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Prediction of a typhoon track using 
a generative adversarial network 
and satellite images
Mario Rüttgers   , Sangseung Lee   , Soohwan Jeon & Donghyun You   

Tracks of typhoons are predicted using a generative adversarial network (GAN) with satellite images 
as inputs. Time series of satellite images of typhoons which occurred in the Korea Peninsula in the past 
are used to train the neural network. The trained GAN is employed to produce a 6-hour-advance track 
of a typhoon for which the GAN was not trained. The predicted track image of a typhoon favorably 
identifies the future location of the typhoon center as well as the deformed cloud structures. Errors 
between predicted and real typhoon centers are measured quantitatively in kilometers. An averaged 
error of 95.6 km is achieved for tested 10 typhoons. Predicting sudden changes of the track in westward 
or northward directions is identified as a challenging task, while the prediction is significantly improved, 
when velocity fields are employed along with satellite images.

Every year tropical cyclones cause death and damage in many places around the world. Cyclones are formed when 
water at the sea surface becomes warm, evaporates, and rises in a form of clouds, and while it cools down, the con-
densation releases strong energy in a form of winds. Rotation of the earth gives a cyclone its spinning motion. At 
the center usually a hole forms, which is called an eye of the cyclone. At the eye, the pressure is low and energetic 
clouds and winds get attracted. Warm air can rise through the hole and, favored by high altitude winds that can 
create a suction effect, increase the energy of the system. Crosswinds, vertical wind shear or dry air, on the other 
hand, can block this mechanism1. Depending on water conditions and surrounding winds tropical cyclones and 
their associated storm surges can be a great danger when they find their way to a populated land.

The destructive force of a tropical cyclone comes from the wind speed of the rotating air and the rainfall that 
can cause disastrous flooding2. The highest wind speeds are usually found near the typhoon center. Strong rain, 
on the other hand, can be experienced near dense cloud structures. Therefore, the track of a cyclone is character-
ized by both the coordinate of the typhoon center and the shape or the distribution of clouds. Sun et al.3 found 
that tropical cyclones are becoming stronger, larger, and more destructive in the context of global warming. 
Kossin4 mentions in his study that translation speeds of tropical-cyclones have decreased globally by 10% and in 
Asia by 30% over the period 1949–2016. The lower the velocity of the cyclone as a whole system, the more rain 
falls on one location and the higher the risk for flooding. Thus, slower translation speeds can cause even more 
destructive floods.

The present work concentrates on tracks of cyclones that form in the north-western Pacific Ocean, also known 
as typhoons. The geographical focus lies on the Korean peninsula. In the past, Korea has suffered from numerous 
typhoons of different sizes. Typhoon Sarah was the strongest one. The cyclone hit the island Jeju on September 
16th in 1959 during the traditional Thanksgiving festival leaving 655 dead, 259 missing, and more than 750,000 
homeless5. In the younger history of the country, especially typhoons Rusa (August 2002) and Maemi (September 
2003) have caused fear and death among the Korean population. Together they have been responsible for 376 
casualties and a damage of 11.5 billion USD6,7. Xu et al.8 investigated paths of super typhoons approaching China 
over the past 50 years. They identified a trend of strong typhoons getting attracted by the moist environment in 
southeastern China. This trend also affects damages on the Korean peninsula, since the size of a super typhoon 
can be similar to the spatial distance between the Chinese east coast and the Korean west coast. To save lives and 
reduce such damages in the future, accurate forecast methods need to be established.

Accuracy is only one criterion when talking about the prediction of natural disasters. Speed and flexibility 
play a significant role as well. Forecasts should be done quickly and forecast tools should be able to react imme-
diately on sudden changes. Finally they should be inexpensive. Current predictions in South Korea are done by 
conducting numerical simulations on a Cray XC40 supercomputer with 139,329 CPUs. This method consumes a 
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huge amount of computational time. The maintenance costs for such expensive hardware are also very high. An 
efficient forecast method that considers all these criteria is necessary.

In the work of Kovordanyi and Roy9 nine existing forecast techniques are listed. Subjective assessment is an 
evaluation of the cyclone’s behavior based on large-scale changes of the flow field. In analogue forecasts, features 
of the cyclone are compared to all previous storms in the same region and the movement is derived from past 
experiences. In the third technique, the steering current is estimated by analyzing winds at certain locations 
and altitudes. The statistical technique uses regression analyses, whereas the dynamical technique uses numer-
ical modeling and simulation. Besides computer based approaches, empirical forecasting based on experiences 
of meteorologists are considered as a good complement to other techniques. The persistence method allows 
short-term predictions, but relies on the cyclone to keep its recent track. Satellite-based techniques use satellite 
images to make forecasts of the track and intensity of tropical cyclones based on cloud patterns. Finally, combina-
tions of the previously mentioned approaches are defined as hybrid techniques.

In this study a satellite-based technique is combined with a deep learning method. Lee and Liu10 probably 
firstly used satellite images of tropical cyclones for track prediction with the help of neural networks. But images 
did not function as input data for the network. In a pre-processing step, information like the Dvorak number, 
the maximum wind speed or the cyclone’s position were extracted from images and fed to the network for a 
time-series prediction. The model has shown improvements of 30% over the bureau numerical tropical cyclone 
prediction model used in Guam for forecasting tropical cyclone patterns and tracks. Kovordanyi and Roy9 were 
the first who actually used satellite images as input data for a neural network. The network favorably detected the 
shape of a cyclone and predicted the future movement direction. Hong et al.11 utilized multi-layer neural net-
works to predict a position of the cyclone’s eye in a single high-resolution 3D remote sensing image. The network 
learns coordinates of an eye from labeled images of the past data and predicts them in test images. Kordmahalleh 
et al.12 have used a sparse recurrent neural network (RNN) to predict trajectories of cyclones coming from the 
Atlantic Ocean or the Caribbean Sea, also known as hurricanes. They used dynamic time warping (DTW), which 
compares the trajectory of a target hurricane to all hurricanes of a dataset. For the prediction process, only hurri-
canes which have similarities in trajectories to that of the target hurricane, were used. One drawback is that they 
assumed monotonic behaviour, which means that a hurricane never comes back to a location where it was before. 
In reality this is not always the case. Alemany et al.13 also used an RNN to predict hurricane trajectories, but instead 
of assuming monotonic behaviour they considered all types of hurricanes. They used a grid-based RNN that takes 
the wind speed, latitudinal and longitudinal coordinates, the angle of travel, and the grid identification number 
from past motions of the hurricane as inputs. With the grid identification number, spatial relations on a map 
were learned. Their forecasts could achieve a better accuracy than results of Kordmahalleh et al.12. Zhang et al.14  
utilized matrix neural networks (MNNs) for predicting trajectories of cyclones that occurred in the South Indian 
ocean. They stated that MNNs suit better to the task of cyclone trajectory prediction than RNNs, because MNNs 
can preserve spatial information of cyclone tracks.

