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Genetic risk factors identified in 
populations of european descent 
do not improve the prediction 
of osteoporotic fracture and 
bone mineral density in Chinese 
populations
Yu-Mei Li1,2, Cheng Peng3, Ji-Gang Zhang2, Wei Zhu4, Chao Xu  2, Yong Lin5, Xiao-Ying Fu2, 
Qing tian2, Lei Zhang6, Yang Xiang1, Victor Sheng7 & Hong-Wen Deng2

Aiming to investigate whether genetic risk factors (GRFs) for fracture and bone mineral density (BMD) 
identified from people of European descent can help improve the prediction of osteoporotic fracture 
(OF) risk and BMD in Chinese populations, we built assessment models for femoral neck (FN)-fracture 
prediction and BMD value prediction using 700 elderly Chinese Han subjects and 1,620 unrelated 
Chinese Han subjects, respectively. 17 fracture-associated genes and 82 FN-BMD associated genes 
identified in people of European descent were used to build a logistic regression model with clinical risk 
factors (CRFs) for FN-fracture prediction in Chinese. Meanwhile 107 BMD-associated genes from people 
of European descent were used to build a multiple linear regression model with CRFs for BMD prediction 
in Chinese. A Lasso algorithm was employed for informative SNP selection to construct the genetic risk 
score (GRS) with ten-fold cross-validation. The results showed that, adding fracture GRF and FN-BMD 
GRF to the model with CRFs, the area under the receiver operating characteristic curve (AUC) decrease 
from 0.653 to 0.587 and 0.588, respectively, for FN fracture prediction. 62.3% and 61.8% of the risk 
variation were explained by the Model with CRFs and fracture GRF and by the Model with CRFs and 
FN-BMD GRF, respectively, as compared to 65.5% in the Model with CRFs only. The net reclassification 
improvement (NRI) index in the reclassification analysis is 0.56% (P = 0.57) and 1.13% (P = 0.29), 
respectively. There is no significant difference either between the performance of the model with CRFs 
and that of the model with both CRFs and GRF for BMD prediction. We concluded that, in the current 
study, GRF of fracture identified in people of European descent does not contributes to improve the 
fracture prediction in Chinese; and GRF of BMD from people of European descent cannot help improve 
the accuracy of the fracture prediction in Chinese perhaps partially because GRF of BMD from people of 
European descent may not contribute to BMD prediction in Chinese. This study highlights the limited 
utility of the current genetics studies largely focused on people of European descent for disease or risk 
factor prediction in other ethnic groups, and calls for more and larger scale studies focused on other 
ethnic groups.
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Osteoporosis (OP) is a chronic disease characterized by low bone mineral density (BMD) and an increased risk 
of fracture. Due to the increasing aging population, OP becomes a major public health threat worldwide. In the 
US, OP affected 53.6 million adults in 2010 and was estimated to affect 70.8 million people in 20301. Osteoporotic 
fracture (OF) can occur with low trauma or other activities, such as minor falls, twisting and bending. As the most 
severe complication of OP, OF causes a long-term disability, a high mortality to afflicted individuals, and substan-
tial economic burden on health care systems2. According to a recent investigation in U.S., the annual cost of OF 
was $5.1 billion, which is much higher than the annual cost of stroke and myocardial infarction3.

BMD is the density of bone mineral in bone tissue, which is highly heritable. To date, over 200 loci associ-
ated with variations in BMD have been identified through genome-wide association studies (GWASs) and their 
meta-analyses4–9. BMD is negatively associated with the risk of OF within ethnic groups. BMD is considered to be 
a key and major risk factor of OF and is widely used to construct fracture risk assessment models5,10–12. However, 
BMD is not the only risk factor of OF, since not all people with a low BMD would develop OF during their lives, 
and about two-thirds of individuals who ever suffered a fracture were not diagnosed with osteoporosis before13.

