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Exploratory Gene Ontology 
Analysis with Interactive 
Visualization
Junjie Zhu   1, Qian Zhao2, Eugene Katsevich2 & Chiara Sabatti2,3

The Gene Ontology (GO) is a central resource for functional-genomics research. Scientists rely on 
the functional annotations in the GO for hypothesis generation and couple it with high-throughput 
biological data to enhance interpretation of results. At the same time, the sheer number of concepts 
(>30,000) and relationships (>70,000) presents a challenge: it can be difficult to draw a comprehensive 
picture of how certain concepts of interest might relate with the rest of the ontology structure. Here 
we present new visualization strategies to facilitate the exploration and use of the information in the 
GO. We rely on novel graphical display and software architecture that allow significant interaction. To 
illustrate the potential of our strategies, we provide examples from high-throughput genomic analyses, 
including chromatin immunoprecipitation experiments and genome-wide association studies. The 
scientist can also use our visualizations to identify gene sets that likely experience coordinated changes 
in their expression and use them to simulate biologically-grounded single cell RNA sequencing data, or 
conduct power studies for differential gene expression studies using our built-in pipeline. Our software 
and documentation are available at http://aegis.stanford.edu.

Since its inception, the Gene Ontology (GO)1 has empowered analyses of high-throughput molecular data. 
Researchers often perform statistical tests using the GO to determine functional enrichments within their dis-
coveries2–4 and recently it has also been used to improve model architectures in machine learning applications5,6. 
The GO hinges on two continuously evolving elements: 1) a collection of curated biological terms with semantic 
hierarchical relationships and 2) annotations that link genes and gene products to specific terms. When associated 
with a dataset, such as genes identified from differential gene expression testing7, a statistical testing strategy can 
assign each GO term an “enrichment score”, which measures how genes previously annotated with this term are 
enriched in the data. The large number of interrelated concepts8 and the evolving nature of the knowledge base, 
while assuring the richness of GO information, also represent a challenge in defining appropriate testing strate-
gies9, interpreting and displaying results10, and ensuring their reproducibility11.

Data visualizations, by illustrating the number of terms, rendering the relations between them and display-
ing term annotations, can alleviate some of the aforementioned issues. The information in GO is organized as a 
directed acyclic graph (DAG), where each node corresponds to a GO term and edges indicate relations such as 
“part of ”, “a type of ”, etc. It is then natural to rely on the DAG structure of the GO for information visualization 
(Supplementary Fig. 1). Indeed, there are a number of published tools that leverage the structure and can be 
broadly divided in two groups: ones that are specialized for local graph characteristics, and ones that are opti-
mized for rendering global graph structures.

On the one hand, many existing GO tools focus on displaying a small subset of terms to reveal nuances of 
the hierarchical relationships. For instance, one of the most commonly-used web interfaces, QuickGO12 allows 
querying and browsing a single GO term along with its related terms (and annotations) as a DAG. REVIGO13 
can present multiple selected terms in a semantic graph via different representations (e.g., its scatter and table 
view, tree map view, and interactive graph view). Other tools feature displays where nodes and links can be 
retrieved with more interactive features14–16, or where node enrichment scores can be highlighted with additional 
customization17–19.
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On the other hand, relatively fewer visualizations aim to simultaneously display the entire GO20,21, despite 
extensive literature on large graph or network visualization22–26. In contrast to small graph displays, these tools are 
typically not flexible enough to highlight node- or link-specific details due to numerous visual elements. However, 
they can provide a global view of the graph, such as node clusters or overall hierarchies that are especially helpful 
for understanding trends of term relationships or enrichment scores in the GO.

Our new open-source software AEGIS (Augmented Exploration of the GO with Interactive Simulations) aims 
to bridge the merits of both visual approaches, and supports extensive interactions with the information coded 
in the ontology. We link representations of local and global structures within the GO DAG by adopting the 
focus-and-context framework, reminiscent of classical principles in visual information system design: overview 
first, zoom and filter, then details-on-demand27. AEGIS capitalizes on the flexibility and power of efficient search 
routines to render dynamic displays for real-time interactions. Not only can the users interact with the interface 
to visualize their results that are output from existing pipelines with increasing degrees of specificity, they can 
also choose any vantage point to explore the GO with our visualization prior to collecting their data or running 
their pipelines. During the exploratory process, AEGIS allows them to extract biological information relevant for 
simulations and hypothesis generation, as well as power calculations for study design.

