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CtAB surfactant Assisted and 
High pH Nano-Formulations of 
Cuo Nanoparticles pose Greater 
Cytotoxic and Genotoxic Effects
Zorawar singh1 & Iqbal singh2

toxicity of synthesized nanoparticles is the area of concern to all the researchers due to their possible 
health implications. Here we synthesized copper oxide nanoparticles (Cuo Nps) without surfactant at 
pH value of 2, 7, 10 and with cetyletrimethylammoniumbromide (CTAB) surfactant at pH 7. Synthesized 
nanoparticles were characterized for various structural parameters including crystallite size, lattice 
parameters, strain, phase analysis using X-ray diffraction analysis, and morphological aspects have 
been analyzed using FeseM and HRteM imaging. All the four nano-formulations were analyzed for 
their toxic potential using Allium cepa L. at three different concentrations (0.1, 0.01 and 0.001 g/100 ml). 
Cytological and genetic parameters including mitotic index, mitotic inhibition, aberrant cells, 
binucleated cells, micronucleated cells, chromosomal bridges, fragmentation, stickiness, laggards, 
vagrants, c-mitosis and disturbed spindle were analyzed. Our results revealed a dose dependent 
increase in cytotoxic parameters including decreased total dividing cells, mitotic index, and increased 
mitotic inhibition. Genotoxic parameters also increased at higher treatment concentrations including 
chromosomal aberrations and percent aberrant cells. the pH value at the time of particle synthesis 
has significant influence on the crystallite size and agglomeration as assessed by XRD, FESEM and 
HRTEM analysis. The NPs synthesized at pH 2 and 10 were found to be of smaller size and posed more 
toxic effects as compared to particles synthesized at neutral pH. On the other hand, CTAB assisted CuO 
NPs synthesized at pH 7 revealed even smaller crystallite sizes and thus boost the toxicity in all the 
parameters as compared to Nps synthesized without CtAB. the present study suggested an increase 
in toxic parameters of synthesized Cuo Nps with respect to crystallite size which is pH dependent. 
Addition of CTAB at pH 7 decreased the crystallite as well as particle size and enhanced the toxic 
potential. Further studies are recommended to analyze the effect of surfactant addition in toxicological 
studies on Cuo Nps.

Researchers have shown keen interest in exploring nanomaterials due to their extraordinary physical and chem-
ical properties, large surface to volume ratio and catalytic activities1,2. Nano-crystalline metal oxide materials in 
different forms have been utilized in various industrial and household applications. Copper oxide (CuO) is an 
important oxide in the family of copper compounds equipped with potential physical properties which rendered 
them high applicability such as in high temperature superconductors, photovoltaic devices, electrode materials in 
batteries and as an effective gas sensing coating2,3. It is a semiconducting material with p-type conductivity having 
monoclinic lattice, and has been efficiently used in various applications4–9. As a catalyst, nano-crystalline CuO 
is highly efficient in carbon monoxide oxidation10. The suspension form of CuO is used in industrial machines 
as a heat transfer fluid11. Being cheaper than silver oxide material, it is used to obtain polymer composites with 
excellent chemical and physical properties. It also has the ability to minimize friction and is effectively used in 
lubricants, polymers/plastics, and metallic coatings12. Moreover, due to high surface to volume ratio, CuO NPs 
find application as antimicrobial agent13,14.
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Copper is one of indispensable elements for maintaining homeostasis in various types of organisms15 and 
in its ionic form, it may lead to a toxic situation once they exceed the physiological tolerance range in vivo16,17. 
Number of investigations were performed to explore the environmental issue of copper compounds in water 
reservoirs. Thus the studies related to assessment of toxicity of CuO NPs is of keen interest among researchers 
to explore their health effects, genotoxicity and carcinogenic effects18–28. As CuO NPs can enter via respiratory 
or gastrointestinal pathways, they are known to cause acute inflammations, oxidative stress, DNA damage and 
cytotoxicity. Histopathological assessment of CuO particles in nano-domain has shown to result in DNA damage 
and cytotoxicity29. Oxidation-sensitive fluorescent probe was used to measure oxidative lesions by monitoring 
intracellular production of reactive oxygen species (ROS). Previous studies have proved that toxic effects of CuO 
NPs may involve oxidative stress as a major role player30. Cells exposed to CuO NPs were reported to supress the 
catalase and glutathione reductase activity in comparison to cells cultured in normal medium. The upsurge of 
the ratio of oxidation to total glutathione revealed that CuO NPs not only generated ROS but they also blocked 
cellular antioxidant defences31.