Besides BMD, several clinical risk factors (CRFs), such as female gender, advancing age, and low body weight, 
family fracture history, smoking, and alcohol addiction are confirmed to be significantly associated with OF14,15. 
Some of the CRFs (such as ethnicity, weight, and height) are highly heritable7,8,16–19. These CRFs are also commonly 
used as prediction factors in fracture risk assessment models20,21. As a phenotype largely affected by BMD and 
CRFs, fracture susceptibility is also considered to be partially genetically determined, and several studies based on 
genome-wide association study (GWAS) showed that genetic risk factors (GRFs) can help improve the accuracy 
of fracture prediction. For example, Ho-Le et al.12 showed that genetic profiling using results derived from pop-
ulations of European descent can improve the accuracy of fracture risk assessment, especially non-hip fractures 
in Australians and Lee et al.22 showed that genetic factors identified from populations of European descent and 
East-Asian can improve prediction of nonvertebral fracture in postmenopausal women in South Korea.

Most of the risk factors and subjects used in previous studies were from people of European descent or 
European populations. However, genetic factors for BMD or bone disease vary greatly among different eth-
nicities23–26. Whether genetic factors identified from people of European descent can help improve the predic-
tion of BMD and the accuracy of fracture in Chinese populations remains uncertain. Moreover, in practice, 
only BMD-associated genetic factors were identified in most of the osteoporosis genetics studies, but whether 
BMD-associated genetic factors in people of European descent can improve the fracture prediction power of 
osteoporotic fractures in Chinese populations is not clear. The aim of this study is to investigate (1) whether 
fracture-associated genetic factors identified from people of European descent studies can improve the risk pre-
diction of OF in Chinese, (2) whether BMD-associated genetic factors identified from people of European descent 
can improve the prediction of BMD in Chinese, and (3) whether BMD-associated genetic factors identified from 
people of European descent can improve the fracture prediction power in Chinese.

Materials and Methods
Ethics Statement. This study was approved by the institutional review board of Xi’an Jiaotong University. 
This study incorporated samples from two researches6,9. All participants provided written informed consent. All 
methods in this study were carried out in accordance with relevant guidelines and regulations.

Study population. This study includes two Chinese Han ancestry samples. The inclusion and exclusion cri-
teria for these two samples were detailed in our earlier publication6,9. Briefly, the first sample consists of 700 unre-
lated individuals, of which 350 are patients with osteoporotic (low trauma) hip fractures (including 226 females 
and 124 males) and 350 are elderly controls (including 177 females and 173 males) living in the city of Xi’an and 
its neighboring areas in China. This sample, with a case-control design, was initially used in a GWAS discovery 
stage for SNPs of the potential significance of OF in Chinese Han6. Individuals with low trauma hip fractures 
were recruited from affiliated hospitals and their associated clinics of Xi’an Jiaotong University. Healthy control 
subjects were obtained using local advertisements. Controls were geographic- and age-matched to the cases6. The 
second sample was derived from the China osteoporosis study (COS) comprised of 1620 unrelated individuals, 
whose BMD were measured at lumbar spine (LS), hip and/or femoral neck (FN) by dual-energy X-ray absorpti-
ometry (DXA)9. Table 1 describes basic characteristics of the samples.

Data pre-processing. The first sample was derived from an in-house study performed by Guo et al.6. 
IMPUTE program27 was utilized to impute the genotypes of all SNPs located in the genomic regions of interest 
based on Asian HapMap data. SNPTEST27 was used to test the association between the imputed SNPs and OF. 
The second sample was derived from a GWAS discovery sample used by Zhang et al.9 and the SNPs were imputed 
by the 1000 genomes project (1KG) sequence variants (as of August 2010). Reference haplotypes representing 193 
individuals with Asian ancestry were downloaded from the MACH website28. Prior to imputation, a consistency 
test of allele frequency between GWAS and reference samples was performed with chi-squared test9. To correct 
for potential mis-strandedness, GWAS SNPs that failed a consistency test (P < 1.0 × 10−6) were transformed into 
reverse strands. SNPs that further failed consistency were removed from the GWAS sample. Each GWAS sample 
was imputed by the respective reference panel with the closest ancestry9,29.

