
1Scientific Reports | (2019) 9:7793 | https://doi.org/10.1038/s41598-019-42178-x

www.nature.com/scientificreports

Exploratory Gene Ontology
Analysis with Interactive
Visualization
Junjie Zhu   1, Qian Zhao2, Eugene Katsevich2 & Chiara Sabatti2,3

The Gene Ontology (GO) is a central resource for functional-genomics research. Scientists rely on
the functional annotations in the GO for hypothesis generation and couple it with high-throughput
biological data to enhance interpretation of results. At the same time, the sheer number of concepts
(>30,000) and relationships (>70,000) presents a challenge: it can be difficult to draw a comprehensive
picture of how certain concepts of interest might relate with the rest of the ontology structure. Here
we present new visualization strategies to facilitate the exploration and use of the information in the
GO. We rely on novel graphical display and software architecture that allow significant interaction. To
illustrate the potential of our strategies, we provide examples from high-throughput genomic analyses,
including chromatin immunoprecipitation experiments and genome-wide association studies. The
scientist can also use our visualizations to identify gene sets that likely experience coordinated changes
in their expression and use them to simulate biologically-grounded single cell RNA sequencing data, or
conduct power studies for differential gene expression studies using our built-in pipeline. Our software
and documentation are available at http://aegis.stanford.edu.

Since its inception, the Gene Ontology (GO)1 has empowered analyses of high-throughput molecular data.
Researchers often perform statistical tests using the GO to determine functional enrichments within their dis-
coveries2–4 and recently it has also been used to improve model architectures in machine learning applications5,6.
The GO hinges on two continuously evolving elements: 1) a collection of curated biological terms with semantic
hierarchical relationships and 2) annotations that link genes and gene products to specific terms. When associated
with a dataset, such as genes identified from differential gene expression testing7, a statistical testing strategy can
assign each GO term an “enrichment score”, which measures how genes previously annotated with this term are
enriched in the data. The large number of interrelated concepts8 and the evolving nature of the knowledge base,
while assuring the richness of GO information, also represent a challenge in defining appropriate testing strate-
gies9, interpreting and displaying results10, and ensuring their reproducibility11.

Data visualizations, by illustrating the number of terms, rendering the relations between them and display-
ing term annotations, can alleviate some of the aforementioned issues. The information in GO is organized as a
directed acyclic graph (DAG), where each node corresponds to a GO term and edges indicate relations such as
“part of ”, “a type of ”, etc. It is then natural to rely on the DAG structure of the GO for information visualization
(Supplementary Fig. 1). Indeed, there are a number of published tools that leverage the structure and can be
broadly divided in two groups: ones that are specialized for local graph characteristics, and ones that are opti-
mized for rendering global graph structures.

On the one hand, many existing GO tools focus on displaying a small subset of terms to reveal nuances of
the hierarchical relationships. For instance, one of the most commonly-used web interfaces, QuickGO12 allows
querying and browsing a single GO term along with its related terms (and annotations) as a DAG. REVIGO13
can present multiple selected terms in a semantic graph via different representations (e.g., its scatter and table
view, tree map view, and interactive graph view). Other tools feature displays where nodes and links can be
retrieved with more interactive features14–16, or where node enrichment scores can be highlighted with additional
customization17–19.

1Department of Electrical Engineering, Stanford University, Stanford, CA, USA. 2Department of Statistics, Stanford
University, Stanford, CA, USA. 3Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
Correspondence and requests for materials should be addressed to J.Z. (email: jjzhu@stanford.edu) or C.S. (email:
sabatti@stanford.edu)

Received: 26 October 2018

Accepted: 14 March 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-42178-x
http://orcid.org/0000-0001-7177-8694
http://aegis.stanford.edu
mailto:jjzhu@stanford.edu
mailto:sabatti@stanford.edu

2Scientific Reports | (2019) 9:7793 | https://doi.org/10.1038/s41598-019-42178-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

On the other hand, relatively fewer visualizations aim to simultaneously display the entire GO20,21, despite
extensive literature on large graph or network visualization22–26. In contrast to small graph displays, these tools are
typically not flexible enough to highlight node- or link-specific details due to numerous visual elements. However,
they can provide a global view of the graph, such as node clusters or overall hierarchies that are especially helpful
for understanding trends of term relationships or enrichment scores in the GO.

Our new open-source software AEGIS (Augmented Exploration of the GO with Interactive Simulations) aims
to bridge the merits of both visual approaches, and supports extensive interactions with the information coded
in the ontology. We link representations of local and global structures within the GO DAG by adopting the
focus-and-context framework, reminiscent of classical principles in visual information system design: overview
first, zoom and filter, then details-on-demand27. AEGIS capitalizes on the flexibility and power of efficient search
routines to render dynamic displays for real-time interactions. Not only can the users interact with the interface
to visualize their results that are output from existing pipelines with increasing degrees of specificity, they can
also choose any vantage point to explore the GO with our visualization prior to collecting their data or running
their pipelines. During the exploratory process, AEGIS allows them to extract biological information relevant for
simulations and hypothesis generation, as well as power calculations for study design.