In the previous research, deep learning methods were used to identify the center of a cyclone in a satellite 
image or to predict a trajectory of a cyclone using discrete meteorological data without cloud images. None of the 
previous studies using neural-networks reported the capability of predicting both the coordinate of a typhoon 
center and future shape of cloud structures around the typhoon. But, as mentioned before, a safe warning system 
should be able to forecast both, cyclone centers and their area of impact in a form of cloud structures. To the best 
of authors’ knowledge, a combination of satellite images and a deep learning method has not yet been used to pre-
dict both future typhoon centers and the future cloud appearance. In this study, a generative adversarial network 
(GAN) is applied for both tasks. As an input it uses chronologically ordered satellite images from the past and as 
an output it creates images that show the typhoon hours ahead.

A conceivable alternative to the present approach of predicting the coordinate of a typhoon center can be 
predicting the direction and the speed of a typhoon, from which, afterwards, the future position of the typhoon 
center is calculated. However, to predict the moving direction and the speed of a typhoon using a GAN, it is still 
necessary first to forecast the typhoon center, where the direction and the speed of the typhoon are defined. The 
present GAN employs satellite cloud images along with a marked typhoon center as the input set, but without 
explicit information about the moving direction or the speeds at the typhoon center.

Predictions can be generated within seconds using a single graphics processing unit (GPU). Thus, the method 
is significantly quicker and cheaper than the conventional methods, like numerical simulations, where hundreds 
of thousands CPU are used for one simulation. Tracks of typhoons can be predicted on a real time basis by 
updating input data as a function of real time. While relearning an updated whole dataset with new inputs is not 
necessary, training the network with the updated dataset can be conducted on a real time basis by employing a 
fine-tuning technique or by using multiple GPUs. The GAN is a deep learning technique used to generate samples 
in forms of images, music or speech. It has been introduced by Goodfellow et al.15, who successfully generated 
new samples to the MNIST and CIFAR-10 image datasets. Their multi-scale convolution network architecture 
has originally been proposed by Mathieu et al.16 for image prediction of a video sequence. The inspiration for 
the present study comes from a problem in fluid dynamics. Lee and You17 used a GAN to successfully predict 
unsteady flow over a cylinder. They reported that the adversarial training of the GAN leads the network to gen-
erate better prediction of flow fields by extracting flow features in an unsupervised manner, compared to convo-
lutional neural networks.

Results
The GAN has been trained and tested on an NVIDIA Tesla K40c GPU. Ten typhoons in the test dataset are: Faye 
(Juli 1995), Violet (September 1996), Oliwa (September 1997), Saomai (September 2000), Rammasun (June/
July 2002), Maemi (September 2003), Usagi (July/August 2007), Muifa (July/August 2011), Neoguri (June/July 
2014), and Malakas (September 2016). The testing for each typhoon is done in sequences. One sequence contains 
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chronologically ordered input images, the ground truth image, and the generated image. A sequence is named 
with the date and time (universal time coordinated - UTC) of the corresponding ground truth image, for exam-
ple: “1993072718” stands for 27th of July in 1993 at 6 pm (UTC).

Prediction of the typhoon center.  The accuracy in the prediction of the typhoon center coordinate is 
measured by comparing the labeled red square of the ground truth image with the predicted red square of the 
generated image, rather than coordinates in the Cartesian space. This is because convolutional neural networks 
have difficulty in learning a mapping between the coordinate in the Cartesian space and the coordinate in the 
one-hot pixel image space18. The red square in the predicted image is detected by applying a color filter on the 
generated image and a convolution with the size of the red square on the filtered image. The pixel with the highest 
value in the convolved image gives the location of the predicted typhoon center. In most of the cases images with 
a clearly identifiable red square are generated, as shown in Fig. 1(a). In some cases, however, the GAN provides 
several alternatives, as visualized in Fig. 1(b). Each possible predicted typhoon center has its own color strength. 
The color intensities can be interpreted as probabilities; a strong red square shows a confident prediction, a weak 
mark stands for a possible predicted typhoon center with a low probability. In cases like in Fig. 1(b), the location 
with the strongest color intensity is chosen. After identifying the (x, y)-pixel coordinates of the predicted typhoon 
center, they are transformed back to latitudinal (φ) and longitudinal (λ) coordinates via georeferencing.

Results for ten test typhoons are presented in Figs 2–5. Images in the left column of the figures are predicted 
by using only satellite images as input data, and are referred to Case A, where locations of the typhoon center 
are marked with yellow squares. Images in the right column of the figures are predicted by using satellite images 
along with velocity fields at 10 m height as input data, and are referred to Case B, where locations of the typhoon 
center are marked with blue squares. Results in both cases are contrasted to locations of the real typhoon center, 
represented by red squares. Tables in the figures contain absolute errors, relative errors, and errors of forecasts that 
have been conducted by the Joint Typhoon Warning Center (JTWC) for typhoons Faye, Violet, Oliwa, Saomai, 
Rammasun, and Maemi19–24, and by the Regional Specialized Meteorological Center (RSMC) Tokyo - Typhoon 
Center for typhoons Usagi, Muifa, Neoguri, and Malakas25–28.

Focusing firstly on Case A, it is noticeable how errors increase, when typhoons experience sudden north-
ward or westward course changes. It is observed for all ten test typhoons. Figure 2 shows increased errors when 
typhoon Faye turns northward at sequences 10, 11, and 13, and similarly for Violet at sequences 8–11 and Oliwa 
at sequences 13–15. In Fig. 3, similar observations are made. When typhoon Saomai changes its path westward 
at the sequence 15 and northward around the sequence 21 errors increase noticeably. Typhoons Rammasun and 
Maemi also show difficulty in the prediction when they get deflected northward at sequences 10 and 8–10, respec-
tively. Figures 4 and 5 show results for typhoons Usagi, Muifa, Neoguri, and Malakas. The dragon shaped typhoon 
Muifa underwent sudden course changes at sequences 16–18 or 24–26. The youngest typhoon among the ten test 
cases, Malakas, shows the highest error at the sequence 13, when its course has a sudden change to the north.