Selection of genes and clinical risk factors. In total, all the SNPs in 17 fracture-associated genes and 
107 BMD-associated genes (including 74 LS-BMD and 82 FN-BMD associated genes) were analyzed in our 
study. These genes were derived from predominantly samples of European descent in GEFOS25 which was a 
meta-analysis of GWASs with multiple studies of populations across North America, Europe, East Asia and 
Australia for FN-BMD and LS-BMD performed by the Genetic Factors for Osteoporosis (GEFOS) Consortium. 
The 17 fracture-associated genes were directly selected from a recent meta-analysis of GWAS5. The 107 
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BMD-associated genes were obtained by two methods. Firstly, similar to the way of selecting fracture-associated 
genes, 62 genes (47 LS-BMD and 48 FN-BMD associated genes with 33 common genes) were directly selected 
from 56 BMD-associated loci identified in the meta-analysis of GWAS5. Secondly, we used gene-based analy-
sis to identify and select BMD-associated genes from the dataset of the GEFOS2 study5. Briefly, we performed 
gene-based analysis in a Knowledge-based mining system for Genome-wide Genetic studies (KGG) (http://bio-
info.hku.hk/kggweb/) to identify the BMD-associated genes harboring multiple association SNP signals, using 
the Extended Simes procedure method (GATES)30. Appendix detailed the gene-based analysis. We used the 
threshold of P-value < 2 × 10−6 31 to obtain 62 BMD-associated genes, among which 45 were associated with FN, 
40 were associated with LS, and 23 were overlapped between them. Here, 13 LS-BMD associated genes and 11 
FN-BMD associated genes were overlapped between the two methods. CRFs available and used here consisted 
of gender, age, height, and weight. Tables 1 and 2 presented the basic characteristics of CRFs of the two samples 
and the selected genes.

Statistics. We used logistic regression and multiple linear regression models to assess the contribution of 
genetic factors to prediction of fracture risk (in the first sample) and BMD (in the second sample) respectively. 
10-fold cross-validation was employed in the two samples (that is, the sample was randomly partitioned into 10 
equal size subsamples; of the 10 subsamples, a single subsample was retained as the validation data for testing the 
model, and the remaining 9 subsamples are used as training data). We obtained a genetic risk score (GRS) using 
following steps:

 (1) Each SNP was coded as the number of “risk” alleles (0, 1, 2) in the sense that the allele was associated with 
the risk increment of fracture or lower BMD.

 (2) Lasso regression was used in the training data sets to capture the significant SNPs and their coefficients. 
GRS was constructed by summing all weighted scores which were calculated by multiplying the number of 
risk alleles with regression coefficients derived in the Lasso regression.

 (3) Logistic regression or multiple linear regression was used in training sets to estimate regression 
coefficients.

 (4) Predictive analysis was done in the testing data sets.

In order to investigate whether genetic factors can help improve the prediction of fracture risk and BMD and 
whether BMD-associated genetic factors can improve fracture prediction, we constructed three models in the 
first sample (Model I-I, Model I-II, Model I-III) and in the second sample (Model II-I, Model II-II, and Model 
II-III), respectively.

In the first sample:
Model I-I: β β= + ⋅Fracture CRFs0 , which includes CRFs data only.
Model I-II: β β β= + ⋅ + ⋅Fracture CRFs GRS0 1 2 F, which includes CRFs data and GRSF data
Model I-III: β β β= + ⋅ + ⋅Fracture CRFs GRS0 1 2 B, which includes CRFs data and GRSB data of FN.

In the second sample:
Model II-I: β β= + ⋅BMD CRFs0 , which includes CRFs data only.
Model II-II: β β= + ⋅BMD GRSB0 , which includes GRSB data (LS or FN) only.
Model II-III: β β β= + ⋅ + ⋅BMD CRFs GRS0 1 2 B, which includes CRFs data and GRSB data (LS or FN).

where GRSB and GRSF are GRS for BMD and fracture, respectively.
The area under the receiver operating characteristic (ROC) curve (AUC)32 and the net reclassification improve-

ment (NRI) index were used to assess the ability of the GRS to predict fracture with logistic regression in the first 
sample. We used Mean Squared Error (MSE) to measure the testing error and performed t-test to test the difference 

Variable Subjects

In the first sample n = 700

Age 70.56 ± 7.74

Weight 59.34 ± 10.68

Height 160.70 ± 8.97

FN fracture 350 (226 F/124 M)