Several higher plants and bio-assays with their roots have provided an economical, simpler and sensitive 
method for the determination of the hazardous effects of various environmental pollutants. Plants have been used 
for the evaluation of environmental pollutants as they are direct recipients of agrotoxics. Tradescantia paludosa, 
Vicia faba and Allium cepa are generally chosen as test materials for environmental mutagenesis analysis as they 
have large monocentric chromosomes in reduced numbers. Allium cepa has been used in number of studies 
with an aim to find cytotoxicity and genotoxicity as it a cheap source and is available throughout the year. Allium 
cepa root test has been employed for finding genotoxic effects of different compounds like mitotic activity and 
chromosomal aberrations32,33. Genotoxicity of Thermopsis turcica on Allium cepa L. roots was tested by random 
amplified polymorphic DNA and alkaline comet assays34. Similarly, Allium cepa has been used in many other 
studies involving genotoxic evaluation of different metal compounds including copper35–37. Here in this paper, 
Allium cepa L. has been used to investigate the effect of pH of precursor solution and CTAB coating on toxicolog-
ical aspects of synthesized CuO NPs.

Materials and Methods
preparation of nano-crystalline Cuo Nps. Nano-crystalline CuO NPs in the form of powder has been 
synthesized using hydrated cupric nitrate (Cu (NO3)2.3H2O) and monohydrate citric acid (C6H8O7.H2O) as pre-
cursors. A 100 mL precursor solution in doubly distilled water was prepared with copper nitrate to citric acid 
(CN:CA) ratio of 1:1. The acidity (pH) of the solution was monitored using Naina make microprocessor-based pH 
meter. The pH of the precursor solution was attained to value of 2, 7 and 10 by adding dropwise 25% liquid ammo-
nia solution. In an another set of experiment, cetyletrimethylammoniumbromide (CTAB) was selected as cati-
onic surfactant and 10 mL of 0.5 M surfactant solution was mixed in 100 mL precursor solution at pH value of 7.  
The precursor solution in different sets of experiment was thermally dehydrated in a hot air oven maintained at 
temperature of 80 ± 5 °C. The viscous fluid was heated to higher temperature using hot plate and gel underwent 
auto catalytic combustion. The reaction ended with foamy, blackish decomposed residue. The residue was further 
calcined at temperature of 400 °C in muffle furnace of Macro Scientific make for 4 hours in order to get rid of 
leftover organic matter. The heating rate was kept at 5 °C/min and the detailed mechanism has been reported ear-
lier38. The calcination temperature was selected on the basis of the thermal analysis for the similar type of samples 
reported earlier4,38,39. The calcined CuO powder samples were designated as C1, C2, C3, and C4 corresponding 
to sample without CTAB at pH value 2, 7 and 10 and with CTAB at pH7 respectively, of the precursor solution.

X-Ray diffraction analysis. The various calcined powder samples were tested for pure CuO phase identi-
fication using X’Pert Panlytical X-ray diffractometer with Cu Kα radiation having wavelength of 1.5405 Å, and 
other operating conditions were 30 mA, 40 kV. The samples were scanned in an angle of 2θ ranging from 30–80°.

Field emission seM and High Resolution teM analysis. The various CuO samples were scanned for 
surface topography using FESEM and HRTEM techniques. The scanning electron micrographs were taken using 
JEOL JSM-6700F with a beam voltage of 30 KV whereas TEM images were taken using transmission electron 
microscope system (HRTEM, model FEI Technai 30) operated at 300 kV. For HRTEM images, CuO NPs were 
ultrasonically dispersed in deionized water and dispersion dropped out onto the copper grid which was air dried 
and scanned in TEM chamber.

treatment sample preparation. Three concentration groups per calcined CuO powder samples, C1, C2, 
C3 and C4 were made and named as per the Table 1.

Allium cepa root test. Test Material. Onion bulbs (Allium cepa L.) of average size (15–20 mm diameter) 
were procured from the local market. The onion bulbs were sun-dried for 5 weeks. The roots of dried bulbs were 
shaved off from the base with a sharp blade. This exposed the fresh meristematic tissues and the bulbs were kept 
in distilled water to shield the primordials from drying up.