Results
To increase interpretability and facilitate user interactions with the GO, we reasoned that it is key to both effec-
tively display granular information relative to a set of concepts of interest and provide a means to put them in the
larger context of the ontology. AEGIS achieves this objective by focus and context graphs customized for DAGs. It
couples a Sugiyama-style graph28 (the focus graph) that renders the hierarchical structure of a selected sub DAG
with a silhouette view (the context graph) that provides an indication of the overall number of nodes that are sim-
ilar to or related to the concepts in the sub DAG.

Both the focus and the context graphs are customizable in real time thanks to our customized data structure
and software system (Methods and Supplementary Figs 2–4). AEGIS complements the focus and context graphs
with interactive highlighting options and layouts, including the buoyant layout, a graph drawing strategy that
incorporates gene annotation information. The buoyant layout relies on a novel algorithm we developed, and
improves the interpretation of the hierarchical levels in the GO: terms that are assigned to the same level share a
similar number of annotated genes (Methods, Supplementary Algorithms, and Supplementary Note 1).

Unlike most GO visualizations that are used at the last step of the analysis to illustrate results, our visualization
strategies allow researchers to explore the ontology and plan experiments prior to data acquisition. With inter-
active features complementing the focus and context graphs, they can generate biologically plausible simulated
data and run power studies: in fact, interaction in AEGIS is not limited to customization of graph displays, but
includes multiple methods to identify a set of concepts of interest, generate hypotheses, and select study param-
eters (Methods and Supplementary Note 2). Unique to AEGIS, the context graph can conveniently summarize
the multiplicity of the tested hypotheses within the hierarchy, and the focus graph can magnify precise positions
of the non-null hypotheses which researchers aim to discover. Subsequently, they can visualize the dependencies
among the hypotheses and identify potential testing biases. As new testing strategies are emerging29,30, these
insights are valuable for benchmarking their performance and comparing their underlying assumptions.

We next resort to a number of biological examples that showcase the different aspects of our visualization
and its applications. While the main results below are renderings of static displays, we refer the reader to detailed
video tutorials and documentation of the examples (Supplementary Videos and Supplementary Note 3).

Focus and context graphs.  The focus and context graphs are two juxtaposed representations tailored to
balance the global structures and local details of a DAG with tens of thousands of nodes and links. The focus
graph displays precise term relationships and annotation information via a bona fide graph representation follow-
ing the Sugiyama style: nodes are arranged in different levels, with the roots at the top and a parent always above
its children so that all links are directed downwards (Fig. 1, left -hand side). We will discuss in the next section
the different options for assigning a node to a level, but it is important here to remark that levels are at the basis of
the coupling of the focus and context displays. The context graph is represented by a bar chart (Fig. 1, right -hand
side), capturing the node counts at each level of a larger reference DAG (by default the entire GO). The coupled
displays allow the viewer to understand how many nodes are on the same level of a concept of interest, and how
many are at higher or lower levels in the hierarchy.

While existing approaches that apply focus and context for generic graph visualizations31,32 can, in principle,
be used to visualize DAGs, their main function is to create graph distortion (also known as the fisheye view33)
in the node-link layout of their context to highlight their focus. In contrast, our silhouette representation of the
context graph capitalizes on the inherent hierarchical structure of DAGs and yields quantitative level-by-level
information.

To provide a concrete illustration, we used AEGIS to create a visualization of 27 significantly enriched GO
terms for hair color phenotypes from a genome-wide association study34 (Supplementary Note 3). By displaying
the ancestral terms, it becomes apparent that some of these concepts are more closely related than others: the
focus graph on the left-hand side of Fig. 1 identifies with roman numerals the most specific of the 27 terms, and
groups together the concepts with a most recent common ancestor. Aside from stylistic variations and possible
customizations, the focus graph resembles standard representations of the GO DAG3,12,28. The context graph
on the right-hand side, in contrast, is unique to AEGIS: the silhouette representation of the entire “biological
process” ontology DAG (~15,000 terms) allows us to indicate the locations of the approximately 1,000 concepts
related to the 27 query terms, highlighting, for example, how they include 907 descendants.

The focus and context graphs are achieved without overcrowding the display with numerous objects and with-
out appreciably increasing the computing time. Consequently, the gains in computational and representational

https://doi.org/10.1038/s41598-019-42178-x

3Scientific Reports | (2019) 9:7793 | https://doi.org/10.1038/s41598-019-42178-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

efficiency facilitate real-time interactions with the GO DAG. For example, an investigator can explore focus
graphs anchored on different terms, or customize selections of context graphs (Methods and Supplementary
Videos).

Buoyant layout that incorporates annotation.  The visualization in Fig. 1 exemplifies a standard option
for assigning a node to a level in a Sugiyama-style graph28: the level represents a node’s longest distance to the
roots. We refer to this leveled layout as the root-bound layout. Another standard option assigns a node to the
longest distance to the leaves —we call this the leaf-bound layout, and both options are available in AEGIS. The
root-bound and leaf-bound layouts achieve spatial compactness by minimizing the number of levels, but also have
their limitations. A viewer is naturally prone to interpret terms in the same level as sharing the same degree of
specificity. This might be approximately true in some contexts, but it is rather misleading in the case of the GO
DAG.