In the second sample n = 1620

Age 34.46 ± 13.24

Weight 60.10 ± 10.48

Height 164.26 ± 8.17

LS BMD 0.948 ± 0.127

FN BMD 0.920 ± 0.133

Table 1. Baseline characteristics of the two study samples. Notes: Values shown are means and standard 
deviation. FN fracture = Femoral neck fracture. BMD = bone mineral density. LS BMD = Lumbar spine BMD. 
FN BMD = Femoral neck BMD. Abbreviations: M: male; F: female.
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between pairwise models under multiple linear regression models for BMD in the second sample. In the first sam-
ple, we performed the reclassification analysis33. The predicted risk fracture was estimated for each individual using 
Model I-I, Model I-II and Model I-III in the reclassification analysis, and then similar to Lee et al.22, individuals 
were classified into three risk groups in terms of their estimated fracture probability (i.e., higher risk group (≥15%), 

LS-BMD associated genes FN-BMD associated genes Fracture associated genes

Gene-based method Meta-analysisa Gene-based method Meta-analysisa Meta-analysisa

GALNT3 GALNT3 ARHGAP1 ARHGAP1 C17orf53

GPATCH1 GPATCH1 C17orf53 C17orf53 C18orf19

HOXC6 HOXC6 FUBP3 FUBP3 CTNNB1

JAG1 JAG1 GALNT3 GALNT3 DCDC5

KCNMA1 KCNMA1 HOXC6 HOXC6 DKK1

LRP5 LRP5 MEPE MEPE FUBP3

MEPE MEPE RPS6KA5 RPS6KA5 LRP5

RPS6KA5 RPS6KA5 SOST SOST MBL2

SP7 SP7 TNFRSF11B TNFRSF11B MEPE

SPTBN1 SPTBN1 WLS WLS RPS6KA5

TNFRSF11B TNFRSF11B WNT16 WNT16 SLC25A13

WLS WLS ASB16 AKAP11 SOST

WNT16 WNT16 ASB16-AS1 CDKAL1 SPTBN1

AAAS AKAP11 ATXN7L3 DNM3 STARD3NL

C12orf10 CDKAL1 C7orf76 ERC1 WNT16

C7orf76 ERC1 CCDC170 FOXL1 WNT4

CCDC170 FOXL1 COLEC10 KIAA2018 ZBTB40

COLEC10 LEKR1 CSRNP3 KLHDC5

ESPL1 MAPT ESR1 NTAN1

ESR1 NTAN1 F2 PKDCC

FAM3C SOST FAM3C SP7

GNG12-AS1 TXNDC3 GNG12-AS1 XKR9

HOXC10 ARHGAP1 HDAC5 ABCF2

HOXC4 AXIN1 HOXC10 ANAPC1

HOXC5 C16orf38 HOXC5 AXIN1

HOXC9 C17orf53 HOXC9 C12orf23

HOXC-AS1 C6orf97 HOXC-AS1 C16orf38

HOXC-AS2 C7orf58 HOXC-AS2 C18orf19

HOXC-AS3 CTNNB1 HOXC-AS3 C6orf97

LOC105370177 CYLD IBSP CPN1

MGC57346 DCDC5 LOC100272217 CTNNB1

MIR1262 DHH LOC100506136 DCDC5

MIR196A2 FAM9B LOC101927839 IDUA

MIR4418 IDUA LOC102724552 JAG1

MIR615 INSIG2 LOC102724957 LRP5

MIR6870 LIN7C LOC105371789 MARK3

PFDN5 MARK3 MEF2C-AS1 MBL2

PPP6R3 MBL2 MIR1262 MEF2C

RHPN2 MPP7 MIR196A2 RSPO3

SHFM1 RSPO3 MIR615 SALL1

SLC25A13 MIR6782 SLC25A13

SMG6 SHFM1 SMG6

STARD3NL TMUB2 SOX6

SUPT3H UBTF SOX9

TNFRSF11A ZNF408 STARD3NL

WNT4 TNFRSF11A

ZBTB40 WNT4

ZBTB40

Table 2. A list of genes selected in the analysis. Notes: a Closest gene associated with trait reported in genome-
wide meta-analysis (2012). The common genes are in bold. LS-BMD = Lumbar spine bone mineral density. FN-
BMD = Femoral neck bone mineral density.
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middle risk group (10–15%), lower risk group (<10%)). We calculated the proportion of individuals who would 
be reclassified into the three risk groups using trained assessment models. If genetic factors are useful for fracture 
prediction, the probability of fracture estimated by the model with GRS (Model I-II and Model I-III) would be 
expected to increase for the fracture group, and to decrease for the non-fracture group in the model without GRS 
(Model I-I). NRI index could be used to measure the predictive improvement and is computed as:

-

-

= | − | + |
− | .