Treatment of test material. After removing excess water with a blotting paper, the bases of the onion bulbs were 
dipped in solutions of all the CuO-NP test solutions as described in Table 1. A series of seven onion bulbs were 
used for each sample concentration and control (tap water). The experiment was run for 14 days in dark. After the 
exposure time is over, out of the seven exposed onion bulbs, best five onions in terms of root length development 
were chosen for analysis. Rest of the two were not considered in the experiment.

Root length measurement. After the exposure period, five selected onion bulbs were taken for the root length 
measurement. The root length (cm) of all onion bulbs was measured on 3rd, 7th and 14th day using a calibrated 
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ruler. After taking the root lengths, the mean was calculated for each concentration treatment. The mean root 
length of the control samples was also calculated.

Cytological analysis. For the analysis of chromosomal aberrations, the tips of the emerged roots from the onion 
bulbs exposed to different sample concentrations were cut and fixed in ethanol:glacial acetic acid (3:1, v/v). This 
procedure was done for all the five selected onion bulbs in each category of treated and control samples after 3rd, 
7th and 14th day. After fixation, the root tips were hydrolyzed in 1 N HCl at 60 °C for five minutes and were washed 
with double distilled water. Root tips were squashed on a microscopic slide and stained with acetocarmine for 
10–15 minutes. The stained slides were covered with cover slips and were sealed to prevent moisture loss. Slides 
were analyzed at 1000X magnification on a trinocular microscope (Olympus, CX21) fitted with a digital camera 
(Olympus, E520). The slides in duplicate for all the five chosen samples in each category were scored for 200 cells/
slide to calculate the mitotic index (2000 cells per sample concentration and control).

Mitotic Index: Mitotic Index (MI) was calculated on the basis of total number of dividing cells (DC) at a given 
sample concentration and total number of cells analyzed (TCA) as

= ×MI DC
TCA

100 (1)

Mitotic inhibition: Mitotic inhibition (Minh) was calculated on the basis of number of non-dividing cells in 
exposed (NDC) and control groups (NDCC); and dividing cells in the control group (DCC) as

=
−

×Minh NDC NDCc
DCc

100 (2)

Percentage of aberrant cells: Percentage of aberrant cells (AC) was calculated on the basis of number of total 
aberrations (TA) per total dividing cells (DC) analyzed at each sample concentration.

= ×AC TA
DC

100 (3)

statistical analysis. The difference between various cytological parameters for control and exposed groups 
was analysed using Mann–Whitney U-test. Mean and standard error values were found using descriptive analysis 
and p < 0.05 was considered as the significant level of the statistical analysis. The data was statistically analysed 
using the Minitab software version 16.1.0 (Minitab Inc.) for windows.

Results and Discussion
X-ray diffraction analysis. Figure 1 shows the XRD diffractograms of calcined CuO NPs and it reveals 
polycrystalline nature of the C1-C4 samples. The observed peak positions are found to be in agreement with 
reported data in ICDD (International Center for Diffraction Data) card 41–254 and are indexed for monoclinic 
CuO lattice. Figure 1 shows two prominent peaks corresponding to reflection from (002) and (111) atomic planes 
of CuO phase. It reveals the stable, probable directions for grain growth and are designated as minimum energy 
growth phases of CuO crystal. The diffractograms of various samples also show the existence of other low inten-
sity reflections corresponding to (110), (−220), (020), (202), (−113), (−311), (310), (220), (311) and (004) atomic 
planes of monoclinic CuO lattice. In all the test samples, no peak corresponding to other phases of Cu or Cu2O 
appeared in the XRD analysis.

The crystallite size (D) in various samples of CuO was evaluated by applying Scherrer’s formula39 to diffraction 
data as follows,

Sr. No. CuO powder sample
Concentration
(g/100 ml)

Sample 
annotation

1. CuO pH2 (C1)

0.001 C1V1

0.01 C1V2

0.1 C1V3

2. CuO pH7 (C2)

0.001 C2V1

0.01 C2V2

0.1 C2V3

3. CuO pH10 (C3)

0.001 C3V1

0.01 C3V2

0.1 C3V3

4. CuO CTAB pH7 (C4)

0.001 C4V1

0.01 C4V2

0.1 C4V3

Table 1. Formulation of different treatment concentrations of CuO nanoparticles solutions.
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λ
β θ

=
.D
cos

0 9
(4)

where β is the full width at half maximum (FWHM), λ = 1.5405 Å is the wavelength of Cu Kα radiations, and θ 
is the Bragg’s angle. The crystallite size was calculated using diffraction data of most prominent (002) peak and 
values obtained were recorded in Table 2. The results show that the crystallite size was found to be minimum 
(27.73 nm) in case of C3 sample (pH 10 precursor solution), followed by C1 (29.36 nm) and C2 (63.40 nm) sam-
ples. Moreover, the addition of CTAB reduced the crystallite size of CuO NPs (C4) to 18.12 nm and was found to 
be smallest among the four samples.