The ontology is created as a way of representing existing literature and the curation process focuses on
term-to-term relationships, not the overall graph structure. While it is always true that descendant terms are
more specific than their ancestors, the number of terms separating a concept from the root or leaf nodes is not
a reliable indication of its specificity. Some biological processes have been studied in detail, so that a number of
different terms exist to describe them, while others are known at a much less granular level. One can imagine a
well-studied concept separated from the root node by 10 concepts, while a less-studied concept of comparable
specificity might be only two nodes away from the root.

Fortunately, in the case of GO, we have another source of information on the level of specificity of a node: the
number of genes that annotate it. AEGIS leverages this in a novel Sugiyama-style graph, the buoyant layout, which
enjoys two properties: (1) a parent node is always placed at a level above its children; and (2) a node with fewer
annotations is never placed higher than any node with more annotations (Methods and Supplementary Note 1).

To contrast the renderings of the different layouts, we re-analyzed a chromatin immunoprecipitation sequenc-
ing (ChIP-seq) study3,35 (Supplementary Note 3), and selected two significant terms to highlight their differences
(Fig. 2). In the root-bound layout, for instance, the term “ruffle” (with 164 annotations) is at a higher level, and
therefore appears to be more generic than the term “actin cytoskeleton” (with 448 annotations) only because a
smaller number of concepts lie between “ruffle” and the root “cellular component”. The buoyant layout, in con-
trast, preserves a more interpretable node ordering based on the number of annotated genes. We also remark that
the buoyant layout is particularly meaningful when coupled with the context graph: each level corresponds to a
range of gene annotation counts (Supplementary Videos).

Interactive features and Gene Ontology navigation.  By choosing which nodes to display in the focus
graphs, against which context to interpret them, the user can navigate the GO and extract annotation information
useful for simulations and study designs. This process is further enhanced with many auxiliary interactive features
(Methods and Supplementary Videos). Here we start with showing how AEGIS facilitates extracting information

Figure 1.  Focus and Context Graph Representations of AEGIS. The GO DAGs are rendered by focus and
context graphs in AEGIS based on specific term queries. In this example, the focus graph on the left includes
a total of 27 significantly enriched functions, which are highlighted in blue; all of their ancestral nodes under
“biological processes” are displayed in purple. The least redundant leaf terms are identified with roman
numerals, and annotated with their GO identifiers. We use the root-bound layout, where the level of a node
corresponds to its longest distance to the root. The position of each node within its level in the focus graph
depends on semantic relationships: related nodes are grouped together. The context graph on the right captures
the entire GO DAG under the root of “biological processes” with 15,391 terms; the silhouette view indicates the
number of nodes in each level under the root-bound layout. Among the nodes in each level, the count of the
terms that are ancestral or descendent to the 27 terms (including themselves) are highlighted in purple.

https://doi.org/10.1038/s41598-019-42178-x

4Scientific Reports | (2019) 9:7793 | https://doi.org/10.1038/s41598-019-42178-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

from the GO for the purpose of simulations. We consider the task of generating artificial signals from single cell
RNA sequencing (scRNA-seq), where one is interested in discovering sub-populations of cells that have distinct
expression signatures. Rather than arbitrarily deciding which genes differ across simulated cell types36,37, AEGIS
allows a researcher to leverage the GO to identify a group of genes that are biologically related, specifying a signal
structure that is realistic, and model a cellular process the researcher is specifically interested in.

We simulated the transcriptomic profiles of single cells that differ by cell cycle state, a common confounding
factor in scRNA-seq data (Fig. 3). Previously, cell cycle genes have been collectively considered at the resolution
of more generic GO terms such as the cell cycle process (GO:0022402)38. With AEGIS we can explore and select
more detailed sub-processes: specifically we identified three descendants: G1/S transition of mitotic cell cycle
(GO:0000082), G2/M transition of mitotic cell cycle (GO:0000086), and mitotic cell cycle arrest (GO:0071850).
We then select 10 genes among the ones annotating each of these terms and refer to these 30 genes as the “signa-
ture genes”. Using standard procedures (Supplementary Note 3), we can then generate expression data for 120,
150, 100, 300 cells for G1/S transition, G2/M transition, cell cycle arrest, and control, respectively. Each cell type
has higher expression of its 10 signature genes, while the baseline cell type does not express any of these transition
markers.

A biologically sound ground truth can help contrast alternative visualizations of the data, such as PCA39 and
t-SNE40 (Fig. 3). As we expect, both methods organize the data points in a way consistent with the ground truth
cell types, with better cell type segregation under t-SNE. However, our functionally related gene set uncovers
how visualizations with PCA can offer additional insights: PCA-based biplots can indicate directions in the data
dominated by individual genes. These “gene directions” can in turn suggest “functional directions”, i.e., annotated
gene sets that collectively align in the subspaces spanned by the top principal components.

Power analysis for GO enrichment testing.  Study design is one of the contexts where it is most useful
for an investigator to interact with GO visualizations and AEGIS further enables them with a built-in power
simulator, filling in a surprising gap in the literature of enrichment tests2,18,41,42 (Methods). While enrichment
hypotheses are stated and tested at the level of GO terms, their truth status depends on the expression of the genes
associated to the concepts: often the same gene contributes to the annotation of multiple GO terms, so there are
logical dependencies between enrichment hypotheses. Without actual access to the GO structure, it is difficult
to simulate these dependencies, which have important consequences for power and interpretability of results.