The path of a typhoon is highly influenced by steering flow that is controlled by storms’ ambient environ-
ment. Sometimes, when a storm is surrounded by multiple systems whose circulations compete to each other, 
the steering flow is difficult to predict. As a results, the storms’ track is hard to predict. Wu et al.29 mention 
that typhoons in the Northwestern Pacific usually experience sudden northward or westward course changes. 
In the north-turning case, winds are enhanced on the southeast side of tropical cyclones, in west-turning cases, 
north-easterly winds are enhanced on the west side. One example is illustrated in Fig. 6, which shows satellite 
images and velocity fields for typhoon Neoguri at sequences 5 (Fig. 6(a)) and 11 (Fig. 6(b)). At the sequence 
11, when the typhoon experiences a northward deflection, strong winds are noticed at the southeast side of the 
center, compared to the velocity field at the sequence 5. It may be difficult for the GAN to learn such phenomena 
only from satellite images.

Results in Case B indicate that combining satellite images with images of surface velocity fields has a positive 
impact on typhoon predictions. Although surface winds cannot represent the complete steering flow, they contain 
enough information to reduce the average error for all test typhoons, except for typhoon Malakas. Especially, the 
previously mentioned northward or westward course changes are predicted much more accurately in Case B. 
Except for results for typhoons Faye and Rammasun, standard deviations of the error are also reduced for all test 
typhoons. Therefore, adding information of the velocity field to the network seems to be beneficial to improving 
the predictive capability of the present GAN-based method.

Several findings are gained by analyzing errors in predictions conducted by the JTWC and the RSMC. Firstly, 
it is observed that for typhoons Faye, Oliwa, Saomai, Rammasun, Maemi, and Muifa, errors in Case B are lower 

Figure 1.  (a) Clearly identifiable predicted typhoon center. (b) Three possible predicted typhoon centers.
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than errors of 12-hour predictions conducted by the JTWC and 24-hour forecasts of the RSMC. Secondly, six of 
the ten test typhoons show lower standard deviations for results in Case B compared to predictions reported by 
the JTWC and the RSMC. This may be partly due to the shorter prediction interval (6-hours) in the present study 
than those of the JTWC and the RSMC. Thirdly, whereas sudden northward or westward deflections are the chal-
lenging regime in Case A, forecasts conducted by the JTWC and RSMC show no increased errors when sudden 
course changes occur. However, their challenging regime seems to be interactions between storms and land, since 
for all ten typhoons errors increase before landfall. Difficulties in predictions before landfall are noticeable in Case 
A for typhoons Faye, Saomai, Rammasun, Maemi, Muifa, and especially Neoguri. In Case B, these difficulties are 
handled much better by the GAN.

Faye 1995 Case A Case B JTWC
12-h pred.Sequence E(km) Erel E(km) Erel

5 (1995072000) 93.1 0.94 9.7 0.10 83.3
6 (1995072006) 117.0 0.95 127.1 1.03 120.4
7 (1995072012) 68.6 0.5 134.6 0.99 127.8
8 (1995072018) 92.6 0.68 90.9 0.67 48.2
9 (1995072100) 103.3 0.73 102.4 0.72 53.7
10 (1995072106) 102.5 1.91 99.2 1.84 53.7
11 (1995072112) 106.6 1.08 34.8 0.35 29.6
12 (1995072118) 72.1 0.67 84.9 0.79 53.7
13 (1995072200) 165.5 2.46 140.0 2.08 40.7
14 (1995072206) 93.1 0.79 86.2 0.73 68.5
15 (1995072212) 65.3 0.47 79.8 0.57 107.4
16 (1995072218) 42.6 0.26 13.1 0.08 109.3
17 (1995072300) 82.4 0.39 46.6 0.22 251.9
18 (1995072306) 117.0 0.59 77.8 0.39 127.8

Average 94.4 80.5 91.1
Standarddev. 28.3 40.0 32.3

Violet 1996 Case A Case B JTWC
12-h pred.Sequence E(km) Erel E(km) Erel

5 (1996091712) 38.8 0.57 51.9 0.76 46.3
6 (1996091718) 108.0 1.19 78.7 0.86 9.3
7 (1996091800) 81.3 1.33 86.1 1.41 14.8
8 (1996091806) 134.6 2.42 63.4 1.14 40.7
9 (1996091812) 120.4 2.31 41.4 0.79 14.8

10 (1996091818) 129.3 3.06 74.3 1.76 29.6
11 (1996091900) 96.8 2.48 29.6 0.76 51.9
12 (1996091906) 64.1 1.92 79.6 2.39 72.2
13 (1996091912) 20.9 0.43 32.6 0.67 55.6
14 (1996091918) 95.6 2.15 33.8 0.76 24.1
15 (1996092000) 60.4 1.73 67.9 1.95 37.0
16 (1996092006) 93.7 1.48 59.7 0.94 68.5
17 (1996092012) 40.3 0.52 23.7 0.30 63.0
18 (1996092018) 48.5 0.58 48.5 0.58 107.4
19 (1996092100) 53.8 0.43 31.8 0.25 66.7
20 (1996092106) 15.0 0.14 9.0 0.08 100.0

Average 75.1 50.7 50.1
Standarddev. 36.6 22.3 28.1

Oliwa 1997 Case A Case B JTWC
12-h pred.Sequence E(km) Erel E(km) Erel

5 (1997091212) 128.4 0.81 88.5 0.56 55.6
6 (1997091218) 151.1 0.89 71.0 0.42 20.4
7 (1997091300) 191.2 1.27 55.6 0.37 59.3
8 (1997091306) 119.2 0.73 86.1 0.52 55.6
9 (1997091312) 119.4 0.88 78.0 0.58 44.4

10 (1997091318) 159.9 1.03 66.0 0.42 55.6
11 (1997091400) 31.4 0.21 13.5 0.09 98.2
12 (1997091406) 78.6 0.83 78.6 0.83 418.6
13 (1997091412) 93.7 1.14 68.3 0.83 103.7
14 (1997091418) 154.6 3.99 30.8 0.80 101.9
15 (1997091500) 71.8 1.48 34.5 0.71 75.9
16 (1997091506) 47.8 0.86 19.8 0.36 44.4
17 (1997091512) 59.8 0.89 51.6 0.77 50.0
18 (1997091518) 39.1 0.54 131.3 1.81 144.5
19 (1997091600) 46.1 0.43 30.3 0.28 233.4