The various lattice parameter (a, b, c, β) and the unit cell volume (V) of CuO lattice in all samples have been 
calculated using following relations

β
β β

=





+ + −



d sin

h
a

k sin
b

l
c

hl
ac

1 1 2 cos
(5)2 2

2

2

2 2

2

2

2

β=V abc sin (6)

where d corresponds to spacing between adjacent planes, h, k, l are Miller indices of the respective crystal plane. 
The values obtained for various cell parameters are tabulated in Table 2. The values are found to be in match with 
results reported in ICDD card. The variation of cell parameter values from respective standard ones reveals the 
existence of strain as well as imperfections in the lattice structure. The C1 and C2 samples shows tensile strain in 
crystal structure while the samples C3 and C4 possess compressive type strain. The variation of unit cell volume 
with pH also indicated various types of strain in the crystal structure40.

Morphological characterization of samples. SEM images of various samples recorded at magnifica-
tions ranging from 500X to 12000X are shown in Fig. 2. The variation of porosity in agglomerates of particles 
was influenced by changing the reaction conditions in terms of pH and addition of surfactant. The pH variation 
affects the reaction rate as well as the liberation of gaseous byproducts in the auto combustion of viscous liquid. 
The particles in samples C1-C4 appeared to be bound together into agglomerates of various sizes which strongly 

Figure 1. XRD spectrum of CuO samples synthesized at pH2: C1, pH7: C2, pH10: C3 and pH7 with CTAB: C4.

Property C1 (pH2) C2 (pH7) C3 (pH10) C4 (0.5 M CTAB)

a (Å) 4.691 (0.0025) 4.682 (0.0006) 4.673 (0.0012) 4.698 (0.0030)

b (Å) 3.428 (0.0008) 3.424 (0.0020) 3.423 (0.0023) 3.425 (0.0007)

c (Å) 5.112 (0.0046) 5.114 (0.0042) 5.109 (0.0052) 5.116 (0.0024)

β (Degree) 99.251 (0.0001) 99.111 (0.0015) 99.098 (0.0016) 99.278 (0.0026)

V cell volume (Å3) 81.148 (0.0869) 80.949 (0.0822) 80.693 (0.1005) 81.242 (0.0038)

strain (ε) (tensile) 0.0018 (tensile) 0.0010 (tensile) −0.0117 (compressive) −0.006 (compressive)

D crystallite size (nm) XRD (Scherrer’s formula) 29.36 63.40 27.73 18.12

Crystallite size (nm) TEM 30 50 25 7

Table 2. pH value of precursor solution, values of the lattice parameters, strain and crystallite size calculated 
from X-ray diffraction plot, crystallite size from TEM measurement for the C1, C2, C3, and C4 samples.
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depend on the rate of combustion reaction. The disintegration of agglomerates as revealed by SEM images with 
rise in pH of precursor solution is attributed to the increase in gaseous byproducts40. The combustion process 
depends upon the reaction conditions and the rate of various intermediate steps (pre‒hydrolysis, hydrolysis and 
poly-condensation). It has been noticed that variation in pH affects the rate of reaction as well as ionisation of 
citric acid40. In low pH conditions, ionisation of citric acid (CA) is weak as described follows

Figure 2. FESEM images of synthesized CuO nanoparticle samples at different magnifications. C1: CuO NPs 
synthesized at pH2 of precursor solution; C2: CuO NPs synthesized at pH7 of precursor solution; C3: CuO NPs 
synthesized at pH10 of precursor solution, and C4: CuO NPs synthesized at pH7 of precursor solution with 
CTAB addition.
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= + ↔ <− +H CA H CA H pH 3 (7)3 2

The incomplete ionization of CA results in the formation of weak copper-citrate complex. Further increase in 
pH value to about 7 increases the ionisation of citric acid as given by following equation

= + ↔ < <− − +H CA HCA 2H 3 pH 7 (8)2
2

In case, the pH value is further increased beyond 7, citric acid ionizes completely and results in the formation 
of strong copper-citrate complex

= + ↔ >− − +HCA CA 3H pH 7 (9)2 3

Thus alkaline medium promotes the formation of homogenized viscous gel. In low pH conditions, the rates 
of hydrolysis and poly-condensation reactions are retarded due to the formation of hydronium ions (H3O+) 
whereas the respective rates are accelerated in precursor solution having high pH value. The burning of branched 
copper-oxygen polymeric network in high pH conditions results in the formation of porous CuO powder as a 
solid product. The differential thermal analysis being conducted for CuO samples were reported earlier40 which 
revealed that addition of ammonia not only controls pH but also forms NH4NO3, which breaks into NOx and O2 
molecules in the gaseous by-products during combustion process.