AEGIS’ pipeline aids the investigator in multiple ways (Supplementary Fig. 5): 1) By allowing navigation
of the GO, it enables the investigator to select ontology terms that are representative of the biological process
under study and determine that all or some of the genes in their annotation are differentially expressed—thereby
anchoring the power study to biologically relevant hypotheses. 2) Once differentially expressed genes are speci-
fied, AEGIS identifies all the non-null enrichment hypotheses, according to one of two standard definitions (e.g.,
‘competitive’ or ‘self-contained’9, described in Supplementary Note 2), allowing the investigator to evaluate the
specificity of the hypotheses tested. 3) The built-in power simulator generates gene expression datasets using the
sample size and signal strength specified, carries out testing with a choice of testing and multiplicity correction
strategies, and computes power and False Discovery Rate (FDR). 4) The power results are displayed with refer-
ence to the relevant GO subDAG, using binder plots. By organizing nodes linearly while still displaying hierar-
chical information, this visualization facilitates the display of additional node-specific information such as term
names, bar plots or heatmaps for the summary statistics from the power analysis. The order of nodes is based
on the number of annotations (following the buoyant layout), and edges are rendered with curves that preserve
Sugiyama-style graph drawing rules.

Figure 2.  The Buoyant Graph Layout for the GO. Root-bound, leaf-bound and buoyant layouts. Each link
is assumed to point downwards from the root (indicated with a gray triangle), and the nodes are colored
depending on the number of genes with which they are annotated (or the node size), as in the legend on the
right-hand side. Orange and yellow triangles point to two significant cell components identified from the CHiP-
seq study by Valouev et al. Note that the root-bound layout places ruffle at a higher level that actin cytoskeleton,
despite the fact that ruffle is annotated with 164 genes, and likely a more specific compartment than actin
cytoskeleton, which is annotated with 488 genes. Similar size-level inconsistencies appear in the leaf-bound
layout, but the buoyant layout successfully resolves these issues across all the nodes.

https://doi.org/10.1038/s41598-019-42178-x

5Scientific Reports | (2019) 9:7793 | https://doi.org/10.1038/s41598-019-42178-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

As an example, we conducted a power analysis to guide a study with the goal of confirming the enrichment
of heart-specific developmental processes (Supplementary Note 3). We study how power changes with sample
size using two different strategies for formulating and testing the enrichment hypotheses: competitive nulls with
hypergeometric test, and self-contained nulls with p-values obtained with Simes’ combination rule (Fig. 4 and
Supplementary Note 2).

As previously documented9, increasing the number of samples leads to monotonically higher power for
self-contained tests, but can have limited impact on competitive tests that are based on a “gene sampling” (rather
than subject sampling) strategy. On the other hand, inspection of the binder plots reveals that the loss of power
of competitive/hypergeometric tests is mostly due to not rejecting rather non-specific hypotheses: they do single
out “heart development” (where the signal was planted) and “adult heart development” (whose annotation is very
similar).

We note that this strategy can be used to benchmark multiplicity-correction procedures, and we documented
the results of a comparison of DAGGER29, a recent sequential testing method, and the Benjamini-Hochberg
procedure (Supplementary Note 3).

Discussion
AEGIS employs multiple strategies to navigate the GO and present GO-based discoveries: the focus-and-context
graph, the buoyant layout, and the binder plot are novel visualizations that leverage graph-theoretic properties
of the GO DAG, extensive customization and interactive displays allow user engagement, and built-in power
simulations facilitate study design.

AEGIS is available both as a web-based application for simple GO exploration, and a downloadable software
package for hypothesis testing and further customization. Currently, version-controlled visualizations rendered
via AEGIS can be downloaded as vector graphics, such that attributes such as colors, annotations and node posi-
tions can be customized via common editing tools. The computation back-end and visualization front-end, along
with online documentation, tutorials, and videos, are open-source and portable. As such, existing GO analysis
pipelines can employ the functionalities of AEGIS to present and disseminate their results. For example, our cur-
rent pipeline is compatible with emerging GO testing strategies and multiple comparison procedures3,29,30, and it
also has the flexibility to support the analyses of a broader range of data input types with these options. Moreover,

Figure 3.  Simulated scRNA-seq with Cell Cycle Signatures. (a) Heatmap. Gene expression signatures for cells in
G1/S transition (120 cells), G2/M transition (150 cells), cell cycle arrest (100 cells), and a baseline cell type (300
cells, with no cell cycle signature). The first 30 genes are cell type specific signatures used for the simulation: 10
randomly selected from each of the set of gene annotating the three GO terms corresponding to G1/S transition,
G2/M transition, and cell cycle arrest, respectively. The last 10 genes are selected at random from the total of
remaining 2,030 genes for which expression was generated using a zero-inflated negative binomial models
with mean parameters varying with cell types. (b) Biplot on the top 2 principal components (PCs). The biplot
includes the first and second PCs and each point represents individual cells projected in this space. The vector
arrows are the projection of the 30 signature genes colored by their annotation group, and those with largest
magnitude per group are indicated. The point coordinates and the gene vectors were scaled (while preserving
the inner products) to fit the display space. (c) t-SNE 2D embedding. The t-SNE visualization of the cells also
highlights the four distinct cell sub-populations and processes they are enriched in. The t-SNE was computed
based on the top 10 PCs of the data. The scale of the t-SNE plot is arbitrary.

https://doi.org/10.1038/s41598-019-42178-x

6Scientific Reports | (2019) 9:7793 | https://doi.org/10.1038/s41598-019-42178-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

the visualization strategies can potentially be transferred to other ontologies3, such as the Plant Ontology and
Human Disease Ontology. For ontologies where annotations are not limited to gene sets, we can extend the
buoyant layout to encode other side information associated with each term to render interpretable leveled graph
layouts using their specific constraints.