Average 99.5 60.3 104.1
Standarddev. 49.0 30.3 98.0
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Figure 2.  For typhoons Faye, Violet, and Oliwa, predictions using satellite images only (Case A) are shown 
in the left column with yellow squares, and predictions using satellite images along with velocity fields at 10 m 
height (Case B) are shown in the right column with blue squares. For both cases, center coordinates of the real 
typhoon are represented by red squares. Absolute errors, relative errors, and errors in kilometers for 12-hour 
predictions reported in annual tropical cyclone reports of the Joint Typhoon Warning Center (JTWC)19–21 as a 
function of the sequence are summarized in tables.
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Table 1 compares the frequency distribution of E of Cases A and B for all sequences. For Case A, in 74.5% of the 
cases the error is less than or equal to 120 km, compared to 92.5% in Case B. In Case A, a combined 42.4% have an 
accuracy of less than or equal to 80 km, which could be increased to 64.8% in Case B. In Case B, only 12 sequences 
are found above 120 km. The total error in Case A, 95.6 km, could be reduced by 27.7% to 69.1 km in Case B.

Rammasun 2002 Case A Case B JTWC
12-h pred.Sequence E(km) Erel E(km) Erel

5 (2002070218) 124.9 0.91 49.9 0.36 55.6
6 (2002070300) 98.4 0.65 136.6 0.91 87.0
7 (2002070306) 67.2 0.69 115.6 1.19 0.0
8 (2002070312) 50.6 0.48 20.1 0.19 37.0
9 (2002070318) 32.8 0.30 57.9 0.54 66.7
10 (2002070400) 135.0 1.07 11.2 0.09 55.6
11 (2002070406) 29.8 0.23 29.8 0.23 90.7
12 (2002070412) 91.6 0.59 53.9 0.35 48.2
13 (2002070418) 52.0 0.31 19.0 0.11 72.2
14 (2002070500) 104.1 0.62 56.1 0.33 27.8
15 (2002070506) 142.5 1.83 18.8 0.24 44.4
16 (2002070512) 67.7 0.58 67.9 0.59 96.3

Average 83.0 53.1 56.8
Standarddev. 37.2 37.5 26.9

Maemi 2003 Case A Case B JTWC
12-h pred.Sequence E(km) Erel E(km) Erel

5 (2003090912) 83.8 1.06 117.3 1.48 55.6
6 (2003090918) 85.9 0.84 30.6 0.30 46.3
7 (2003091000) 51.6 0.74 49.5 0.71 77.8
8 (2003091006) 117.2 1.55 42.1 0.56 55.6
9 (2003091012) 62.2 0.90 12.2 0.18 42.6
10 (2003091018) 158.1 2.10 35.2 0.47 46.3
11 (2003091100) 76.4 1.21 64.5 1.02 55.6
12 (2003091106) 30.6 0.38 83.0 1.03 46.3
13 (2003091112) 43.1 0.34 43.1 0.34 59.3
14 (2003091118) 96.6 0.62 30.8 0.20 66.7
15 (2003091200) 100.3 0.41 100.3 0.41 111.1
16 (2003091206) 110.6 0.44 96.3

Average 84.7 55.3 63.3
Standarddev. 33.9 31.0 20.6
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Saomai 2000 Case A Case B JTWC
12-h pred.Sequence E(km) Erel E(km) Erel

5 (2000091012) 188.7 3.11 26.2 0.43 114.8
6 (2000091018) 122.0 2.91 30.1 0.72 74.1
7 (2000091100) 69.2 0.92 69.2 0.92 64.8
8 (2000091106) 101.7 1.13 90.0 1.00 20.4
9 (2000091112) 19.0 0.45 58.0 1.39 29.6
10 (2000091118) 70.9 0.74 36.3 0.38 38.9
11 (2000091200) 76.0 1.11 86.8 1.26 55.6
12 (2000091206) 141.4 1.93 74.4 1.02 24.1
13 (2000091212) 86.4 1.45 44.4 0.75 14.8
14 (2000091218) 93.4 1.09 71.0 0.83 29.6
15 (2000091300) 252.3 3.80 7.1 0.11 38.9
16 (2000091306) 40.0 0.54 36.1 0.49 44.4
17 (2000091312) 25.3 0.36 76.3 1.09 0.0
18 (2000091318) 43.1 0.73 56.4 0.96 88.9
19 (2000091400) 67.6 2.99 30.0 1.33 122.2
20 (2000091406) 63.4 2.13 40.2 1.35 98.2
21 (2000091412) 151.5 6.81 28.7 1.29 33.3
22 (2000091418) 7.0 0.24 52.7 1.78 63.0
23 (2000091500) 97.3 0.94 48.2 0.46 10.9
24 (2000091506) 92.3 0.63 93.0 0.63 146.3
25 (2000091512) 127.4 0.61 25.7 0.12 109.3

Average 92.2 51.5 62.5
Standarddev. 56.9 23.6 39.7

130E 130E

130E 130E

Figure 3.  For typhoons Saomai, Rammasun, and Maemi, predictions using satellite images only (Case A) are 
shown in the left column with yellow squares, and predictions using satellite images along with velocity fields 
at 10 m height (Case B) are shown in the right column with blue squares. For both cases, center coordinates of 
the real typhoon are represented by red squares. Absolute errors, relative errors, and errors in kilometers for 12-
hour predictions reported in annual tropical cyclone reports of the Joint Typhoon Warning Center (JTWC)22–24 
as a function of the sequence are summarized in tables.
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Prediction of the cloud shape.  As an example for the generation of images that show the cloud shape, 
Fig. 7 illustrates the prediction for the sequence 6 of typhoon Maemi. Generated images do not have the same 
sharpness than the ground truth image, instead they are blurry. Blurriness is a well known challenge in video 
prediction tasks, which is tried to be overcome by using a gradient difference loss function in the present study. 
However, although generated images suffer from a certain degree of blurriness, the main structure of clouds is 
still visible. Furthermore, in the generated image in Case B the spinning motion of the typhoon seems to be repro-
duced more realistically than in the generated image in Case A.

