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evaluation of an untargeted nano-
liquid chromatography-mass 
spectrometry approach to expand 
coverage of low molecular weight 
dissolved organic matter in Arctic 
soil
Mallory p. Ladd  1,2, Richard J. Giannone  2, Paul E. Abraham  2, Stan D. Wullschleger  1,3 & 
Robert L. Hettich  1,2

Characterizing low molecular weight (LMW) dissolved organic matter (DOM) in soils and evaluating 
the availability of this labile pool is critical to understanding the underlying mechanisms that control 
carbon storage or release across terrestrial systems. However, due to wide-ranging physicochemical 
diversity, characterizing this complex mixture of small molecules and how it varies across space 
remains an analytical challenge. Here, we evaluate an untargeted approach to detect qualitative 
and relative-quantitative variations in LMW DOM with depth using water extracts from a soil core 
from the Alaskan Arctic, a unique system that contains nearly half the Earth’s terrestrial carbon and 
is rapidly warming due to climate change. We combined reversed-phase and hydrophilic interaction 
liquid chromatography, and nano-electrospray ionization coupled with high-resolution tandem mass 
spectrometry in positive- and negative-ionization mode. The optimized conditions were sensitive, 
robust, highly complementary, and enabled detection and putative annotations of a wide range of 
compounds (e.g. amino acids, plant/microbial metabolites, sugars, lipids, peptides). Furthermore, 
multivariate statistical analyses revealed subtle but consistent and significant variations with depth. 
Thus, this platform is useful not only for characterizing LMW DOM, but also for quantifying relative 
variations in LMW DOM availability across space, revealing hotspots of biogeochemical activity for 
further evaluation.

Low molecular weight (LMW, 50–1500 Da) dissolved organic matter (DOM) is the most accessible fraction of soil 
organic matter to microbial decomposers and thus, most susceptible to mineralization and release as greenhouse 
gases such as carbon dioxide (CO2) and methane (CH4)1. In terrestrial systems undergoing rapid change due to 
warming temperatures, such as the Arctic, LMW DOM (i.e. primary metabolites, amino acids, sugars, lipids, 
peptides) represents a detailed chemical snapshot of organic matter vulnerability that could help improve predic-
tions of where (hotspots) this carbon release is more likely to occur2–4. However, the heterogeneity of this pool 
coupled with consistently low concentrations due to high turnover rates pose significant challenges in detection 
and quantitation. As such, most analyses of LMW DOM in Arctic soil have been at the bulk level (i.e. total organic 
carbon, separation by physical or chemical fractionation)5,6 or have targeted a specific subset of compounds—
largely, amino acids7–9.

Several studies have demonstrated how utilizing an untargeted approach reveals a broad range of DOM 
compounds by nuclear magnetic resonance spectroscopy10, ultraviolet-visible or excitation-emission matrix 
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fluorescence spectroscopy11, or gas chromatography/mass spectrometry measurements12,13. Due to inherent lim-
itations associated with these techniques however, including detection sensitivity, dynamic range, difficulties with 
very complex mixtures, or a need for chemical derivatization prior to analysis, there has been increased interest in 
evaluating high-resolution mass spectrometry (HRMS) approaches14,15 for the characterization of LMW DOM in 
soil—in particular, liquid chromatography coupled with electrospray ionization (LC-ESI-MS)16,17.

In recent years, LC-ESI-MS has become a powerful analytical tool for obtaining broad coverage of 
chemically-complex mixtures of small molecules, including environmental samples18–20, due its sensitivity, wide 
detection range, and high throughput capabilities, which makes it an attractive alternative for the characterization 
of DOM in soil. While reversed-phase (RP) liquid chromatography in positive MS-ionization mode has domi-
nated untargeted metabolomics studies, the limitations of using a single chromatographic phase or polarity have 
also been documented21; especially when analyzing mixtures with a high fraction of water-soluble, highly-polar 
metabolites22,23 like DOM, as these compounds are not well-retained by RP24. Hydrophilic interaction liquid 
chromatography (HILIC) however, has been shown to be an effective tool for retaining and separating small, 
highly-polar compounds, thereby enabling relative quantitation25–27. In addition to combining multiple LC tech-
niques, adding negative-mode ionization has also been shown to expand metabolome coverage in bacterial cul-
tures, plant and human tissue, and urine28–31. Although applied extensively in other systems, the use of untargeted 
LC-MS platforms to characterize DOM from soil is still in its infancy16,17,32–34, and to the best of our knowledge, 
no dual-LC, dual-polarity untargeted metabolomics approach has yet been examined for characterization of the 
range of LMW DOM from Arctic soil.

Arctic soils present several unique analytical measurement challenges. For one, they are generally water-logged 
due to the presence of permafrost, or permanently frozen ground, beneath the active layer (layer of soil that thaws 
seasonally), which mobilizes DOM and can lead to low concentrations due to it being transported (either ver-
tically or horizontally) out of the system. In addition, these soils often experience frequent freeze-thaw events, 
creating both aerobic and anaerobic environments in close proximity (down to the microaggregate scale), which 
leads to diverse microbial communities35 and substrate pools, and high turnover rates36. Finally, low temperatures 
in the Arctic have slowed decomposition, which has led to high organic content as well as heterogeneous DOM 
chemistry, including spatial variations in pH, redox status, and/or age which impacts biogeochemical cycling and 
decomposition rates37–40.