Last but not least, the current visualization framework was developed with anecdotal inputs from several
researchers who have extensively performed GO analysis; we hope more users can evaluate the program on differ-
ent web platforms and provide us feedback through a user survey (available on our documentation website). The
results from the survey could help improve the front-end design of AEGIS, allow us to include more interactions,
and thus extend its usefulness to other kinds of users.

Methods
GO data preprocessing.  The analysis in this manuscript is based on the GO version: release-2018-06-21
(format version: 1.2) with gene annotations downloaded from the National Center for Biotechnology Information
(NCBI) gene2go table (ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz, release-2018-06-21). The open-source soft-
ware goatools (https://github.com/tanghaibao/goatools) was used to parse these files. For the associations, all
evidence types are included as default3. All relationships (e.g., “is a”, “part of ”, “has part”, or “regulates”) for the GO
terms were used for the cellular component ontology, but only “is a” relationships were kept for the “biological
process” ontology.

To handle the redundancy of GO terms during hypothesis testing, we developed a DAG refinement algorithm,
which also preserves the semantic relationships in the original DAG (Supplementary Algorithm 1). Essentially,
the algorithm iteratively removes a parent if one of its children is annotated to the exact same gene set. DAG
refinement is optional for visualization but is strongly recommended for hypothesis testing, because if a parent
and a child share the exact same gene sets, the corresponding test statistics would be identical and unnecessarily
increase the burden of testing multiplicity. Further, the user can optionally filter the node-size range to remove
overly generic or specific terms, a function commonly used in gene set testing tools3. We found that other works
rely on DAG reduction approaches for similar reasons3,6, however, we were unable to identify a full algorithmic
description or justification of the process. Thus, our algorithmic description is also accompanied with its theoret-
ical justification (Supplementary Note 1).

Customization of the context graph.  The context graph is the entire GO by default, but it can be nar-
rowed to a subDAG by specifying a set of context anchors: any GO terms can be chosen as anchors, playing one
of three roles in identifying the sub-DAG: root, leaf or waypoint. Selecting root anchors will result in a DAG that

Figure 4.  Binder plots, Heatmaps and Box Plots for the Heart Development Case Study. (a,b) All the genes
from those annotating the term “adult heart development” (with node border marked blue and ancestors
indicated in blue as well) and defined as differentially expressed. This defined a set of non-null hypotheses for
the competitive and the self-contained framework, all displayed in the binder plots, rooted at “animal organ
development”. In each binder plot, the non-null terms relative to the appropriate hypothesis are shown with
black text: for completeness and ease of comparison, the binder plot for the competitive tests includes in gray
three null terms related to the non-nulls. The terms are ordered by descending node sizes, and the different
levels are distinguished by alternating shades of green. The heatmaps highlight the fraction of times a particular
node is rejected across 100 repetitions per sample size regime. (c) The box plots in the bottom portion of the
displays summarize the false discovery proportion (at level 0.1) and empirical power across all nodes. The
Benjamini-Hochberg procedure was used for multiple testing adjustment.

https://doi.org/10.1038/s41598-019-42178-x
https://github.com/tanghaibao/goatools

7Scientific Reports | (2019) 9:7793 | https://doi.org/10.1038/s41598-019-42178-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

includes all their descendants; leaf anchors result in a DAG that only includes their ancestors; and way-point
anchors result in a DAG which include both their descendants and ancestors (Supplementary Fig. 2). This pro-
cedure can be seen as a way to eliminate nodes that have no semantic relationship with the context anchors. The
induced subDAG can be further processed using DAG refinement.

Once the context is specified, the focus graph can be similarly specified with focus anchors, which can be
defined as waypoint or leaf. If these anchors are not specified, the default would be the the context anchors as leaf
anchors. In order to make sure that the number of nodes in the focus graph is small enough to allow interaction,
two constraints are implemented on the sizes of the displayed subDAG: 1) we limit the number of focus anchors;
and 2) descendants beyond the immediate children of the focus anchors are displayed only when the the size of
the resulting focus graph is predicted to be smaller than a threshold. Both these parameters can be adjusted.

AEGIS supports three layouts for the focus graph: root-bound, leaf-bound, or buoyant. The first two are stand-
ard topological layouts28, while the buoyant layout is new and described below. Given a context graph, one can
change the focus anchors in the focus graph in multiple interactive ways, including key word search, node selec-
tion, or random draws of nodes from a specific level (Supplementary Videos).