Results
To increase interpretability and facilitate user interactions with the GO, we reasoned that it is key to both effec-
tively display granular information relative to a set of concepts of interest and provide a means to put them in the 
larger context of the ontology. AEGIS achieves this objective by focus and context graphs customized for DAGs. It 
couples a Sugiyama-style graph28 (the focus graph) that renders the hierarchical structure of a selected sub DAG 
with a silhouette view (the context graph) that provides an indication of the overall number of nodes that are sim-
ilar to or related to the concepts in the sub DAG.

Both the focus and the context graphs are customizable in real time thanks to our customized data structure 
and software system (Methods and Supplementary Figs 2–4). AEGIS complements the focus and context graphs 
with interactive highlighting options and layouts, including the buoyant layout, a graph drawing strategy that 
incorporates gene annotation information. The buoyant layout relies on a novel algorithm we developed, and 
improves the interpretation of the hierarchical levels in the GO: terms that are assigned to the same level share a 
similar number of annotated genes (Methods, Supplementary Algorithms, and Supplementary Note 1).

Unlike most GO visualizations that are used at the last step of the analysis to illustrate results, our visualization 
strategies allow researchers to explore the ontology and plan experiments prior to data acquisition. With inter-
active features complementing the focus and context graphs, they can generate biologically plausible simulated 
data and run power studies: in fact, interaction in AEGIS is not limited to customization of graph displays, but 
includes multiple methods to identify a set of concepts of interest, generate hypotheses, and select study param-
eters (Methods and Supplementary Note 2). Unique to AEGIS, the context graph can conveniently summarize 
the multiplicity of the tested hypotheses within the hierarchy, and the focus graph can magnify precise positions 
of the non-null hypotheses which researchers aim to discover. Subsequently, they can visualize the dependencies 
among the hypotheses and identify potential testing biases. As new testing strategies are emerging29,30, these 
insights are valuable for benchmarking their performance and comparing their underlying assumptions.

We next resort to a number of biological examples that showcase the different aspects of our visualization 
and its applications. While the main results below are renderings of static displays, we refer the reader to detailed 
video tutorials and documentation of the examples (Supplementary Videos and Supplementary Note 3).

Focus and context graphs.  The focus and context graphs are two juxtaposed representations tailored to 
balance the global structures and local details of a DAG with tens of thousands of nodes and links. The focus 
graph displays precise term relationships and annotation information via a bona fide graph representation follow-
ing the Sugiyama style: nodes are arranged in different levels, with the roots at the top and a parent always above 
its children so that all links are directed downwards (Fig. 1, left -hand side). We will discuss in the next section 
the different options for assigning a node to a level, but it is important here to remark that levels are at the basis of 
the coupling of the focus and context displays. The context graph is represented by a bar chart (Fig. 1, right -hand 
side), capturing the node counts at each level of a larger reference DAG (by default the entire GO). The coupled 
displays allow the viewer to understand how many nodes are on the same level of a concept of interest, and how 
many are at higher or lower levels in the hierarchy.

While existing approaches that apply focus and context for generic graph visualizations31,32 can, in principle, 
be used to visualize DAGs, their main function is to create graph distortion (also known as the fisheye view33) 
in the node-link layout of their context to highlight their focus. In contrast, our silhouette representation of the 
context graph capitalizes on the inherent hierarchical structure of DAGs and yields quantitative level-by-level 
information.

To provide a concrete illustration, we used AEGIS to create a visualization of 27 significantly enriched GO 
terms for hair color phenotypes from a genome-wide association study34 (Supplementary Note 3). By displaying 
the ancestral terms, it becomes apparent that some of these concepts are more closely related than others: the 
focus graph on the left-hand side of Fig. 1 identifies with roman numerals the most specific of the 27 terms, and 
groups together the concepts with a most recent common ancestor. Aside from stylistic variations and possible 
customizations, the focus graph resembles standard representations of the GO DAG3,12,28. The context graph 
on the right-hand side, in contrast, is unique to AEGIS: the silhouette representation of the entire “biological 
process” ontology DAG (~15,000 terms) allows us to indicate the locations of the approximately 1,000 concepts 
related to the 27 query terms, highlighting, for example, how they include 907 descendants.