The addition of CTAB surfactant in reaction mixture further helps to increase porosity in the product as 
observed in Fig. 2(C4). CTAB consists of long chain of carbon atoms that acts as an additional fuel besides citric 
acid and its addition retards the reaction4,38–40. Increasing the fuel content would further results in more gas liber-
ation which helps to disintegrate the agglomerates into nanoparticles. On the other hand, the increased exother-
micity40 raises the internal reaction temperature that further calcined the formed particles. The particles grow as 
the reaction propagates even during the post-thermal treatment applied to remove the organics. The long chain of 
carbon atoms in surfactant acts as space filling secondary material that leaves gap in the calcination process and 
maintains porosity in residual product as observed in SEM images of sample C4.

HRTEM images of various samples are also embedded in Fig. 3. These images also show the agglomerated 
CuO NPs. The bigger aggregates, consisting of primary particles were observed in the samples C2. The sample 
formed with pH 10 (Fig. 3C3) of the precursor solution exhibited a sharp particle distribution and low agglom-
eration. The C1-C3 samples show comparatively dense agglomerated structure composed of non-uniform spher-
ically shaped particles whereas C4 sample shows improvement in porosity with the CTAB addition as shown in 
the Fig. 3(C4). CuO NPs synthesized with the addition of CTAB surfactant appeared as almost spherical in shape. 
TEM analysis of the samples shows broad particle size distribution in C1-C3 samples whereas in C4 sample, 
crystallite size is reduced as well the particle size distribution is confined in the range of 5–10 nm. The uniformity 
in the size of CTAB assisted CuO NPs may be assigned to the formation of spherical micelles in copper-citrate 
complex. The formation of micelles inhibits the crystallite growth as well as controls agglomeration4,40. The prom-
inent role played by porosity in improving the adsorption of ammonia gas on the CuO NPs has been already 
discussed4,40. The higher ammonia gas adsorption rate constant indicating the fastest reaction has been noticed 
in C1 and C3 samples as compared to C2.

The size and stability of CuO NPs can also be investigated by performing Dynamic light scattering experiment 
to obtain hydrodynamic size (diameter) and zeta potential41,42. The hydrodynamic size describing behaviour of 
the particle in a fluid will be different from the particle size as measured by HRTEM if the particles are coated 
with protective surfactant/stabilizing agent in post synthesis treatment. In such cases the observed size includes 
the centre core and the protective layer of surfactant. The techniques like electron microscopy or SAXS separate 
out the core from protective layer and provides more accurate resultant particle size. In our case, the protective 
coating of CTAB surfactant controlling particle size and agglomeration in the copper-citrate complex burnt in 
the auto combustion reaction and any leftover surfactant traces are further eliminated in the calcination process. 
Thus, average size of CuO NPs as revealed by HRTEM images is approximately the exact size.