Buoyant layout and the bubble float algorithm.  For graphical displays of the GO DAG, a buoyant
layout requires two constraints: each parent node should be placed at a higher level than all of its children (topo-
logical constraint) and a node annotated with a smaller number of genes should never be placed higher than any
larger node (descending node size constraint). The bubble float algorithm aims to generate the buoyant layout based
on the two constraints. It starts by initializing the layout by lexicographically sorting all the nodes according to (1)
descending ordering of the node size and (2) ascending ordering of the longest distance to the root. The remain-
der of the algorithm consists in repeated applications, starting from the bottom of the graph, of a float operation
that merges multiple nodes into a layer so long as the two constraints remain satisfied. We show that the bubble
float algorithm satisfies both the topological constraint and the descending node size constraint during initiali-
zation and at each iteration. In addition, the necessary and sufficient conditions of the buoyant layout are proven
theoretically, such that it is guaranteed to exist for any GO DAG (Supplementary Note 1).

The resulting number of levels of the buoyant layout is always equal to or greater than that of the root-bound
layout (Fig. 2), because the latter only requires the topological constraint. Particular to the GO, this can be advan-
tageous when too many nodes are displayed and could be more spread out by levels. Thus, we also provide a
parameter to control the maximum span of node sizes on each level (Supplementary Algorithm 2).

Once the level of each node in the DAG is determined, what remains is the ordering of the nodes in each
layer for the focus graph. Computing the optimal ordering of nodes in each level that minimizes edge crossings
between layers reduces to the problem of bipartite crossing minimization, which is unfortunately NP-hard43. Yet,
there exist many graph drawing heuristics, which we build upon to determine the layout of the focus graph:
we group anchors together if they are semantically related, add exclusive ancestor and descendant nodes to the
respective groups, and separate these groups the nodes during display (Fig. 1, Supplementary Algorithm 3). The
grouping delivers a clearer interpretation of the focus anchors and their relatives. In contrast to the focus graph
layout, the rendering of the bar layout of the context graph does not require node ordering at each layer. Because
the representation only concerns the node counts, the computation cost for the context graph is negligible.

Software architecture.  The specifications of the context and focus graphs, choices of different layouts, and
states in the interaction process can be combinatorial. To efficiently support the graphical rendering and inter-
action, we created a new data hierarchy: a data object includes 1) primary attributes that are invariant across any
context and focus representations; 2) secondary attributes that can vary under different choices of the context
graph, but are invariant to what the focus graph is; 3) tertiary attributes that can vary with the choice of the focus
graph and interactions on the graph. All these attributes collectively define how an object is displayed on the
front-end interface, but, because some of the attributes can be expensive to compute, we use this hierarchy to
reduce the space and time needed for computations (Supplementary Fig. 3). For example, a term node displayed
in the GO can contain several attributes in the front-end display system, including:

	 1.	 Its gene annotations, p-values computed from statistical tests, or node-specific power;
	 2.	 Its hierarchical level in the context graph in root-bound, leaf-bound, and buoyant layouts; and
	 3.	 Its horizontal and vertical coordinates in the focus graph display.

During each frame of rendering in the web browser (due to user interaction or animation for the focus graph),
Attribute 3 is more frequently updated on the client-side, but does not require any communication with the
back-end server. The heavier computation needed for Attribute 2 takes place on the server-side because it depends
on the entire GO structure, but, because the context is typically updated less frequently, the total communication
cost is insignificant. Further, computations for Attribute 1 do not change with context or focus graph updates
and do not need to be recomputed for layout and interaction purposes, so they can be seen as pre-computations
prior to rendering the visualization. As such, statistical results, especially power calculations, in Attribute 1 are
computed on the server for each experiment setup, and then displayed on the client for interactive interpretation
(as shown in Supplementary Videos). Similarly, updating gene annotations for a specific node requires significant
data communication with the GO and gene annotation databases, as well additional text file parsing (which can
take up to minutes depending on Internet connection), but, fortunately, this computation only occurs once when
the server starts running the program.

To systematically integrate this data hierarchy, we created new software libraries to define the data classes and
perform the core algorithms (Supplementary Fig. 4). We also utilized state-of-the-art Python packages to query
and parse GO ontology databases, and incorporated Flask, a Python micro-framework to deliver server-side

https://doi.org/10.1038/s41598-019-42178-x

8Scientific Reports | (2019) 9:7793 | https://doi.org/10.1038/s41598-019-42178-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

computations. All of the user interactions were developed based on commonly-used JavaScript packages: jQuery.
js and D3.js to support lightweight front-end computations on the client side. Despite the size of a DAG with tens
of thousands of nodes, our computational framework and system architecture offer the advantage of minimal
time and space required for interactions with the full-scale data. As a result, our application does not require
expensive resources to perform all the computations in the background, and reduces the need to be hosted as a
centralized web portal. All the development and demonstrations were performed on a MacBook Pro laptop with
a 2.8 GHz i7 processor with 8 Virtual Cores and 16GB RAM. The interaction updates in the front-end interface
each take less than 0.1 seconds.

Power analysis workflow.  The power analysis for GO enrichment testing in RNA-seq studies requires three
ingredients: 1) the ground truth: a priori defined truly differentially expressed genes, as well as whether each GO
term is a true null or non-null hypothesis; 2) the data: the gene expression matrix and term-specific p-values;
and (3) the statistical procedure: testing methods to select which terms are significant. The selected ground truth
genes determine if a GO term is a true null hypothesis or not, and there are two distinct types of null hypothe-
sis to be considered: the self-contained null and the competitive null9. We say that a GO term is a self-contained
null if no gene associated with the term is truly differentially expressed; a term is a competitive null if the genes
associated with this term are at most as often differentially expressed as the genes not associated with this term
(Supplementary Note 2).