The focus and context graphs are achieved without overcrowding the display with numerous objects and with-
out appreciably increasing the computing time. Consequently, the gains in computational and representational 
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efficiency facilitate real-time interactions with the GO DAG. For example, an investigator can explore focus 
graphs anchored on different terms, or customize selections of context graphs (Methods and Supplementary 
Videos).

Buoyant layout that incorporates annotation.  The visualization in Fig. 1 exemplifies a standard option 
for assigning a node to a level in a Sugiyama-style graph28: the level represents a node’s longest distance to the 
roots. We refer to this leveled layout as the root-bound layout. Another standard option assigns a node to the 
longest distance to the leaves —we call this the leaf-bound layout, and both options are available in AEGIS. The 
root-bound and leaf-bound layouts achieve spatial compactness by minimizing the number of levels, but also have 
their limitations. A viewer is naturally prone to interpret terms in the same level as sharing the same degree of 
specificity. This might be approximately true in some contexts, but it is rather misleading in the case of the GO 
DAG.

The ontology is created as a way of representing existing literature and the curation process focuses on 
term-to-term relationships, not the overall graph structure. While it is always true that descendant terms are 
more specific than their ancestors, the number of terms separating a concept from the root or leaf nodes is not 
a reliable indication of its specificity. Some biological processes have been studied in detail, so that a number of 
different terms exist to describe them, while others are known at a much less granular level. One can imagine a 
well-studied concept separated from the root node by 10 concepts, while a less-studied concept of comparable 
specificity might be only two nodes away from the root.

Fortunately, in the case of GO, we have another source of information on the level of specificity of a node: the 
number of genes that annotate it. AEGIS leverages this in a novel Sugiyama-style graph, the buoyant layout, which 
enjoys two properties: (1) a parent node is always placed at a level above its children; and (2) a node with fewer 
annotations is never placed higher than any node with more annotations (Methods and Supplementary Note 1).

To contrast the renderings of the different layouts, we re-analyzed a chromatin immunoprecipitation sequenc-
ing (ChIP-seq) study3,35 (Supplementary Note 3), and selected two significant terms to highlight their differences 
(Fig. 2). In the root-bound layout, for instance, the term “ruffle” (with 164 annotations) is at a higher level, and 
therefore appears to be more generic than the term “actin cytoskeleton” (with 448 annotations) only because a 
smaller number of concepts lie between “ruffle” and the root “cellular component”. The buoyant layout, in con-
trast, preserves a more interpretable node ordering based on the number of annotated genes. We also remark that 
the buoyant layout is particularly meaningful when coupled with the context graph: each level corresponds to a 
range of gene annotation counts (Supplementary Videos).

Interactive features and Gene Ontology navigation.  By choosing which nodes to display in the focus 
graphs, against which context to interpret them, the user can navigate the GO and extract annotation information 
useful for simulations and study designs. This process is further enhanced with many auxiliary interactive features 
(Methods and Supplementary Videos). Here we start with showing how AEGIS facilitates extracting information 

Figure 1.  Focus and Context Graph Representations of AEGIS. The GO DAGs are rendered by focus and 
context graphs in AEGIS based on specific term queries. In this example, the focus graph on the left includes 
a total of 27 significantly enriched functions, which are highlighted in blue; all of their ancestral nodes under 
“biological processes” are displayed in purple. The least redundant leaf terms are identified with roman 
numerals, and annotated with their GO identifiers. We use the root-bound layout, where the level of a node 
corresponds to its longest distance to the root. The position of each node within its level in the focus graph 
depends on semantic relationships: related nodes are grouped together. The context graph on the right captures 
the entire GO DAG under the root of “biological processes” with 15,391 terms; the silhouette view indicates the 
number of nodes in each level under the root-bound layout. Among the nodes in each level, the count of the 
terms that are ancestral or descendent to the 27 terms (including themselves) are highlighted in purple.
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from the GO for the purpose of simulations. We consider the task of generating artificial signals from single cell 
RNA sequencing (scRNA-seq), where one is interested in discovering sub-populations of cells that have distinct 
expression signatures. Rather than arbitrarily deciding which genes differ across simulated cell types36,37, AEGIS 
allows a researcher to leverage the GO to identify a group of genes that are biologically related, specifying a signal 
structure that is realistic, and model a cellular process the researcher is specifically interested in.