Root length measurements. Mean root lengths were recorded for all the four treatment samples in 
each concentration group of 0.1, 0.01 and 0.001 g/100 ml of the synthesized CuO nanoparticles (Figs 4 and 5). 
Figure 4 reveals that at lowest concentration 0.001 g/ml, maximum mean root length at 14th day of exposure 
was found in the treatment group C2 (2.8 ± 0.03 cm) followed by C1 (2.16 ± 0.09 cm), C3 (1.66 ± 0.05 cm) and 
C4 (0.54 ± 0.02 cm) as compared to control group (3.78 ± 0.06 cm; p < 0.05). Similar trend was seen at highest 
concentration viz. C2: 1.8 ± 0.08 cm, followed by C1: 1.14 ± 0.06 cm, C3: 0.9 ± 0.05 cm and C4: 0.32 ± 0.02 cm 
(C2,C1,C3: p < 0.05; C4: p < 0.01). Figure 5 shows the relative root lengths at 3rd, 7th and 14th exposure day and 
reveals the increasing trend among all concentration groups in all the four types of samples with respect to expo-
sure period. Though the mean root length in CuO synthesized using CTAB group (C4) was found to be increasing 
with exposure period but its rate of growth is found to be lowest among all the groups. The decrease in growth rate 
in C4 sample might be due to its comparatively smaller size and uniformly distributed crystallite size. Thus, our 
results suggest a decreased root length with the exposure to CuO NPs at various concentrations. On the same line, 
Shaymurat et al.43 reported a concentration-dependent inhibition of root length by ZnO NPs. Treatment with 
50 mg/L ZnO NPs for 24 h blocked the root growth of garlic completely. Similarly, Manesh et al.44 reported that 
germination index and root length were affected by TiO2 nanoparticle (n-TiO2) exposure. A significant reduction 
in root elongation and germination percentage was observed in seeds with co-exposure to n-TiO2 and CdCl2 at 
the highest concentrations (1000 mg/L and 250 mg/L, respectively) as compared to co-exposure at lower concen-
trations (1 mg/L and 1 mg/L, respectively) and controls (p < 0.05). Reduced root and shoot lengths in seedlings of 
CuO and ZnO NP treated plants are also presented45. Fe2O3-NPs hindered the seed germination and root length 
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in radish46. In another study, 16, 12 and 18 percent reduction in root length; and 22, 16 and 27 percent reduction 
in shoot length at concentration of 1000 mg/L was found for CuO NPs, ZnO NPs and binary mixture of NPs 
respectively47. Similarly, gamma-Fe2O3 NP concentration of 50 and 100 mg/L remarkably reduced the root length 
by 13.5 and 12.5 percent, respectively in Zea mays L.48.

Figure 3. HRTEM images of synthesized CuO nanoparticle samples. C1: CuO NPs synthesized at pH2 of 
precursor solution; C2: CuO NPs synthesized at pH7 of precursor solution; C3: CuO NPs synthesized at pH10 
of precursor solution, and C4: CuO NPs synthesized at pH7 of precursor solution with CTAB addition.

Figure 4. Mean root length among different concentrations of CuO nanoparticles.
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On the contrary, use of copper nanoparticles with chitosan-PVA hydrogels (Cs-PVA-nCu) was shown to 
improve the root length in grafted water melon. Cs-PVA-nCu application was found to upsurge primary root 
and stem length by 14% and 8%, respectively49. Similarly, Ag-NP treated seedlings showed an enhancement in 
root length and production of phytochemical diosgenin to a level of 214.06 ± 17.07 µ/mL as compared to control 
(164.44 ± 7.67 µ/mL)50.

Root elongation has been found to be minimum in case of CTAB assisted CuO NPs. This toxic effect may be 
attributed to the smaller particulate size of the C4 nanoparticle group. Here we suggest that addition of CTAB 
at pH7 during the synthesis of CuO NPs decreased the particle size as revealed by XRD analysis. The decrease 
in particle size with CTAB addition is also reported by Varghese et al.51. XRD and Williamson-Hall plot of CuO 
nanoparticles, with and without CTAB, has revealed the sizes as 11 and 22 nm, respectively. The CTAB appeared 
to influence the properties and morphology of CuO powder4. Variation in CTAB concentration has been shown 
not to significantly affect the size of Cu nanoparticles52. Some studies have also reported the nanoparticles to be 
better stabilized using CTAB concentration above 1 mM53.

Cytological analysis. All the four synthesized CuO NP samples were checked for their cytotoxic potential 
using Allium cepa. Allium cepa samples were analyzed following treatments with the synthesized CuO nanoparti-
cles at different concentrations as mentioned in the material and methods section 2.5.2.

Number of dividing cells and mitotic index. Number of dividing cells (DC) per 2000 cells at different applied 
concentrations of all the four nanoparticles types was recorded. At highest concentration (V3), DC was found to 
be 312 for C1, 330 for C2, 290 for C3 and 264 in case of C4 as compared to 396 for the control samples (Tap water 
treatment) (Table 3). Maximum values for DC was found to be 374 per 2000 cells in the lowest concentration of 
0.001 g/100 ml in C2V1 sample. A decreasing trend among DC with increasing concentration was found among 
all the four treatments groups. On the basis of number of dividing cells, after group-wise clubbing of DC, the 
order of samples came out to be Control > C2 > C1 > C3 > C4 (Fig. 6). Thus, maximum division reduction was 
seen in CuO synthesized with the addition of CTAB surfactant exposure group (C4) at all the applied concentra-
tions. The addition of CTAB decreased the particle size of NPs as described in Table 2. This addition may be the 
reason for reduced DC values in C4 samples.