NRI Pr(up fracture) Pr(down fracture) Pr(down non fracture)
Pr(up non fracture)

where (Pr(up|fracture) − Pr(down|fracture)) represents the probability increment (gain) on the fracture group 
of two comparison models, and (Pr(down|non-fracture) - Pr(up|non-fracture)) represents the probability decre-
ment (gain) on the non-fracture group of two comparison models.

The statistical significance of NRI was estimated by a Z-test, a simple asymptotic test for the null hypothesis 
of NRI = 033. All the analyses were performed using MATLAB statistical software, and P ≤ 0.05 was considered 
statistically significant.

Results
The baseline characteristics of the two samples are shown in Table 1. All the data are presented as mean ± SD, or 
as numbers and percentages. In the first sample, there are 700 individuals whose clinical and FN-fracture data 
are available for analyses. The average age is 70.52, and there are 350 individuals with fracture in femoral neck. In 
the second sample, there are 1620 individuals whose clinical and LS-BMD and FN-BMD data are available. The 
average age is 34.46. The average LS-BMD and FN-BMD are 0.948 g/cm2 and 0.920 g/cm2, respectively.

Table 2 listed all the genes in the analysis. 62 BMD-associated genes (40 associated with LS- BMD, 45 asso-
ciated with FN- BMD, and 23 overlapped between them) were selected by using the gene-based analysis30. The 
other 62 BMD-associated genes (47 associated with LS-BMD, 48 associated with FN- BMD, and 33 overlapped 
between them) were directly selected from meta-analysis of GWAS5. There are 17 common genes in the two 
methods, including 13 common LS- BMD associated genes and 11 common FN-BMD associated genes. Other 
genes from samples of European descent in GEFOS25 are not associated with the trait in gene-based method. 
At last, a total of 107 genes (including 74 LS-BMD associated genes and 82 FN-BMD associated genes) were 
selected for our analysis. Among the 17 fracture-associated genes, SPTBN1 is associated with LS-BMD, FUBP3 
and C18orf19 are associated with FN-BMD, and other genes are associated with both LS-BMD and FN-BMD5.

Table 3 showed the AUCs of the models for FN-fracture in the first sample. The AUC value of the model with 
CRF (Model I-I) is 0.653. When the GRS of fracture was added to the model with CRF (Model I-II), the AUC 
value decreases to 0.587. The AUC value of the model with CRF and GRS of FN-BMD (Model I-III) is 0.588, 
which is 0.065 smaller than that of the model with CRF only and similar to that of the model with CRF and GRSF. 
We also presented the odds ratio and 95% confidence interval for each CRF and GRS (Table 4). It can be seen that 
adding genetic factors of fracture or genetic factors of BMD did not approve the prediction of fracture risk. The 
relative importance analysis suggested 62.3% and 61.8% of the explained variance in Model I-II and Model I-III, 
respectively, were slightly lower than 65.5% in Model I-I. Genetic risk factor of fracture or BMD accounted for 
only 1.4% and 1.3% of the observed variance in fracture risk, respectively. These data showed that GRF was not a 
good predictive factor and declined the model predictive performance; GRFs of fracture could not help improve 
the ability of FN-fracture prediction, meanwhile BMD-associated genetic factors could not improve the fracture 
prediction power either in our Chinese sample.

Model AUC Improvement over Model I-I

I-I. Clinical risk factors (CRFs) 0.653 ref

I-II. CRFs + GRSF 0.587 −0.066

I-III. CRFs + GRSB 0.588 −0.065

Table 3. AUC of the Models. Note: AUC = area under the receiver operating characteristic curve; 
CRF = clinical risk factor; GRS = genetic risk score; FN-BMD = bone mineral density in femoral neck; 
GRSF = Genetic risk score of fracture; GRSB = Genetic risk score of FN-BMD.