We simulated the transcriptomic profiles of single cells that differ by cell cycle state, a common confounding 
factor in scRNA-seq data (Fig. 3). Previously, cell cycle genes have been collectively considered at the resolution 
of more generic GO terms such as the cell cycle process (GO:0022402)38. With AEGIS we can explore and select 
more detailed sub-processes: specifically we identified three descendants: G1/S transition of mitotic cell cycle 
(GO:0000082), G2/M transition of mitotic cell cycle (GO:0000086), and mitotic cell cycle arrest (GO:0071850). 
We then select 10 genes among the ones annotating each of these terms and refer to these 30 genes as the “signa-
ture genes”. Using standard procedures (Supplementary Note 3), we can then generate expression data for 120, 
150, 100, 300 cells for G1/S transition, G2/M transition, cell cycle arrest, and control, respectively. Each cell type 
has higher expression of its 10 signature genes, while the baseline cell type does not express any of these transition 
markers.

A biologically sound ground truth can help contrast alternative visualizations of the data, such as PCA39 and 
t-SNE40 (Fig. 3). As we expect, both methods organize the data points in a way consistent with the ground truth 
cell types, with better cell type segregation under t-SNE. However, our functionally related gene set uncovers 
how visualizations with PCA can offer additional insights: PCA-based biplots can indicate directions in the data 
dominated by individual genes. These “gene directions” can in turn suggest “functional directions”, i.e., annotated 
gene sets that collectively align in the subspaces spanned by the top principal components.

Power analysis for GO enrichment testing.  Study design is one of the contexts where it is most useful 
for an investigator to interact with GO visualizations and AEGIS further enables them with a built-in power 
simulator, filling in a surprising gap in the literature of enrichment tests2,18,41,42 (Methods). While enrichment 
hypotheses are stated and tested at the level of GO terms, their truth status depends on the expression of the genes 
associated to the concepts: often the same gene contributes to the annotation of multiple GO terms, so there are 
logical dependencies between enrichment hypotheses. Without actual access to the GO structure, it is difficult 
to simulate these dependencies, which have important consequences for power and interpretability of results.

AEGIS’ pipeline aids the investigator in multiple ways (Supplementary Fig. 5): 1) By allowing navigation 
of the GO, it enables the investigator to select ontology terms that are representative of the biological process 
under study and determine that all or some of the genes in their annotation are differentially expressed—thereby 
anchoring the power study to biologically relevant hypotheses. 2) Once differentially expressed genes are speci-
fied, AEGIS identifies all the non-null enrichment hypotheses, according to one of two standard definitions (e.g., 
‘competitive’ or ‘self-contained’9, described in Supplementary Note 2), allowing the investigator to evaluate the 
specificity of the hypotheses tested. 3) The built-in power simulator generates gene expression datasets using the 
sample size and signal strength specified, carries out testing with a choice of testing and multiplicity correction 
strategies, and computes power and False Discovery Rate (FDR). 4) The power results are displayed with refer-
ence to the relevant GO subDAG, using binder plots. By organizing nodes linearly while still displaying hierar-
chical information, this visualization facilitates the display of additional node-specific information such as term 
names, bar plots or heatmaps for the summary statistics from the power analysis. The order of nodes is based 
on the number of annotations (following the buoyant layout), and edges are rendered with curves that preserve 
Sugiyama-style graph drawing rules.