This is shown clearer in Fig. 8, where generated cloud images in Cases A and B of four randomly chosen 
sequences are presented. Generated images in Case A seem to be static and do not represent any dynamics. In 
the sequence 11 of typhoon Violet, for example, the image in Case A cannot reproduce the spinning motion 
of the typhoon (see Fig. 8(a)). The image in Case B, on the contrary, does not only illustrate the typhoon more 

Usagi 2007 Case A Case B RSMC
24-h pred.Sequence E(km) Erel E(km) Erel

5 (2007073018) 163.4 1.32 148.6 1.20 15.0
6 (2007073100) 72.6 1.05 101.6 1.47 11.0
7 (2007073106) 129.2 1.19 78.0 0.72 79.0
8 (2007073112) 108.5 0.95 26.8 0.23 76.0
9 (2007073118) 200.9 1.41 86.1 0.60 67.0

10 (2007080100) 78.5 0.61 49.8 0.39 98.0
11 (2007080106) 199.5 1.16 98.3 0.57 152.0
12 (2007080112) 79.8 0.48 120.1 0.73 150.0
13 (2007080118) 100.5 0.46 175.1 0.80 128.0
14 (2007080200) 103.7 0.54 106.8 0.55 152.0
15 (2007080206) 109.3 0.69 109.3 0.69 45.0
16 (2007080212) 58.1 0.41 92.2 0.65 73.0
17 (2007080218) 65.1 0.45 175.4 1.21 83.0
18 (2007080300) 39.9 0.21 98.8 0.51 69.0

Average 107.8 104.8 85.6
Standarddev. 48.2 40.1 44.8
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Muifa 2011 Case A Case B RSMC
24-h pred.Sequence E(km) Erel E(km) Erel

5 (2011073106) 161.6 3.51 87.0 1.89 124.0
6 (2011073112) 188.7 2.24 43.1 0.51 100.0
7 (2011073118) 98.9 1.11 98.9 1.11 106.0
8 (2011080100) 64.0 1.30 64.0 1.30 137.0
9 (2011080106) 61.6 0.57 92.7 0.85 119.0
10 (2011080112) 118.8 1.33 17.3 0.19 99.0
11 (2011080118) 61.5 0.69 23.7 0.27 56.0
12 (2011080200) 56.5 0.85 56.5 0.85 83.0
13 (2011080206) 104.4 1.34 84.0 1.08 108.0
14 (2011080212) 77.0 0.98 77.0 0.98 117.0
15 (2011080218) 73.6 0.98 90.5 1.20 107.0
16 (2011080300) 137.2 2.04 79.0 1.17 84.0
17 (2011080306) 49.4 0.69 49.4 0.69 46.0
18 (2011080312) 155.6 2.17 62.0 0.86 52.0
19 (2011080318) 86.3 0.94 39.0 0.43 102.0
20 (2011080400) 88.6 0.95 43.6 0.47 42.0
21 (2011080406) 65.7 1.63 102.8 2.54 75.0
22 (2011080412) 99.6 1.81 52.1 0.94 55.0
23 (2011080418) 76.7 1.48 95.5 1.85 64.0
24 (2011080500) 165.6 3.16 41.0 0.78 67.0
25 (2011080506) 65.1 0.97 87.6 1.30 75.0
26 (2011080512) 141.2 2.63 19.5 0.36 75.0
27 (2011080518) 64.8 0.78 157.9 1.91 100.0
28 (2011080600) 168.6 1.28 94.3 0.72 108.0
29 (2011080606) 166.8 1.50 40.8 0.37 83.0
30 (2011080612) 83.5 0.80 73.3 0.70 66.0
31 (2011080618) 83.2 0.66 34.8 0.28 112.0
32 (2011080700) 158.0 1.00 27.5 0.17 115.0
33 (2011080706) 81.7 0.55 46.8 0.32 86.0
34 (2011080712) 205.2 1.31 164.5 1.05 93.0

Average 107.0 68.2 88.5
Standarddev. 44.7 35.5 24.7

130E 130E
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Figure 4.  For typhoons Usagi, and Muifa, predictions using satellite images only (Case A) are shown in the 
left column with yellow squares, and predictions using satellite images along with velocity fields at 10 m height 
(Case B) are shown in the right column with blue squares. For both cases, center coordinates of the real typhoon 
are represented by red squares. Absolute errors, relative errors, and errors in kilometers for 24-hour predictions 
reported in annual reports on the activities of the Regional Specialized Meteorological Center (RSMC) Tokyo - 
Typhoon Center25,26 as a function of the sequence are summarized in tables.
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realistically, but also cloud patterns in the remaining parts of the image. In the sequence 6 of typhoon Rammasun, 
the prediction in Case B again resolves the spinning motion of the typhoon much better than the prediction in 
Case A (see Fig. 8(b)). Details, like the cloud structure east or north of the typhoon center, are generated much 
more reliably. In the sequence 15 of typhoon Maemi the cyclone has almost reached the Korean peninsula. Parts 
of the cloud structure start to dissipate, but a significant part follows a strong westerly wind at a high altitude, 
called jet stream. In Fig. 8(c) it can be noticed how the result in Case B reproduces the suction effect of the jet 
stream in a smoother way than the predicted image in Case A. Finally, in Fig. 8(d) the image in Case B highlights 
much better how surrounding clouds move into the eyewall than the image in Case A.

Discussion
The application of a deep learning method for typhoon track prediction in forms of typhoon center coordinates 
and cloud structures has been explored. Learning only from satellite images, 42.4% of all typhoon center predic-
tions have absolute errors of less than 80 km, 32.1% lie within a range of 80–120 km and the remaining 25.5% 
have an accuracy above 120 km. The averaged error lies at 95.6 km. In general, errors increase when typhoons 
undergo sudden northward or westward course changes. Predictions in this challenging regime get much more 
accurate, when satellite images are combined with data of the velocity field at 10 m height. In that case, 64.8% of 
all predictions are below 80 km, 27.7% lie within a range of 80–120 km and only 7.5% remain with an accuracy 
above 120 km. The averaged error could be reduced by 27.7% to 69.1 km. Furthermore, it has been shown that the 
GAN is able to generate images that reproduce cloud appearance.

