Central 
America or in Africa. The two models ultimately were based on similar climate variables, with the Africa model 
using two additional variables (i.e., BIO18 and BIO19). Of the shared variables, only the amount of annual pre-
cipitation (i.e., BIO12) differed significantly between the two modelled regions. However, there were some other 
differences between the two models, in that the Mexican + Central American model identified sites in the south-
ern US that were potential areas of high suitability (i.e., >0.8), while the African model did not. In the southern 
US, maize is typically harvested in late July and early August, and population prediction models coupled with 
historical weather data show that the warm temperatures will support rapid population growth of other stored 
product species, such as the maize weevil, Sitophilus zeamais (Motschulsky), even with the use of aeration to cool 
the grain mass and modify storage bin temperatures50.

The African model was perhaps more conservative, but both models identified areas in the Caribbean and areas 
in tropical and sub-tropical South America as areas of high climatic suitability. In general, though there were some 
zones of disagreement, both models showed significant overlap with each other in areas designated as climatically 
suitable (Fig. 1C). Importantly, for both models, we conservatively chose to limit the areas of prediction to those 
regions that did not require extrapolation beyond the range of our data (i.e., light grey areas in Fig. 1). This decision 
was intended to reduce uncertainty associated with extrapolation23 and does not indicate that these areas are not at 
risk. There are three possible explanations for what may be happening in the grey areas of our projections: (1) they 
could truly be outside the climatic tolerances for this species, (2) they could be outside the current realized niche of 
the species, and/or (3) our occurrence datasets may be incomplete in representing the current niche of the species 
and additional records may change the extent of these areas. It is possible that P. truncatus may be able to survive 
inside a buffered anthropogenic structure such as a grain bin or food facility where temperature effects are mitigated.

Network mapping showing routes of trade and their relative frequency with ports in the native and invaded 
ranges of P. truncatus may help illuminate relative risk in these grey areas. For example, Paini and Yemshanov51 
used the international marine shipping network centered around Australia to predict the relative risk of entry by 
the quarantine threat posed by the, khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), and 
found ships arriving from Taiwan and the Republic of Korea were the most likely sources for entry of the species 
into the country. Moreover, it is also possible that global climate change may shift the range of suitable areas 
northward and southward towards the poles for P. truncatus, as has been reported for other insect species52,53. 
This may have repercussions for the stored product species community ecology in newly invaded areas, with P. 
truncatus likely dominating on maize, and causing correspondingly more damage54.

Both models consistently identified tropical and sub-tropical areas as climatically highly-suitable for estab-
lishment of P. truncatus. This is important because cassava is a primary crop in the tropics and subtropics, and 
many of the publications documenting the rapid spread and dispersal of P. truncatus in Africa cite the species’ 
quick adaptation to cassava as an alternate agricultural host as a primary contributing factor15,55. In Africa, infes-
tations often occur when cassava is stored as dried chips. Cassava is native to South America and is now grown 
throughout Brazil, in tropical Africa and Asia, in India and China, and parts of tropical Australia56. It is used as 
a staple food because of its high starch content in the roots, as well as in industrial processes57. Production for 
human food is increasing and some researchers have stated that cassava now ranks behind wheat, corn, and rice 
in global production and utilization58. Although potential spread of P. truncatus might be limited because cassava 
is cultivated in large plantations in South America and tropical Asia, and may not be stored as dried chips, it is still 
reasonable to assume that if P. truncatus was introduced into areas where cassava is grown and where P. truncatus 
has not been established, some adaptation and dispersal could still occur.

Many studies in Africa also document survival and reproduction of P. truncatus on woody host material, 
including live and dead branches, branches girdled by attacking wood-boring insects, or on seeds6,59,60. Though 
listings for specific species can be inconsistent and contradictory, there are obviously some woody species that 
will support development and reproduction in addition to incidental or low-level attack and survival. Nansen 
et al.59 reported reproduction on teak (Tectona grandis L.) seeds. The natural range of teak is the Indian pen-
insula and Southeast Asia, but it is also planted in managed plantations throughout the tropics61. While there 
is no evidence that P. truncatus would attack mature trees, it seems that it could indeed survive and reproduce 
on dead branches and seeds and serve as an alternate host as well. Since P. truncatus is a member of the family 
Bostrichidae, and most members of this family are wood-boring insects, it is not surprising that it can potentially 
survive and reproduce on woody material. Both the Mexican + Central American and African models predict 
that P. truncatus could survive in tropical areas where teak and cassava are both present. It is also possible that 
other woody species could serve as alternate hosts as well.

The MaxEnt modeling approach performs particularly well with small samples size59 and has been utilized for 
a variety of invasive species, including the brown marmorated stink bug (Halyomorpha halys [Stål])62, the emerald 
ash borer (Agrilus planipennis Fairmaire)63, and spotted wing drosophila (Drosophila suzukii) Matsumura64. There 
were some discrepancies between our two models but predicted climatic suitability can differ between models based 
on native versus invaded populations for multiple reasons, such as shifts in climatic niche with invasion65,66, other 
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biotic sieves such as interspecific competition that limit the realized niche67 or an incomplete description of climatic 
suitability in the invaded range due to lack of equilibrium with the environment23. We compared the two models 
using two indices of similarity, Schoener’s D and I, a modified Hellinger distance45,47. Others have found that I tends 
to estimate greater similarity than Schoener’s D48,68, and that D may be better suited for computing niche overlap48.

In conclusion, our modeling results provide guidelines for predicting potential geographic regions where 
P. truncatus could survive outside of storage facilities or in unbuffered environments, and consequently, the 
increased risk of invasion into storage facilities due to populations sustained outside these facilities. Our mod-
els suggest grains stored in tropical Asia may be especially at risk if P. truncatus were to become established in 
the surrounding environment. This modeling approach could be used to guide directed studies on temperature 
tolerance for management in storage facilities. These results emphasize the need for monitoring of this pest in 
tropical areas where it is not currently present or established, and for governments and research institutions to be 
proactive in their surveillance and detection efforts69.

Data Availability
All data on which the model in this paper was based are available as Supplemental Files.
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