Figure 2.  The Buoyant Graph Layout for the GO. Root-bound, leaf-bound and buoyant layouts. Each link 
is assumed to point downwards from the root (indicated with a gray triangle), and the nodes are colored 
depending on the number of genes with which they are annotated (or the node size), as in the legend on the 
right-hand side. Orange and yellow triangles point to two significant cell components identified from the CHiP-
seq study by Valouev et al. Note that the root-bound layout places ruffle at a higher level that actin cytoskeleton, 
despite the fact that ruffle is annotated with 164 genes, and likely a more specific compartment than actin 
cytoskeleton, which is annotated with 488 genes. Similar size-level inconsistencies appear in the leaf-bound 
layout, but the buoyant layout successfully resolves these issues across all the nodes.
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As an example, we conducted a power analysis to guide a study with the goal of confirming the enrichment 
of heart-specific developmental processes (Supplementary Note 3). We study how power changes with sample 
size using two different strategies for formulating and testing the enrichment hypotheses: competitive nulls with 
hypergeometric test, and self-contained nulls with p-values obtained with Simes’ combination rule (Fig. 4 and 
Supplementary Note 2).

As previously documented9, increasing the number of samples leads to monotonically higher power for 
self-contained tests, but can have limited impact on competitive tests that are based on a “gene sampling” (rather 
than subject sampling) strategy. On the other hand, inspection of the binder plots reveals that the loss of power 
of competitive/hypergeometric tests is mostly due to not rejecting rather non-specific hypotheses: they do single 
out “heart development” (where the signal was planted) and “adult heart development” (whose annotation is very 
similar).

We note that this strategy can be used to benchmark multiplicity-correction procedures, and we documented 
the results of a comparison of DAGGER29, a recent sequential testing method, and the Benjamini-Hochberg 
procedure (Supplementary Note 3).

Discussion
AEGIS employs multiple strategies to navigate the GO and present GO-based discoveries: the focus-and-context 
graph, the buoyant layout, and the binder plot are novel visualizations that leverage graph-theoretic properties 
of the GO DAG, extensive customization and interactive displays allow user engagement, and built-in power 
simulations facilitate study design.

AEGIS is available both as a web-based application for simple GO exploration, and a downloadable software 
package for hypothesis testing and further customization. Currently, version-controlled visualizations rendered 
via AEGIS can be downloaded as vector graphics, such that attributes such as colors, annotations and node posi-
tions can be customized via common editing tools. The computation back-end and visualization front-end, along 
with online documentation, tutorials, and videos, are open-source and portable. As such, existing GO analysis 
pipelines can employ the functionalities of AEGIS to present and disseminate their results. For example, our cur-
rent pipeline is compatible with emerging GO testing strategies and multiple comparison procedures3,29,30, and it 
also has the flexibility to support the analyses of a broader range of data input types with these options. Moreover, 

Figure 3.  Simulated scRNA-seq with Cell Cycle Signatures. (a) Heatmap. Gene expression signatures for cells in 
G1/S transition (120 cells), G2/M transition (150 cells), cell cycle arrest (100 cells), and a baseline cell type (300 
cells, with no cell cycle signature). The first 30 genes are cell type specific signatures used for the simulation: 10 
randomly selected from each of the set of gene annotating the three GO terms corresponding to G1/S transition, 
G2/M transition, and cell cycle arrest, respectively. The last 10 genes are selected at random from the total of 
remaining 2,030 genes for which expression was generated using a zero-inflated negative binomial models 
with mean parameters varying with cell types. (b) Biplot on the top 2 principal components (PCs). The biplot 
includes the first and second PCs and each point represents individual cells projected in this space. The vector 
arrows are the projection of the 30 signature genes colored by their annotation group, and those with largest 
magnitude per group are indicated. The point coordinates and the gene vectors were scaled (while preserving 
the inner products) to fit the display space. (c) t-SNE 2D embedding. The t-SNE visualization of the cells also 
highlights the four distinct cell sub-populations and processes they are enriched in. The t-SNE was computed 
based on the top 10 PCs of the data. The scale of the t-SNE plot is arbitrary.
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the visualization strategies can potentially be transferred to other ontologies3, such as the Plant Ontology and 
Human Disease Ontology. For ontologies where annotations are not limited to gene sets, we can extend the 
buoyant layout to encode other side information associated with each term to render interpretable leveled graph 
layouts using their specific constraints.