Mitotic Index (MI) was calculated as described previously in the methods section (Eq. 1). At highest concen-
tration group (0.1 g/100 ml), a decreasing trend was found in MI viz. Control (19.8%) > C2V3 (16.5%) > C1V3 
(15.6%) > C3V3 (14.5%) > C4V3 (13.2%). Same trend was found at each applied concentration for all four treat-
ment groups (Table 3). In line with our results, a concentration- and time-dependent decrease in mitosis index 
has been reported43. Similarly, Ag NPs have been shown to induce a decrease in mitotic index using Allium cepa54. 

Figure 5. Relative mean root length among different concentrations of CuO nanoparticles with respect to 
exposure period.

Test Sample DC
MI 
(%)

C1 C2 C3 C4

DC MI (%) DC MI (%) DC MI (%) DC MI (%)

Control 396 19.8 — — — — — — — —

V1 — — 350 17.5 374 18.7 326 16.3 310 15.5

V2 — — 336 16.8 350 17.5 308 15.4 286 14.3

V3 — — 312 15.6 330 16.5 290 14.5 264 13.2

Table 3. Cytological parameters after exposure to different concentrations of CuO nanoparticles in Allium cepa 
root analysis. DC, Number of dividing cells; MI, Mitotic index. Total cells analysed: 2000.
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Anti-proliferative and antimitotic activities were found to be amplified on cellular treatment with plumbagin 
–AgNPs55. A dose dependent reduction in the mitotic index from 69 to 21 was also found in Allium cepa root 
test when exposed to TiO2 NPs56. Decrease in MI was also reported in many other studies following exposure to 
different NPs like AgNPs54,57; chromium (III) oxide nanoparticles58 and aluminum oxide nanoparticles59. On the 
contrary, exposure to Bismuth (III) oxide nanoparticles was found to significantly increase MI in Allium cepa60.

Mitotic inhibition. Mitotic inhibition (MI) was calculated for all the treatment samples as per Eq. 2. MI was 
found to be increasing with the treatment concentration as maximum was found in C4V3 (33.33) and least was 
found to be in C2V1 (5.55). Table 4 shows the relative mitotic inhibition in four exposure groups of synthesized 
nanoparticles. Increasing trend in mitotic inhibition was found to be C2 < C1 < C3 < C4 samples (Fig. 7).

Genotoxic parameters. Chromosomal aberrations. Genotoxic parameters were assessed following expo-
sure treatments with all the four nanoparticles samples at different concentrations. Chromosomal aberrations 
were observed in the slides for each treatment concentration. Various types of chromosomal aberrations per 2000 
cells including binucleated cells, micronucleated cells, chromosomal bridges, fragmentation, stickiness, laggards, 
vagrants, c-mitosis and disturbed spindle were scored (Table 5). Maximum total aberrations were found to be in 
0.1 concentration group of C4 (50) as compared to C3 (35), C1 (28) and C2 (25). Total aberrations were found to 
be associated with increasing sample concentrations. On the same line, ZnO NPs have been reported to induce 
several kinds of mitotic aberrations including chromosome stickiness, bridges, breakages and laggings43. Many 

Figure 6. Mean dividing cells among different CuO NP treatment groups.

Test 
Sample

Treatment 
group DC NDC

Mitotic 
inhibition

Control — 396 1604 —

C1

C1V1 350 1650 11.61616

C1V2 336 1664 15.15152

C1V3 312 1688 21.21212

C2

C2V1 374 1626 5.555556

C2V2 350 1650 11.61616

C2V3 330 1670 16.66667

C3

C3V1 326 1674 17.67677

C3V2 308 1692 22.22222

C3V3 290 1710 26.76768

C4

C4V1 310 1690 21.71717

C4V2 286 1714 27.77778

C4V3 264 1736 33.33333

Table 4. Mitotic inhibition among different concentrations of CuO nanoparticles. DC, Number of dividing 
cells; NDC, Number of non-dividing cells; Total cells analysed, 2000.
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other studies also revealed DNA damage on exposure to different NPs as study by Vishwakarma et al.61 demon-
strated that Ag NPs and AgNO3 induced oxidative stress that was manifested in terms of DNA degradation. In 
another study, a concentration dependent increase in DNA strand breaks has been reported in Fe2O3-NPs treated 
groups of Raphanus sativus using comet assay. Cell cycle analysis also revealed 88.4% of cells in sub-G1 apoptotic 
phase, signifying cell death in 2.0 mg/mL Fe2O3-NPs treated group46. About 2.4-fold higher DNA damage was 
observed by comet assay in Cobalt oxide nanoparticles treated cells of eggplant as compared to untreated con-
trol62. Increased chromosomal aberrations in Allium cepa were also reported following exposures to AgNPs54,57; 
chromium (III) oxide nanoparticles58 and TiO2 NPs56.