Here, we evaluate RP- and HILIC-ESI-MS in positive- and negative-ion modes for the characterization of 
LMW DOM from Arctic soil water extracts, and then apply the optimized technique along the length of an Arctic 
organic horizon to examine the capabilities of the approach in determining relative abundance differences across 
space. Using a data-dependent approach, high-resolution tandem mass spectrometry (HRMS/MS) experiments 
were carried out, adding a third dimension (RT, MS1, and MS2) for annotation41 and flexibility in the technique 
to examine both known (already listed in a database) and unknown compound structures42. Finally, because soils 
can have high salt concentrations which results in substantial ion suppression at the macro-scale16, we employed 
a nano-scale LC column/emitter and flow rates to enhance sensitivity and enable more accurate relative quanti-
tation43,44. Establishing this methodology and benchmarking its performance in Arctic soils for the first time lays 
the technical foundation for future studies aiming to incorporate LMW DOM molecular data into process-based 
ecological models45,46.

Results and Discussion
The goal of this work was to optimize and demonstrate a sensitive, high-throughput, untargeted approach to 
detect, quantify (relative), and putatively annotate variations in LMW DOM availability across space in Arctic 
soil. A preliminary analysis of Arctic soil water by RP-MS revealed that although some compounds were retained 
effectively, eluting later in the run, a majority (~80%) of the most abundant ions (intensity >5.0E4) were observed 
with minimal retention (RT < 2 min), and a maximum molecular weight of ~600 Da (Fig. 1). This is consistent 
with the emerging view that much of dissolved soil organic matter is comprised of plant- or microbial-derived 
LMW compounds47 that are often polar and therefore not well-retained by RP. To mimic native soil-water LMW 
DOM chemistry and obtain a sample most consistent with compounds that are available to microbial commu-
nities33,48, we examined a single, aqueous extraction. Then, to enable characterization and expand coverage, we 
evaluated four nano-LC-MS analysis conditions—HILIC (+), HILIC (−), RP (+), and RP (−). Each step of the 
final workflow (Fig. 2) was optimized to maximize throughput, enhance the signal strength of low abundant ana-
lytes, and minimize introduction of non-analyte signals which complicate annotation. The optimized approach 
was evaluated based on its reproducibility, separation power, and both the qualitative and quantitative perfor-
mance when applied to triplicate extracts from three assigned depths—top (samples 1–3), middle (samples 4–6), 
and bottom (samples 7–9)—along a single organic horizon obtained from an Alaskan Arctic landscape. While 
additional cores and standards would be necessary for an ecological study, absolute quantitation, or identification 
of compounds, these fall outside the scope of the study designed here, which was to evaluate the optimized untar-
geted metabolomics approach to explore the range of LMW DOM in a new and complex matrix.

optimization of nano-HILIC-Ms analysis. Given that most LC-MS-based metabolomics analyses have 
used RP, were carried out at the macro-scale, or have been applied in alternate sample matrices20, optimizing and 
evaluating the nano-HILIC conditions for the separation of LMW compounds from soil water was first required. 
Here, we chose to exploit a zwitterionic, polymer-based HILIC material (ZIC-pHILIC) that has demonstrated 
improved reproducibility over other HILIC phases, and a higher tolerance for both acidic and alkaline conditions 
(pH range 2–10), enabling a multiple ionization strategy to be employed49. Optimization was carried out using a 
mixed standard of fifteen LMW organic compounds of varying sizes and chemical properties (Table S1).
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Sensitivity and mass accuracy. To evaluate the retention of various LMW DOM compounds on the HILIC col-
umn, their electrospray ionization efficiencies, and probe detection limits and interferences, a mixed standard 
curve (equimolar, 10 ng mL−1 – 10 µg ML−1) was run neat (directly on the column without any other matrix), and 
also spiked into and then extracted from Arctic soil at ecologically-relevant concentrations50 and analyzed by 
nano-HILIC-MS. All compounds were detectable (S/N > 3) and reliably quantified at 10 ng mL−1 or better when 
extracted from the soil matrix, except for N-acetyl glucosamine and urea, which were detectable at 100 ng mL−1 
(Fig. S1). This suggests that sugars may not have ionized as well under the conditions employed here and further 
optimization would be necessary to detect the broad range of sugars that are commonly found in soils. In addition 
to each of the compounds demonstrating varying ionization efficiencies (Fig. S1a), the optimized approach was 
able to detect variations in extraction efficiency as well, as demonstrated by the broader spread of peak heights 
and shallower gains in signal with increasing concentration when extracted from soil (Fig. S1b). While extrac-
tion efficiency would need to be determined for each compound for absolute quantitation, the aim of the study 
here is to evaluate variations in the relative availability across space in soil. In addition, despite the variations in 
ionization and extraction efficiency among compounds, in both scenarios, the signal response curves exhibited 
a linear gain in signal over at least two orders of magnitude with average Pearson correlation coefficient (R2) of 
0.9946 and 0.9924 for the neat and spiked standards, respectively, demonstrating a broad dynamic range for the 
detection of LMW DOM analytes by this technique. Each standard was detected <10 ppm mass error (Table S1), 
demonstrating the mass accuracy of the MS technique and reliability of the measurement for post-acquisition 
peak clustering and putative annotation.