Last but not least, the current visualization framework was developed with anecdotal inputs from several 
researchers who have extensively performed GO analysis; we hope more users can evaluate the program on differ-
ent web platforms and provide us feedback through a user survey (available on our documentation website). The 
results from the survey could help improve the front-end design of AEGIS, allow us to include more interactions, 
and thus extend its usefulness to other kinds of users.

Methods
GO data preprocessing.  The analysis in this manuscript is based on the GO version: release-2018-06-21 
(format version: 1.2) with gene annotations downloaded from the National Center for Biotechnology Information 
(NCBI) gene2go table (ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz, release-2018-06-21). The open-source soft-
ware goatools (https://github.com/tanghaibao/goatools) was used to parse these files. For the associations, all 
evidence types are included as default3. All relationships (e.g., “is a”, “part of ”, “has part”, or “regulates”) for the GO 
terms were used for the cellular component ontology, but only “is a” relationships were kept for the “biological 
process” ontology.

To handle the redundancy of GO terms during hypothesis testing, we developed a DAG refinement algorithm, 
which also preserves the semantic relationships in the original DAG (Supplementary Algorithm 1). Essentially, 
the algorithm iteratively removes a parent if one of its children is annotated to the exact same gene set. DAG 
refinement is optional for visualization but is strongly recommended for hypothesis testing, because if a parent 
and a child share the exact same gene sets, the corresponding test statistics would be identical and unnecessarily 
increase the burden of testing multiplicity. Further, the user can optionally filter the node-size range to remove 
overly generic or specific terms, a function commonly used in gene set testing tools3. We found that other works 
rely on DAG reduction approaches for similar reasons3,6, however, we were unable to identify a full algorithmic 
description or justification of the process. Thus, our algorithmic description is also accompanied with its theoret-
ical justification (Supplementary Note 1).

Customization of the context graph.  The context graph is the entire GO by default, but it can be nar-
rowed to a subDAG by specifying a set of context anchors: any GO terms can be chosen as anchors, playing one 
of three roles in identifying the sub-DAG: root, leaf or waypoint. Selecting root anchors will result in a DAG that 

Figure 4.  Binder plots, Heatmaps and Box Plots for the Heart Development Case Study. (a,b) All the genes 
from those annotating the term “adult heart development” (with node border marked blue and ancestors 
indicated in blue as well) and defined as differentially expressed. This defined a set of non-null hypotheses for 
the competitive and the self-contained framework, all displayed in the binder plots, rooted at “animal organ 
development”. In each binder plot, the non-null terms relative to the appropriate hypothesis are shown with 
black text: for completeness and ease of comparison, the binder plot for the competitive tests includes in gray 
three null terms related to the non-nulls. The terms are ordered by descending node sizes, and the different 
levels are distinguished by alternating shades of green. The heatmaps highlight the fraction of times a particular 
node is rejected across 100 repetitions per sample size regime. (c) The box plots in the bottom portion of the 
displays summarize the false discovery proportion (at level 0.1) and empirical power across all nodes. The 
Benjamini-Hochberg procedure was used for multiple testing adjustment.
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includes all their descendants; leaf anchors result in a DAG that only includes their ancestors; and way-point 
anchors result in a DAG which include both their descendants and ancestors (Supplementary Fig. 2). This pro-
cedure can be seen as a way to eliminate nodes that have no semantic relationship with the context anchors. The 
induced subDAG can be further processed using DAG refinement.

Once the context is specified, the focus graph can be similarly specified with focus anchors, which can be 
defined as waypoint or leaf. If these anchors are not specified, the default would be the the context anchors as leaf 
anchors. In order to make sure that the number of nodes in the focus graph is small enough to allow interaction, 
two constraints are implemented on the sizes of the displayed subDAG: 1) we limit the number of focus anchors; 
and 2) descendants beyond the immediate children of the focus anchors are displayed only when the the size of 
the resulting focus graph is predicted to be smaller than a threshold. Both these parameters can be adjusted.