Model I-I CRFs Model I-II CRFs + GRSF Model I-III CRFs + GRSB

Gender 1.808(1.377–2.343) 1.738(1.339–2.240) 1.740(1.340–2.239)

Age 1.036(1.021–1.051) 1.032(1.018–1.046) 1.030(1.017–1.04)

Height 1.017(1.004–1.031) 1.015(1.002–1.028) 1.013(1.001–1.026)

Weight 0.990(0.978–1.003) 0.990(0.979–1.001) 0.992(0.980–1.004)

GRS 1.014(0.998–1.029) 1.013(0.991–1.036)

Relative 
importance (%) 65.5 62.3 61.8

Table 4. The odds ratio and 95% confidence interval for each CRF and GRS. Note: Bold values indicate 
p < 0.05.
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Table 5 showed the results of the reclassification analysis which compares the predictability of model I-II 
(GRSF + model I-I) with that of model I-I (using CRF only). It could be seen that, compared to model I-I, the 
addition of GRS of fracture (Model I-II) reclassified none into the higher risk group and reclassified 4 of the 
350 individuals with FN-fracture (1.14%) into the lower risk group, a gain of 1.14% (0% minus 1.14%). Model 
I-II reclassified 7 of the 350 individuals with no FN-fracture (2.00%) into the lower risk group and 1 with no 
FN-fracture (0.30%) into the higher risk group, a gain of 1.70% (2.00% minus 0.30%). In total, there is a net gain 
of 0.56% with model I-II compared with model I-I, but it is not statistically significant (P = 0.57).

Table 6 showed the results of the reclassification analysis which compares the predictability of model I-III 
(GRSB + model I-I) with that of model I-I. While compared to model I-I, model I-III reclassified 4 of the 350 indi-
viduals with FN-fracture (1.14%) into the higher risk group and reclassified 4 of the 350 individuals (1.14%) into 
the lower risk group, which means no gain (1.14% minus 1.14%). For the non- fracture group, Model I-III reclas-
sified 5 of the 350 individuals with no FN-fracture (1.43%) into the lower risk group and 1 with no FN-fracture 
(0.30%) into the higher risk group, a gain of 1.13% (1.43% minus 0.30%). Thus, there is a net gain of 1.13% with 
model I-III compared with model I-I, but similar to model I-II, it was not statistically significant either (P = 0.29).

We performed t-tests for MSE of the testing error (here, the MSE for the testing error is the MSE between 
the observed and predicted values) between pairwise models under the multiple linear regression models in the 
second sample. MSE in Model II-I is significantly lower than that in Model II-II (P < 0.0001 for LS-BMD and 
FN-BMD), while MSE in Model II-II is significantly greater than that in Model II-III (P = 0.002 for LS-BMD 
and P = 0.003 for FN-BMD). There is no significant difference between Model II-I and Model II-III (P = 0.15 for 
LS-BMD and P = 0.10 for FN-BMD). These results indicated that adding genetic risk factors into the model with 
CRF could not help improve the ability of BMD prediction in this population of Chinese Han ancestry.

Risk group in 
model I-I

Risk group in model I-II

Total
Up (model I-II 
>model I-I)

Down (model 
I-II <model I-I)

Reclassified 
(%)

Net Reclassification 
improvement (%)<10% 10–15% ≥15%

Subjects with FN 
fracture 0 (0.00%) 4 (1.14%) −1.14 0.56 (P = 0.57)

<10% 88 0 0 88

10–15% 0 110 0 110

≥15% 0 4 148 152

Total 88 114 148 350

Subjects without 
FN fracture 1 (0.30%) 7(2.00%) 1.70

<10% 76 0 0 76

10–15% 0 102 1 103

≥15% 1 6 164 171

Total 77 108 165 350

Table 5. Reclassification analysis to determine the effectiveness of adding the genetic risk score of fracture 
to the model with clinical risk factors. Note: Model I-I includes only clinical risk factors. Model I-II includes 
clinical risk factors and genetic risk score of fracture. The numbers in parentheses indicate the percentage of 
reclassification.

Risk group in 
model I-I

Risk group in model I-III Up (model I-III 
>model I-I)

Down (model 
I-III <model I-I)

Reclassified 
(%)

Net Reclassification 
improvement (%)<10% 10%–15% ≥15% Total

Subjects with FN 
fracture 4 (1.14%) 4 (1.14%) 0.00 1.13 (P = 0.29)

