Figure 2 | Scientific Reports

Figure 2

From: Quantitative dynamics of reversible platelet aggregation: mathematical modelling and experiments

Figure 2

Mathematical model for platelet aggregometry. (A) Cartoon of the mathematical model of platelet aggregation, which is based on mass action kinetics (see text) for reactions between aggregates (n) and single platelets (p); (B–E) the estimation of five model parameters was conducted automatically by means of five different parameter estimation techniques implemented in COPASI software (see text). For each set of experimental data, parameters of the models were estimated independently; (B) washed platelets, stimulation with 1.25, 5, 10, 20 or 40 µM of ADP, experimental curves were taken from the same blood sample of the same donor, the presented single curves are typical out of n = 3 sets for this donor and this donor expose typical results out of n = 10 different donors; the complete sets of parameter values for ADP (1.25-5-10-20-40) were: k1 = (2.2, 1.4, 5, 5.6, 7.3)*10−3 1/([plt]*s), k−1 = (0.67, 0.13, 0.59, 0.54, 0.18) 1/s, k−2 = (1.2, 0.1, 0.063, 0.036, 0.023)*10−3 1/([plt]*s), k3 = (13, 3, 1.6, 1, 0.4)*10−2 1/s, k2 = (4, 60, 22, 21, 8.1)*10−7 1/([plt]*s), a = (1.08, 1.16, 1.17, 1.19, 1.14), p0 = (400, 405, 400, 400, 400) [plt]; (C) dependence of parameter values on ADP concentration used in corresponding experiments and a table of Pearson correlation coefficients for this set of data; (D) calculated time-course of the concentration of single platelets (p) and aggregates (n) for the same models as on panel (B,E) calculated time-course of the mean size of aggregate (in platelets) for the same models as on panel (B).

Back to article page