AEGIS supports three layouts for the focus graph: root-bound, leaf-bound, or buoyant. The first two are stand-
ard topological layouts28, while the buoyant layout is new and described below. Given a context graph, one can 
change the focus anchors in the focus graph in multiple interactive ways, including key word search, node selec-
tion, or random draws of nodes from a specific level (Supplementary Videos).

Buoyant layout and the bubble float algorithm.  For graphical displays of the GO DAG, a buoyant 
layout requires two constraints: each parent node should be placed at a higher level than all of its children (topo-
logical constraint) and a node annotated with a smaller number of genes should never be placed higher than any 
larger node (descending node size constraint). The bubble float algorithm aims to generate the buoyant layout based 
on the two constraints. It starts by initializing the layout by lexicographically sorting all the nodes according to (1) 
descending ordering of the node size and (2) ascending ordering of the longest distance to the root. The remain-
der of the algorithm consists in repeated applications, starting from the bottom of the graph, of a float operation 
that merges multiple nodes into a layer so long as the two constraints remain satisfied. We show that the bubble 
float algorithm satisfies both the topological constraint and the descending node size constraint during initiali-
zation and at each iteration. In addition, the necessary and sufficient conditions of the buoyant layout are proven 
theoretically, such that it is guaranteed to exist for any GO DAG (Supplementary Note 1).

The resulting number of levels of the buoyant layout is always equal to or greater than that of the root-bound 
layout (Fig. 2), because the latter only requires the topological constraint. Particular to the GO, this can be advan-
tageous when too many nodes are displayed and could be more spread out by levels. Thus, we also provide a 
parameter to control the maximum span of node sizes on each level (Supplementary Algorithm 2).

Once the level of each node in the DAG is determined, what remains is the ordering of the nodes in each 
layer for the focus graph. Computing the optimal ordering of nodes in each level that minimizes edge crossings 
between layers reduces to the problem of bipartite crossing minimization, which is unfortunately NP-hard43. Yet, 
there exist many graph drawing heuristics, which we build upon to determine the layout of the focus graph: 
we group anchors together if they are semantically related, add exclusive ancestor and descendant nodes to the 
respective groups, and separate these groups the nodes during display (Fig. 1, Supplementary Algorithm 3). The 
grouping delivers a clearer interpretation of the focus anchors and their relatives. In contrast to the focus graph 
layout, the rendering of the bar layout of the context graph does not require node ordering at each layer. Because 
the representation only concerns the node counts, the computation cost for the context graph is negligible.

Software architecture.  The specifications of the context and focus graphs, choices of different layouts, and 
states in the interaction process can be combinatorial. To efficiently support the graphical rendering and inter-
action, we created a new data hierarchy: a data object includes 1) primary attributes that are invariant across any 
context and focus representations; 2) secondary attributes that can vary under different choices of the context 
graph, but are invariant to what the focus graph is; 3) tertiary attributes that can vary with the choice of the focus 
graph and interactions on the graph. All these attributes collectively define how an object is displayed on the 
front-end interface, but, because some of the attributes can be expensive to compute, we use this hierarchy to 
reduce the space and time needed for computations (Supplementary Fig. 3). For example, a term node displayed 
in the GO can contain several attributes in the front-end display system, including:

	 1.	 Its gene annotations, p-values computed from statistical tests, or node-specific power;
	 2.	 Its hierarchical level in the context graph in root-bound, leaf-bound, and buoyant layouts; and
	 3.	 Its horizontal and vertical coordinates in the focus graph display.

During each frame of rendering in the web browser (due to user interaction or animation for the focus graph), 
Attribute 3 is more frequently updated on the client-side, but does not require any communication with the 
back-end server. The heavier computation needed for Attribute 2 takes place on the server-side because it depends 
on the entire GO structure, but, because the context is typically updated less frequently, the total communication 
cost is insignificant. Further, computations for Attribute 1 do not change with context or focus graph updates 
and do not need to be recomputed for layout and interaction purposes, so they can be seen as pre-computations 
prior to rendering the visualization. As such, statistical results, especially power calculations, in Attribute 1 are 
computed on the server for each experiment setup, and then displayed on the client for interactive interpretation 
(as shown in Supplementary Videos). Similarly, updating gene annotations for a specific node requires significant 
data communication with the GO and gene annotation databases, as well additional text file parsing (which can 
take up to minutes depending on Internet connection), but, fortunately, this computation only occurs once when 
the server starts running the program.