<10% 87 1 0 88

10%–15% 0 107 3 110

≥15% 0 4 148 152

Total 87 112 151 350

Subjects without FN 
fracture 1 (0.30%) 5 (1.43%) 1.13

<10% 75 1 0 76

10%–15% 0 103 0 103

≥15% 0 5 166 171

Total 75 109 166 350

Table 6. Reclassification analysis to determine the effectiveness of adding the genetic risk score of FN-BMD 
to the model with clinical risk factors. Note: Model I-I includes only clinical risk factors. Model I-III includes 
clinical risk factors and genetic risk score of femoral neck BMD. The numbers in parentheses indicate the 
percentage of reclassification.
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Discussion and Conclusion
BMD, as the strongest predictor of fracture risk, has high genetic determinations. To date, over 200 loci associ-
ated with the variations in BMD have been identified through GWAS and meta-analyses2,5–9. However, most of 
these factors were from European descent populations and studies. Our study is to investigate whether genetic 
factors identified predominantly from people of European descent can help improve the prediction of BMD and 
the prediction accuracy of osteoporotic fracture in Chinese. Here, we conducted assessments for FN-fracture 
prediction in a Chinese Han ancestry population using CRFs, GRFs associated with fracture and/or BMD from 
European descent studies. We found that genetic factors from people of European descent could not contrib-
ute to FN-fracture prediction and BMD prediction in our Chinese sample. Comparing with GRFs of fracture, 
BMD-associated genetic factors could not help improve the accuracy of the fracture prediction either. We further 
analyzed assessment models for BMD prediction using BMD-associated GRFs in another Chinese Han ancestry 
population, but there is still no significant difference between the model with CRFs only and the model using 
CRFs and BMD-associated GRFs. These results suggested that BMD-associated genetic factors from European 
descent studies may not help improve BMD prediction for Chinese.

As we introduced before, there were limited studies12,22,23 supported that fracture-associated GRFs play an 
important role in fracture predicting. For instance, the genetic factors identified from populations of European 
descent and East-Asian can improve prediction of nonvertebral fracture in postmenopausal women in South 
Korea22 and the genetic profiling using results derived from populations of European descent can improve the 
accuracy of non-hip fractures assessment in Australian12. Ho-Le et al.12 showed that a significant association 
between GRS and fracture was observed for the vertebral and wrist fractures, but not for hip fracture. With 
GRS, the correct reclassification of fracture versus nonfracture ranged from 12% for hip fracture to 23% for 
wrist fracture. Although our study here showed that fracture-associated GRFs identified from largely European 
descent studies could not increase the predictive accuracy of FN-fracture, it is difficult to compare our finding 
with other studies because of several reasons. First, and perhaps foremost, BMD-associated or fracture-associated 
genes used in our analysis for Chinese population were not originally derived from Chinese populations, but 
initially identified largely among European descent populations. The diversity between populations of different 
ancestries might carry different effects of genetic profiles. For example, a recent study showed that there are 
differences in the underlying linkage disequilibrium (LD) structure and in the frequency of sequence variants 
between European and Asian populations23. The genetic diversity in different populations might influence the 
results of association studies24 and thus might further influence the results of fracture prediction. Genes or SNPs 
selected to construct GRS in our analysis are also different from those in other studies. For example, 62 SNPs in 
29 genes from previous GWAS7 were adopted for fracture prediction in Dubbo in Ho-Le et al.12, and in Lee et al.22, 
39 SNPs in 30 genes were selected for fracture prediction in postmenopausal women in Koreans. In our analysis, 
17 genes associated with fracture were directly selected from a recent meta-analysis of genome wide association 
study5 and 107 genes (including 74 LS- BMD associated genes and 82 FN-BMD associated genes) were selected 
using the same methods as that of fracture-associated genes and the gene-based analysis. There are only eight 
common genes (AKAP11, ESR1, F2, RPS6KA5, SP7, SPTBN1, ZBTB40, and WNT4) between Ho-Le’s study12 and 
our study, and there are only 17 common genes (CTNNB1, MEF2C, MEPE, SOST, SOX6, TNFRSF11B, ZBTB40, 
JAG1, LRP5, MARK3, SPTBN1, TNFRSF11A, ARHGAP1, C6orf97, DCDC5, ESR1, SP7) between Lee’s study22 
and our study. Second, most of the previous studies directly selected the associated SNPs for prediction, while 
our study used the LASSO algorithm to select all the SNPs in the associated genes in the training model and then 
performed testing the prediction model. In fact, we found that directly using the associated SNPs for prediction 
achieved lower accuracy than that using the LASSO algorithm (data not shown). The reason is that we do not 
know which SNPs are actually associated with the BMD value and fracture in our Chinese samples. The LASSO 
algorithm can automatically capture the significant SNPs in our selected genes and thus can improve the accuracy 
of the prediction. Third, the fracture-associated genes were initially identified to be associated with fracture at 
any body site5, but in this study, the fracture prediction power we analyzed is for a homogeneous fracture type 
at skeletal site femoral neck only. Fourth, recent studies have shown that the utility of models for risk prediction 
depends on the sample size in training data sets34. The sample size in our study is round 1,000, which might to 
some extent limit the capability of the assessment models. Actually, all the subjects in our study were drawn from 
a homogenous population with the homogeneous phenotype of hip fractures. However, it took us several years to 
recruit such a sample because of high mortality rates after the hip fractures. We are now keeping the recruitment 
of hip OF subjects. OF Research with a larger sample awaits to be done in the future.