To generate the data, AEGIS takes the selected truly differentially expressed genes, effect size βeffect and sample
sizes ncontrol, ncase as parameters to generate g-dimensional gene expression matrices for the control samples and
case samples. For simplicity, the gene expression values for the controls are sampled from N (0, I), a multivariate
normal distribution with a length-g zero mean vector and a covariance matrix equal to the identity matrix; and
the cases are similarly sampled from N (µ, I), where µ is vector of values equal to βeffect only at the truly differen-
tially expressed genes and 0 otherwise. This vanilla model can be extended for more complicated scenarios: for
example, the single cell RNA-seq simulation uses the negative binomial model instead and imposes additional
zero values in the expression matrix, also known as as “drop-outs” (Supplementary Note 3). Further, the assump-
tion that the gene measurements are uncorrelated can be relaxed given the knowledge of platform-specific noise
patterns.

For testing, a total of g gene p-values are obtained based on a two sample t-test; these are the ingredients to
determine GO term-specific p-values. For the self-contained hypothesis, the Simes’ combination rule aggregates
all the gene p-values annotated with a GO term to obtain the term p-value; for the competitive hypothesis, the
hypergeometric test is based on first selecting significant genes based on a gene-wide significance threshold, and
testing whether these genes are independent of those annotated to a specific GO term (Supplementary Note 2).
For either case, we control the false discovery rate at level q using the Benjamini-Hochberg (BH) procedure. Note
that this pipeline is modifiable: other methods, such as Bonferroni correction or DAGGER, can replace BH for
multiplicity correction (Supplementary Note 3).

Without loss of generality, let A1 be the set of non-null terms for a particular type of null hypothesis, and let
R be the set of terms rejected by the appropriate procedure. Then, the (empirical) power and false discovery pro-
portion (FDP) are defined as follows:

A R
A

R A
R

Power
max { , 1 }

, FDP \
max { , 1 }

1

1

1∩=
| |

| | |
=

| |
| | |

where |·| denotes the size of the set, and\denotes set difference. For a particular power calculation, we fix the
ground truth and repeat the data generation process to obtain multiple realizations of Power and FDP, in order to
infer the power as well as the false discovery rate (FDR) of detecting the true non-nulls.

References
	 1.	 Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nature Genetics 25, 25 (2000).
	 2.	 Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression

profiles. Proceedings of the National Academy of Sciences 102, 15545 LP–15550 (2005).
	 3.	 McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nature Biotechnology 28, 495 (2010).
	 4.	 Schmid, P. R., Palmer, N. P., Kohane, I. S. & Berger, B. Making sense out of massive data by going beyond differential expression.

Proceedings of the National Academy of Sciences 109, 5594 LP–5599 (2012).
	 5.	 Kulmanov, M., Khan, M. A. & Hoehndorf, R. DeepGO: predicting protein functions from sequence and interactions using a deep

ontology-aware classifier. Bioinformatics 34, 660–668 (2018).
	 6.	 Ma, J. et al. Using deep learning to model the hierarchical structure and function of a cell. Nature Methods 15, 290 (2018).
	 7.	 Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnology 31, 46 (2012).
	 8.	 Smith, B. et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnology

25, 1251 (2007).
	 9.	 Goeman, J. J. & Bühlmann, P. Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23,

980–987 (2007).
	10.	 Tomczak, A. et al. Interpretation of biological experiments changes with evolution of the Gene Ontology and its annotations.

Scientific Reports 8, 5115 (2018).
	11.	 Haynes, W. A., Tomczak, A. & Khatri, P. Gene annotation bias impedes biomedical research. Scientific Reports 8, 1362 (2018).
	12.	 Binns, D. et al. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25, 3045–3046 (2009).
	13.	 Supek, F., BoŠkunca, N., Šnjak, M. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one 6,

e21800 (2011).
	14.	 Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research

13, 2498–2504 (2003).
	15.	 Sealfon, R. S. G., Hibbs, M. A., Huttenhower, C., Myers, C. L. & Troyanskaya, O. G. GOLEM: an interactive graph-based gene-

ontology navigation and analysis tool. BMC Bioinformatics 7, 443 (2006).

https://doi.org/10.1038/s41598-019-42178-x

9Scientific Reports | (2019) 9:7793 | https://doi.org/10.1038/s41598-019-42178-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

	16.	 Hinderer, E. W., Flight, R. M. & Moseley, H. N. B. GOcats: A tool for categorizing Gene Ontology into subgraphs of user-defined
concepts. bioRxiv (2018).

	17.	 Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in
ranked gene lists. BMC bioinformatics 10, 48 (2009).

	18.	 Wang, J., Vasaikar, S., Shi, Z., Greer, M. & Zhang, B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene
set enrichment analysis toolkit. Nucleic Acids Research 45, W130–W137 (2017).

	19.	 Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks.
Bioinformatics 25, 1091–1093 (2009).

	20.	 Pareja-Tobes, P., Tobes, R., Manrique, M., Pareja, E. & Pareja-Tobes, E. Bio4j: a high-performance cloud-enabled graph-based data
platform. bioRxiv (2015).