To systematically integrate this data hierarchy, we created new software libraries to define the data classes and 
perform the core algorithms (Supplementary Fig. 4). We also utilized state-of-the-art Python packages to query 
and parse GO ontology databases, and incorporated Flask, a Python micro-framework to deliver server-side 
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computations. All of the user interactions were developed based on commonly-used JavaScript packages: jQuery.
js and D3.js to support lightweight front-end computations on the client side. Despite the size of a DAG with tens 
of thousands of nodes, our computational framework and system architecture offer the advantage of minimal 
time and space required for interactions with the full-scale data. As a result, our application does not require 
expensive resources to perform all the computations in the background, and reduces the need to be hosted as a 
centralized web portal. All the development and demonstrations were performed on a MacBook Pro laptop with 
a 2.8 GHz i7 processor with 8 Virtual Cores and 16GB RAM. The interaction updates in the front-end interface 
each take less than 0.1 seconds.

Power analysis workflow.  The power analysis for GO enrichment testing in RNA-seq studies requires three 
ingredients: 1) the ground truth: a priori defined truly differentially expressed genes, as well as whether each GO 
term is a true null or non-null hypothesis; 2) the data: the gene expression matrix and term-specific p-values; 
and (3) the statistical procedure: testing methods to select which terms are significant. The selected ground truth 
genes determine if a GO term is a true null hypothesis or not, and there are two distinct types of null hypothe-
sis to be considered: the self-contained null and the competitive null9. We say that a GO term is a self-contained 
null if no gene associated with the term is truly differentially expressed; a term is a competitive null if the genes 
associated with this term are at most as often differentially expressed as the genes not associated with this term 
(Supplementary Note 2).

To generate the data, AEGIS takes the selected truly differentially expressed genes, effect size βeffect and sample 
sizes ncontrol, ncase as parameters to generate g-dimensional gene expression matrices for the control samples and 
case samples. For simplicity, the gene expression values for the controls are sampled from N (0, I), a multivariate 
normal distribution with a length-g zero mean vector and a covariance matrix equal to the identity matrix; and 
the cases are similarly sampled from N (µ, I), where µ is vector of values equal to βeffect only at the truly differen-
tially expressed genes and 0 otherwise. This vanilla model can be extended for more complicated scenarios: for 
example, the single cell RNA-seq simulation uses the negative binomial model instead and imposes additional 
zero values in the expression matrix, also known as as “drop-outs” (Supplementary Note 3). Further, the assump-
tion that the gene measurements are uncorrelated can be relaxed given the knowledge of platform-specific noise 
patterns.

For testing, a total of g gene p-values are obtained based on a two sample t-test; these are the ingredients to 
determine GO term-specific p-values. For the self-contained hypothesis, the Simes’ combination rule aggregates 
all the gene p-values annotated with a GO term to obtain the term p-value; for the competitive hypothesis, the 
hypergeometric test is based on first selecting significant genes based on a gene-wide significance threshold, and 
testing whether these genes are independent of those annotated to a specific GO term (Supplementary Note 2). 
For either case, we control the false discovery rate at level q using the Benjamini-Hochberg (BH) procedure. Note 
that this pipeline is modifiable: other methods, such as Bonferroni correction or DAGGER, can replace BH for 
multiplicity correction (Supplementary Note 3).

Without loss of generality, let A1 be the set of non-null terms for a particular type of null hypothesis, and let 
R be the set of terms rejected by the appropriate procedure. Then, the (empirical) power and false discovery pro-
portion (FDP) are defined as follows:

A R
A

R A
R

Power
max { , 1 }

, FDP \
max { , 1 }

1

1

1∩=
| |

| | |
=

| |
| | |

where |·| denotes the size of the set, and\denotes set difference. For a particular power calculation, we fix the 
ground truth and repeat the data generation process to obtain multiple realizations of Power and FDP, in order to 
infer the power as well as the false discovery rate (FDR) of detecting the true non-nulls.
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