From a user’s perspective, it is helpful to make predictions in a quicker and cheaper manner. Current pre-
dictions in many countries rely on highly expensive numerical simulations using the state-of-the-art supercom-
puters, of which acquisition is limited by few advanced countries. Furthermore, it is expected that the present 
deep-learning-based method can be utilized in combination with other conventional techniques, especially, for 

Neoguri 2014 Case A Case B RSMC
24-h pred.Sequence E(km) Erel E(km) Erel

5 (2014070612) 149.1 1.08 75.0 0.54 95.0
6 (2014070618) 132.0 0.85 86.5 0.56 95.0
7 (2014070700) 112.8 0.99 61.4 0.54 64.0
8 (2014070706) 90.6 0.54 56.0 0.33 38.0
9 (2014070712) 72.1 0.77 119.5 1.28 22.0
10 (2014070718) 167.7 1.00 59.6 0.36 41.0
11 (2014070800) 206.4 1.43 93.9 0.65 70.0
12 (2014070806) 95.2 0.55 95.2 0.55 89.0
13 (2014070812) 22.0 0.17 78.8 0.59 78.0
14 (2014070818) 132.9 0.99 78.6 0.59 24.0
15 (2014070900) 216.4 1.26 102.0
16 (2014070906) 323.8 2.50 131.0
17 (2014070912) 159.6 2.15 95.7 1.29 88.0

Average 144.6 81.8 72.1
Standarddev. 72.7 18.1 31.6
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Malakas 2016 Case A Case B RSMC
24-h pred.Sequence E(km) Erel E(km) Erel

5 (2016091600) 95.6 0.66 47.1 0.32 33.0
6 (2016091606) 58.3 0.42 65.8 0.47 15.0
7 (2016091612) 72.7 0.59 87.5 0.71 15.0
8 (2016091618) 37.8 0.36 78.3 0.75 30.0
9 (2016091700) 46.5 0.38 81.5 0.66 15.0
10 (2016091706) 96.9 0.72 88.6 0.66 46.0
11 (2016091712) 88.5 1.31 94.1 1.39 52.0
12 (2016091718) 44.2 0.97 44.2 0.97 40.0
13 (2016091800) 132.3 1.37 98.6 1.02 60.0
14 (2016091806) 22.5 0.25 132.2 1.49 73.0
15 (2016091812) 60.7 0.55 69.2 0.62 122.0
16 (2016091818) 77.6 0.62 141.3 1.13 189.0
17 (2016091900) 17.0 0.14 34.1 0.27 126.0
18 (2016091906) 37.5 0.26 137.0
19 (2016091912) 75.7 0.51 49.0
20 (2016091918) 96.5 0.50 111.7 0.58 86.0
21 (2016092000) 84.7 0.37 95.9 0.42 91.0

Average 67.3 84.7 69.4
Standarddev. 29.8 29.3 48.2
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Figure 5.  For typhoons Neoguri, and Malakas, predictions using satellite images only (Case A) are shown in the 
left column with yellow squares, and predictions using satellite images along with velocity fields at 10 m height 
(Case B) are shown in the right column with blue squares. For both cases, center coordinates of the real typhoon 
are represented by red squares. Absolute errors, relative errors, and errors in kilometers for 24-hour predictions 
taken from annual reports on the activities of the Regional Specialized Meteorological Center (RSMC) Tokyo - 
Typhoon Center27,28 as a function of the sequence are summarized in tables.
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non-user-biased analysis and decision making processes. Although, in the present study, predictions are con-
ducted for a 6-hour interval, extension of the prediction time-interval is straightforward once the acquisition 
of more satellite images is possible. To improve the prediction accuracy, the next step will be adding physical 
information to the input data, like the sea surface temperature, the surface pressure, and velocity fields at various 
heights. Just learning from satellite images that show the cloud structure and the typhoon center is a good starting 
point but not sufficient for learning whole complex phenomena that are responsible for the creation and motion 
of typhoons.

Methods
Satellite images.  Input satellite images, which were captured by satellites at the altitude of 35,786 km, have 
been provided by the Korean Meteorological Administration (KMA)30. They contain 76 typhoons from 1993 till 
2017 that hit or were about to hit the Korean peninsula. Whereas Hong et al.11 used satellite images directly, in this 
study pre-processing of the images is inevitable. During the 25 years of capture time, different satellites have been 
operating. Thus, raw images have different perspectives on the Korean peninsula. Three different types of image 
perspectives and pixel sizes are provided (see Fig. 9). The network takes images with the same pixel size and learns 
better if all images have the same or a similar perspective on the north-western Pacific Ocean.

Figure 9(a) shows an image of typhoon Rusa in August 2002 as an example for the first perspective of the first 
period from 1993 till 2010. The images have a pixel size of 512 × 512. Initially, the images have been generated by 
the Geostationary Meteorological Satellite (GMS) number 4 of Japan31. The GMS-4 satellite was replaced by the 
GMS-5 satellite in 1996 with a design life of five years. But the replacement failed and the GMS-5 had to operate 
for three more years, before the US National Oceanic & Atmospheric Administration (NOAA) helped out with 
its GOES-9 Satellite in 2003. Two years later Japan could use the Multi-functional Transport Satellite (MTSAT) 
type 1 R until 2010. All satellites used the Visible and Infrared Spin-Scan Radiometer (VISSR) technique to obtain 

Figure 6.  Satellite images and velocity fields at 10 m height of typhoon Neoguri at sequences 5 (a) and 11 (b). 
Black arrows indicate directions of positive zonal and meridional velocity components. (Source of satellite 
images: Korean Meteorological Administration (KMA). http://www.weather.go.kr/weather/images).

Error (km) Case A Percentage (%) Case B Percentage (%)

0–40 18 10.9 41 25.9

41–80 52 31.5 62 38.9

81–120 53 32.1 44 27.7

≥121 42 25.5 12 7.5

Table 1.  Frequency distribution for the prediction of all sequences for Case A (Only satellite images) and Case 
B (Satellite images combined with data of the velocity field at 10 m height).

https://doi.org/10.1038/s41598-019-42339-y
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visible and infrared spectrum mappings of the earth and its cloud cover. The upper black bar, containing the 
satellite name, the date and the time written in yellow, as well as the black frame are unnecessary information for 
the learning phase. Furthermore, the pixel size causes memory issues in the test phase. Thus, images have been 
cropped and resized to 250 × 238 pixels (see Fig. 9(d)).

The perspective of images captured between 2011 and 2014 is presented in Fig. 9(b). The image with the 
pixel size of 512 × 412 shows typhoon Neoguri that formed in July 2014. It has been captured by Korea’s first 
multi-purpose geostationary meteorological satellite, namely Communication, Ocean and Meteorological 
Satellite (COMS). As in the previous case, the upper black bar is cropped and the images are resized to 250 × 238 
pixels (see Fig. 9(e)). The view on the earth in Fig. 9(e) is similar to the view in Fig. 9(d).