	21.	 Heberle, H., Carazzolle, M. F., Telles, G. P., Meirelles, G. V. & Minghim, R. CellNetVis: a web tool for visualization of biological
networks using force-directed layout constrained by cellular components. BMC Bioinformatics 18, 395 (2017).

	22.	 Bastian, M., Heymann, S. & Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In International
AAAI Conference on Weblogs and Social Media (2009).

	23.	 Merico, D., Gfeller, D. & Bader, G. D. How to visually interpret biological data using networks. Nature Biotechnology 27, 921 (2009).
	24.	 van Ham, F. & Perer, A. Search, Show Context, Expand on Demand: Supporting Large Graph Exploration with Degree-of-Interest.

IEEE Transactions on Visualization and Computer Graphics 15, 953–960 (2009).
	25.	 Gehlenborg, N. et al. Visualization of omics data for systems biology. Nature Methods 7, S56 (2010).
	26.	 Baryshnikova, A. Systematic Functional Annotation and Visualization of Biological Networks. Cell Systems 2, 412–421 (2016).
	27.	 Shneiderman, B. The eyes have it: A task by data type taxonomy for information visualizations. In The Craft of Information

Visualization, 364–371 (Elsevier 2003).
	28.	 Sugiyama, K., Tagawa, S. & Toda, M. Methods for visual understanding of hierarchical system structures. IEEE Transactions on

Systems, Man, and Cybernetics 11, 109–125 (1981).
	29.	 Ramdas, A., Chen, J., Wainwright, M. J. & Jordan, M. I. DAGGER: A sequential algorithm for FDR control on DAGs. arXiv preprint

arXiv. 1709, 10250 (2017).
	30.	 Kerepesi, C., DarÓczy, B., Sturm, A., Vellai, T. & Benczúr, A. Prediction and characterization of human ageing-related proteins by

using machine learning. Scientific Reports 8, 4094 (2018).
	31.	 Jankun-Kelly, T. J. & Ma, K.-L. MoireGraphs: radial focus + context visualization and interaction for graphs with visual nodes. In

IEEE Symposium on Information Visualization 2003 (IEEE Cat. No. 03TH8714), 59–66 (2003).
	32.	 Du, F., Cao, N., Lin, Y.-R., Xu, P. & Tong, H. isphere: Focus + context sphere visualization for interactive large graph exploration. In

Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 2916–2927 (ACM, 2017).
	33.	 Sarkar, M. & Brown, M. H. Graphical fisheye views of graphs. In Proceedings of the SIGCHI conference on Human factors in computing

systems, 83–91 (ACM, 1992).
	34.	 Hysi, P. G. et al. Genome-wide association meta-analysis of individuals of European ancestry identifies new loci explaining a

substantial fraction of hair color variation and heritability. Nature Genetics 50, 652–656 (2018).
	35.	 Valouev, A. et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nature Methods 5, 829 (2008).
	36.	 Huang, M. et al. SAVER: gene expression recovery for single-cell RNA sequencing. Nature Methods 15, 539–542 (2018).
	37.	 Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential expression analysis. Nature Methods 15, 255

(2018).
	38.	 Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden

subpopulations of cells. Nature Biotechnology 33, 155 (2015).
	39.	 Jolliffe, I. Principal component analysis. In International encyclopedia of statistical science, 1094–1096 (Springer, 2011).
	40.	 van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. Journal of machine learning research 9, 2579–2605 (2008).
	41.	 Mi, H. et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool

enhancements. Nucleic Acids Research 45, D183–D189 (2017).
	42.	 Reimand, J. et al. g:Profilera web server for functional interpretation of gene lists (2016 update). Nucleic Acids Research 44,

W83–W89 (2016).
	43.	 Eades, P. & Wormald, N. C. Edge crossings in drawings of bipartite graphs. Algorithmica 11, 379–403 (1994).

Acknowledgements
C.S. and J.Z. were supported by NSF DMS 1712800 and Stanford Discovery Innovation Fund. E.K. was
supported by a Hertz Foundation Fellowship. The authors would like to thank Stanislaw Antol for advice on web
development.

Author Contributions
J.Z. conceived, designed, and developed the software. Q.Z. developed the written and video tutorials. J.Z. and E.K.
performed analysis of the case studies. J.Z. and C.S. wrote the manuscript. All authors discussed the results and
commented on the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-42178-x.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019

https://doi.org/10.1038/s41598-019-42178-x
https://doi.org/10.1038/s41598-019-42178-x
http://creativecommons.org/licenses/by/4.0/

	Exploratory Gene Ontology Analysis with Interactive Visualization

	Results

	Focus and context graphs.
	Buoyant layout that incorporates annotation.
	Interactive features and Gene Ontology navigation.
	Power analysis for GO enrichment testing.

	Discussion

	Methods

	GO data preprocessing.
	Customization of the context graph.
	Buoyant layout and the bubble float algorithm.
	Software architecture.
	Power analysis workflow.

	Acknowledgements

	Figure 1 Focus and Context Graph Representations of AEGIS.
	Figure 2 The Buoyant Graph Layout for the GO.
	﻿Figure 3 Simulated scRNA-seq with Cell Cycle Signatures.
	﻿Figure 4 Binder plots, Heatmaps and Box Plots for the Heart Development Case Study.