Aberrant cells. Percentage of aberrant cells (AC) was calculated as the number of cells with any kind of aber-
ration as per Eq. 3 (Table 5). AC in highest treatment concentration of 0.1 g/100 ml was found out to be 8.97% 
(C1V3); 7.57% (C2V3); 12.06% (C3V3) and 18.93% (C4V3). Out of the four treatment groups, maximum aber-
rant cell percentage was found to be in 0.1 concentration group of CuO NPs synthesized with CTAB surfactant 
(18.93%; C4V3), lowest being in 0.001 concentration treatment group of CuO synthesized at pH7 (2.67%; C2V1). 
AC compared at the lowest applied concentration of 0.001 g/100 ml was found to be 3.71% (C1); 2.67% (C2); 
4.90% (C3) and 7.74% (C4). Again the maximum aberrant cells were found in the CTAB-CuO exposure treat-
ments which may be attributed to smaller particle size of CuO NPs. In another study, size dependent toxicity was 
reported as 20 and 50 nm AuNPs did not induce obvious DNA damage at the tested concentrations whereas 5 nm 
NPs induced a dose-dependent increment in DNA damage in HepG2 cells63. Thus, smaller particles induce more 
toxicity in terms of genetic instability and aberrations. Higher DNA damages were also reported after exposure to 
different nanoparticles in Allium cepa root test54,56,60.

Figure 7. Mitotic inhibition among different concentration groups of CuO nanoparticles.

Test Sample

Chromosomal aberrations Total
Aberrations % of aberrant cellsBN MN BR FR ST LG VG CM DS

Control — — — — — — 1 — — 1 0.25

C1V1 2 1 2 1 1 2 2 1 1 13 3.71

C1V2 3 1 2 2 3 3 2 2 2 20 5.95

C1V3 5 2 3 2 5 4 3 2 2 28 8.97

C2V1 2 0 0 2 2 1 1 1 1 10 2.67

C2V2 3 0 1 2 4 2 2 1 1 16 4.57

C2V3 3 1 3 4 5 3 2 2 2 25 7.57

C3V1 3 1 2 2 2 3 1 1 1 16 4.90

C3V2 4 2 2 4 4 4 2 2 2 26 8.44

C3V3 6 2 3 5 5 6 3 3 2 35 12.06

C4V1 6 2 2 2 3 4 1 2 2 24 7.74

C4V2 7 2 2 5 5 6 4 2 2 35 12.23

C4V3 9 3 4 6 7 8 6 4 3 50 18.93

Table 5. Genotoxicity parameters in different concentrations of CuO nanoparticles in Allium cepa root 
chromosomal assay. BN, Binucleated; MN, Micronucleus; BR, Chromosomal bridge; FR, Fragment; ST, 
Stickiness; LG, Laggards, VG, Vagrant; CM, c-mitosis; DS, Disturbed spindle. Total cells analysed: 2000.
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Conclusion
CuO nanoparticles (NPs) with high catalytic activity were synthesized using sol-gel auto combustion route at 
different pH values and with the addition of cationic surfactant, CTAB at pH value of 7 of the precursor solution. 
The increase in pH value of the precursor solution increases the rate of combustion resulting in the production 
of highly porous and active CuO particles. The catalytic activity of synthesized CuO particles was found to be 
further enhanced with the addition of surfactant CTAB. Surfactant addition not only decreased the crystallite 
size but also made the particle agglomerates of uniform size. This uniform and small size made the CuO particles 
more toxic. The toxicity of the particles is found to be a function of the pH and strong dependence on the sur-
factant addition. The high catalytic activity in terms of toxicity has been proved in the form of decrease in root 
length measurements among the tested samples for same exposure duration at different treatment concentrations. 
Cytological analysis with measurements of dividing cells, percentage of aberrant cells, mitotic index and mitotic 
inhibition proved that CTAB assisted particles are more toxic than nascent CuO NPs revealing their high cata-
lytic activity. Further studies are recommended so as to explore the effects of CTAB and other surfactants on the 
crystallite structure of CuO NPs.
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