An example for raw images of the remaining data is shown in Fig. 9(c). The operating satellite is the same 
like in the previous case. The 512 × 433 pixel shot shows typhoon Goni from August 2015. Except for a different 
thickness of the upper black bar, the pre-processing steps match with the previous case and lead to images like in 
Fig. 9(f).

All images have the ‘png’ format with three color channels (R(red)G(green)B(blue)). To improve the visibility 
of the country boarders, their color has been changed from yellow to blue. In total 1,628 images are stored, with 
a time step size of 6 hours between images. There are two accuracy criteria for the typhoon track prediction, a 
quantitative and a qualitative criteria. In the quantitative criterion, the difference between the coordinate of the 
predicted typhoon center and that of the ground truth is taken into consideration. In the qualitative criterion, the 
predicted shape of clouds and the shape of the ground truth cloud are compared.

Every satellite image has been labeled with a red square at the typhoon center. The latitudinal (φ) and the 
longitudinal (λ) coordinates of the typhoon centers are provided by the Japan Meteorological Agency (JMA)32. 
In order to label each satellite image with its red square, φ and λ coordinates have to be transfered to (x, y)-pixel 
coordinates in the image. This process is known as georeferencing and is illustrated in Fig. 10. Images are split 
into training and test data. The training data contain 1,389 images of 66 typhoons, the test data are 239 images of 
10 typhoons.

Velocity fields.  In order to help the GAN to better learn the movement of typhoons, the public dataset 
ERA-interim33 is employed. ERA-interim is a global atmospheric reanalysis starting from 1979 that has contin-
uously been updated until today. It uses a fixed version of a numerical weather prediction system (IFS - Cy31r2) 
to produce reanalyzed data. The available data have time steps of 6 hours and their dates fit to the satellite images 
described in the previous section. Although ERA-interim data cover the whole globe, for this work only the area 
around the Korean peninsula is selected. Raw data with grid resolution of 0.75 degrees are refined to 0.125 degrees 
by applying linear interpolation, which leads to a resolution of nearly 13.8 km34. Images from reanalysis data are 
generated with the software Panoply and the map type Lambert Conformal Conic to match the view of the sat-
ellite images35. In the present study, reanalysis data are used by the GAN to learn information about the surface 
velocity field at 10 m height. Figure 11 gives an example for typhoon Maemi. The velocity field in Fig. 11(b) is 

Figure 7.  Prediction of the sequence 6 (2003090918) for typhoon Maemi (Source of satellite images: Korean 
Meteorological Administration (KMA). http://www.weather.go.kr/weather/images).

https://doi.org/10.1038/s41598-019-42339-y
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contrasted with the satellite image in Fig. 11(a). Color changes in the zonal and meridional velocity components 
located in the white circles indicate a spinning motion of the typhoon.

Deep learning methodology.  The deep learning methodology is different for the training and the testing 
steps. Figure 12(a) shows the concept of adversarial training. For simplicity, a case is shown where only satel-
lite images function as input. As mentioned previously in this work, each full scale satellite image consists of 
three color channels (RGB). They are represented throughout Fig. 12 by three overlapped layers. Before using the 
training data as input images to the GAN they get cropped to a total number of 5,000,000 clips with a pixel size 
of 32 × 32. One clip contains a set of m consecutively cropped satellite images from the past (input, I) and one 
ground truth image.

Figure 8.  Generated images by using satellite images as input (Case A) in the left-most column, and images 
by using satellite images along with velocity fields at 10 m height (Case B) in the right-most column, compared 
to corresponding ground truth images in the middle column: (a) Sequence 11 of typhoon Violet, (b) sequence 
6 of typhoon Rammasun, (c) sequence 15 of typhoon Maemi and (d) sequence 5 of typhoon Usagi (Source of 
satellite images: Korean Meteorological Administration (KMA). http://www.weather.go.kr/weather/images).
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An important hyperparameter in this study is the number of input images (denoted by m). A high number of 
m increases memory usage and therefore the learning time. A low number might cause a shortage of input infor-
mation for the GAN. Three cases with m = 2, 4, and 6 are trained and tested. Using currently available satellite 
images, the computation with m = 4 is found to produce the best result. In case of m = 2, temporal variation of 
a typhoon seems not to be sufficiently captured, while in case of m = 6, the result is deteriorated due to reduced 
numbers of training data sets. Considering, for example, typhoon Maemi with 16 sequences, using m = 4 allows 
to start training from sequence 5 and provides a number of 12 training sequences. The choice of m = 6, on the 
other hand, only allows 10 training sequences, starting from sequence 7.

Cropped training clips are trained using variations of deep learning networks in a GAN-based video modeling 
architecture16. This architecture contains a pure convolutional neural network (CNN), so called generator, and a 
network that combines convolutional layers with fully connected layers (FC), so called discriminator. The gener-
ator network takes a clip, normalizes its pixel values from (0; 255) to (−1; 1), predicts a 32 × 32 part of a satellite 
image at a future occasion (output, G0), and denormalizes the predicted pixels from (−1; 1) to (0; 255). GANs 
are multi-scale networks, therefore the generator network generates images on different scales (G0, G1, G2, G3).  
Generated images with pixel sizes of 4 × 4, 8 × 8, and 16 × 16 function as additional inputs for the next bigger 
scale, as pointed out in Fig. 12(a). This helps to keep long-range dependencies and preserves high resolution 
information throughout the convolutional learning. The discriminator network, on the other hand, tries to clas-
sify between the generated and the ground truth images of each scale. The output layer provides a binary output 

Figure 9.  Images of typhoon Rusa in August 2002 as an example for the shots taken from 1993 to 2010 before 
(a) and after (d) preprocessing, images of typhoon Neoguri in July 2014 as an example for the shots taken from 
2011 to 2014 before (b) and after (e) pre-processing and images of typhoon Goni in August 2015 as an example 
for the shots taken from 2015 to 2017 before (c) and after (f) pre-processing (Source of satellite images: Korean 
Meteorological Administration (KMA). http://www.weather.go.kr/weather/images).

Figure 10.  Georeferencing of the typhoon center coordinates (Source of the satellite image: Korean 
Meteorological Administration (KMA). http://www.weather.go.kr/weather/images).
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(D), where 0 stands for a generated image and 1 means the ground truth image. Testing steps are done with full 
scale test data, containing images with 250 × 238 pixels. They are not cropped. As visualized in Fig. 12(b), input 
images are taken and normalized by the generator network which generates a full scale image at a future occasion 
and denormalizes it.