Because BMD is the strongest predictor for fracture risk, a natural idea could be that variants associated with 
BMD should contribute to fracture prediction. Indeed, in the Dubbo Osteoporosis Epidemiology Study, Ho-Le et 
al.12 provided evidence that BMD-associated genetic variants could improve the accuracy of fracture prediction, 
comparing with that using clinical risk factors alone. However, our study in the first sample of Chinese Han ances-
try does not support this hypothesis. We found out that BMD-associated genetic factors do not contribute more 
to fracture prediction than clinical risk factors alone. Our analyses in the second sample of Chinese Han ancestry 
might partially explain these results. There is no significant difference between the prediction performance of the 
model using CRFs only and that of the model using CRF and GRFs of LS-BMD or FN-BMD, which indicates that 
genetic factors associated with BMD from people of European descent may not contribute to BMD prediction in 
our Chinese sample, and thus do not contribute more to fracture prediction with clinical risk factors in subjects 
from our Chinese sample. It should be noted that the second population here had an average age of 34. Although 
the BMD-associated genes were derived from populations with all ages5, our study was set up reasonably because 
populations where BMD-associated genes came from included the young. We also noted that the CRFs used in 
other studies for fracture prediction included BMD, fracture history, falls history etc.12–14. Although the CRFs in 
our study are just basic anthropomorphic variables, it did not affect our analysis because our aim was to assess 
whether genetic factors can help improve the prediction of BMD and the prediction accuracy of fracture. With 
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additional useful CRFs included, the relatively performance of models with both CRFs and GRFs may be further 
decreased relative to that of using CRFs alone.

Indeed in the general studies of how to improve risk prediction, many efforts have repeatedly shown only 
moderate success in improving predictive accuracy by adding genetic information35–38. Several studies in assess-
ing the incremental value of a limited number of SNPs compared to traditional risk factors showed that AUC has 
just achieved very small or minimum improvements39–42. For example, in the study of prediction of coronary 
heart disease (CHD), de Vries et al.43 found that the AUC improved from 0.716 to 0.718 and 0.719 using 49 SNPs 
significant at p < 5 × 10−8 and 152 SNPs significant at approximately p < 10−3, respectively. The AUC even was 
observed some decrease in the study of Morris et al.36 (as also seen in our study here). The reason of achieving 
small improvement or decrease of predictive ability, as Dudbridge et al.35 point out, is that nonpolygenic risk 
factors are themselves heritable, and may therefore mediate some or all of the genetic risk and/or in addition as 
we postulate, is that heterogeneity in the study populations and/or minuscule effects of the GWAS findings may 
further decreased the prediction power.

In conclusion, this study unfortunately does not support that fracture-associated genetic variants from people 
of European descent could help improve the FN-fracture prediction accuracy of clinical risk factors. Meanwhile 
BMD-associated genetic variants from people of European descent could not help improve the prediction power 
of FN-fracture and BMD in the two Chinese populations. More work in Chinese populations awaits to be done 
for uncovering genetic risk factors that are useful for disease prediction in Chinese. For example, large GWASs 
should be designed to discover genetic risk variants associated with BMD and fracture in Chinese, and more 
factors such as the family history of fracture and high-sensitivity C-reactive protein44,45 may be considered in the 
further study of fracture prediction.

Data Availability
The datasets analysed during the current study are available from the corresponding author on reasonable re-
quest.
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