The pixel size of 32 × 32 is selected for efficient usage of GPU memory. Even the network is trained with small 
size clips (32 × 32), it can eventually learn the same weights of the network that are learned with larger size clips. 

Figure 11.  (a) Satellite image and (b) zonal [u] and meridional [v] velocity fields at 10 m height of typhoon 
Maemi on September 10th in 2003 at 0:00 Coordinated Universal Time (UTC) (Source of the satellite image: 
Korean Meteorological Administration (KMA). http://www.weather.go.kr/weather/images).

Figure 12.  Overall structure of the utilized GAN for (a) training and (b) testing (Source of satellite images: 
Korean Meteorological Administration (KMA). http://www.weather.go.kr/weather/images).
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This is because kernel sizes for convolutions are under 7 × 7, so the network learns spatial characteristics under 
the space size of 7 × 7 pixels. However, during tests, typhoon satellite images on larger size (250 × 238) patches are 
predicted. This is possible because of the fully convolutional architecture of the generator.

The configuration of the deep learning network is summarized in Table 2 (see16 for detailed algorithms). An 
open source code36 is employed with modifications in input channels so that it is capable of changing the number 
of prior sequences and of accounting for additional variables such as velocity fields. The number of channels 
(ch) depends on the type of input data. If the GAN takes satellite images only as input data, three channels are 
needed. If images of zonal and meridional velocity fields are added to the input set, ch increases to 5. The network 
is trained from scratch.

The generator model is trained to minimize a combination of loss functions as follows:

∑ λ λ λ= + +=L L L L1/4 , (1)generator k l
k

gdl gdl
k

adv adv
G k

0
3

2 2
,

where λl2 = 1, λgdl = 1, and λadv = 0.05. Let Gk(I) be the predicted image from a convolutional neural network of 
Gk and I( )k  be a 1

2k
 resized image from the provided ground truth image. The L k

2  loss function evaluates the 

explicit difference between the predicted and provided images as

= || − || .L G I I( ) ( ) (2)k
k k2 2

2

Generative techniques for video modeling are known to suffer from the blurriness16,37,38. To reduce the blurri-
ness, Mathieu et al.16 proposed a gradient difference loss function (GDL) and reported that a GAN with the GDL 
improves the blurriness compared to other methods including a recurrent neural network based method pro-
posed by Ranzato et al.38. The GDL, gdl

k , compares the difference between gradients of the predicted and pro-
vided images as
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where nx and ny are numbers of pixel in the width and the height of an image, and (i, j) is a pixel coordinate. adv
G k,  

loss function is applied to support the generator model to delude the discriminator network by generating images 
which are indistinguishable from the provided ground truth images as

=L L D G I( ( ( )), 1), (4)adv
G k

bce k k
,

where Lbce is the binary cross entropy loss function defined as

= − − − −L a b b a b a( , ) log( ) (1 )log(1 ), (5)bce

for scalars a and b between 0 and 1.
The discriminator model is trained to minimize a loss function as follows:

∑= + .=L L D I L D G I1
4

[ ( ( ( )),1) ( ( ( )),0)] (6)discriminator k bce k k bce k k0
3

Generator model (fully convolutional architecture)

Convolution layers (top row: feature map sizes, bottom row: kernel sizes)

For generating G0 For generating G1 For generating G2 For generating G3

ch × (m + 1), 128, 256, 512, 256, 128, 3 ch × (m + 1), 128, 256, 512, 256, 128 ch × (m + 1), 128, 256, 128, 3 ch × m, 128, 256, 128, 3

7 × 7, 5 × 5, 5 × 5, 5 × 5, 5 × 5, 7 × 7 5 × 5, 3 × 3, 3 × 3, 3 × 3, 3 × 3, 5 × 5 5 × 5, 3 × 3, 3 × 3, 5 × 5 3 × 3, 3 × 3, 3 × 3, 3 × 3

Discriminator model (convolution layers → max pooling layers → fully connected layers)

For output D0 For output D1 For output D2 For output D3

ch, 128, 256, 512, 128 ch, 128, 256, 256 ch, 64, 128, 128 ch, 64

7 × 7, 7 × 7, 5 × 5, 5 × 5 5 × 5, 5 × 5, 5 × 5 3 × 3, 3 × 3, 3 × 3 3 × 3

Max pooling layers (kernel sizes)

2 × 2 2 × 2 2 × 2 2 × 2

Fully connected layers (neuron numbers)

1024, 512, 1 1024, 512, 1 1024, 512, 1 512, 256, 1

Table 2.  Configuration of the deep learning network. The number of channels (ch) depends on the type of 
input data. If the GAN takes satellite images only as input data, three channels are needed. If images of zonal and 
meridional velocity fields are added to the input set, ch increases to 5. The number of input images (m) defines 
the temporal range of information from which the GAN learns. For the results in Cases A and B, m is set to 4, 
which means the GAN learns from information of the past 24 hours (4 × 6 hours).
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This supports the network not to be deluded by the generator model by extracting important features of 
typhoons in an unsupervised manner.

For each testing, the generator model is fed with m consecutive full scale satellite images from the past and 
generates a full scale typhoon satellite image at future occasion (see Fig. 12(b)).

Errors in the prediction of typhoon centers.  In the current study two different errors are investigated. 
The first one describes the distance between the predicted coordinate (φpred, λpred) and the real coordinate (φreal, 
λreal), named as an absolute error (E). E is calculated in kilometers (km) by applying the haversine formula39, with 
the earth radius R taken at the location of the real coordinate:

φ φ
φ φ

λ λ
=






− 




+





− 




.E R2 arcsin sin
2

cos cos sin
2 (7)

pred real
real pred

pred real2 2

However, the absolute error does not give sufficient information about the prediction quality. Tracks of slowly 
moving typhoons, for example, are more difficult to predict than tracks of fast ones. It is therefore necessary to 
introduce a relative error (Erel), that is calculated as follows:

φ φ
=

+ −
.

φ φ λ λ− − − −( ) ( )
E t E

R t t h
( )

2 arcsin sin cos ( )cos ( 6 )sin
(8)

rel
t t h

real real
t t h2 ( ) ( 6 )

2
2 ( ) ( 6 )

2
real real real real

This type of error considers the ratio between E and the distance that a typhoon has traveled over the last 
6 hours, where t stands for the time of a certain sequence.

Data Availability
All the data used in the present work are available upon request.
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