Chromatographic reproducibility. To evaluate the performance of the columns, an internal standard (10 µg mL−1) 
was added to triplicate extracts (see Materials and Methods for more detail) from each of the three soil core 
depths (n = 9). While it has been reported that HILIC columns often suffer from more variable peak shapes and 
shifting retention times51, the RT deviation observed here, across all nine extracts, was <1.8 min (CV = 12.7%) 
(Fig. S2), comparable to a recent study that used the same ZIC-pHILIC material for soil extracts17 and better than 
the C18-RP column employed here. In addition, this variation was within the bounds of what can be corrected 
by the RT alignment algorithm in the data processing software (see Materials and Methods). Peak areas for the 
internal standards also showed reasonable quantitative reproducibility among replicates (CVavg < 15%) for each 
LC-MS condition (Fig. S3), consistent with recent studies that have also used LC-MS for untargeted metabolomic 
profiling in complex biological matrices22,30.

It should be noted that the HILIC column needed more time for pre-conditioning and re-equilibration to 
achieve a stable background, and some peak tailing was observed (Fig. S2). This is likely due to competition 
between the primary aqueous-partitioning retention mechanism and secondary electrostatic interactions with 
the zwitterionic sulfobetaine group on the surface of the ZIC-pHILIC stationary phase. Nevertheless, the HILIC 
column demonstrated markedly improved separation and peak shape for LMW DOM analytes when compared 

Figure 1. Scatter plot of the features detected (intensity >1.0E4, +/−0.005 m/z) in a single soil water extract 
and the elution profiles for HILIC (top) and RP (mirrored bottom) in positive-ion mode demonstrating 
different separation profiles of LMW DOM on each LC phase. Each marker matches to a m/z and retention time 
(RT). The corresponding normalized base peak chromatograms are overlaid on top to show a typical elution 
profile for each LC condition and display trends between m/z and RT. Additional examples in negative-ion 
mode are shown in Fig. S4.
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to the RP column, highlighted by the greater distribution of features eluting over the full gradient and sharper 
peak shapes in both positive- and negative-ion modes (Figs 1 and S4).

Evaluation of untargeted method performance for LMW DOM in Arctic soil. LMW DOM cov-
erage. Expanding the number of analytes detected is central to any metabolomics study and to obtaining as 
unbiased and comprehensive of a measurement as possible. Across the 36 analytical runs (9 extracts, 4 LC-MS 
conditions) plus the blank and control runs, 12,924 features were detected (Table 1). After removing features 
that were observed in the blank or control (intensity >1.0E5) and features that resulted in zero peak area after 
normalization (see Materials and Methods for more detail), the total number of high-quality features (HQFs) was 
3,690. HILIC (−) produced the most HQFs with 1,705, accounting for 46% of all HQFs observed, followed by 
RP (+) with 1,462 (40%), HILIC (+) with 438 (12%), and finally RP (−) which detected 85 (2%) (Table 1). The 
paucity of LMW DOM analytes detected by RP (−) is likely due to poorer retention and less favorable ionization 
conditions. By taking each singly-charged precursor ion (+/−0.001 m/z) to its neutral mass and analyzing the 
overlap between conditions (Fig. 3), it was observed that HILIC (−) and RP (+) detected the most HQFs with 
1,132 and 700, respectively. While these two conditions accounted for 88% of the dataset, the four optimized 
techniques were still highly orthogonal with just 4% (145 features) detected by more than one condition at this 

Figure 2. Schematic of the untargeted metabolomics approach established and applied in the present study for 
the analysis of LMW DOM from Arctic soil water extracts. After the filtration step, triplicate extracts for each 
section of the core (n = 9) were split and handled separately. The resulting concentrated aliquots (18 samples) 
were run on two LC phases and in two MS polarities, resulting in four analytical conditions per sample. RT: 
retention time. ESI (+/−): electrospray ionization positive or negative mode. DDA: data-dependent acquisition 
(unbiased precursor selection for MS2 fragmentation).
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high-resolution threshold (+/−0.001 Da), illustrating the benefits of combining RP and HILIC, and positive- and 
negative-ion modes to expand coverage of the LWM DOM pool.

Measurement depth. In addition to expanding the number of compounds detected, an untargeted technique 
should be able to reliably detect both high- and low-abundant signals. This is especially true for Arctic soils, where 
low-abundant DOM signals could indicate a greater biological importance, in that lower concentrations may 
suggest a microbial preference for those substrates and that they are cycled through the soil at a faster rate, thereby 
contributing disproportionately to the fraction of SOM that is mineralized into CO2 and CH4

52,53. To explore the 
sensitivity and dynamic range of the untargeted approach developed here, we examined the proportion for which 
each HQF contributed to the total signal of HQFs detected by each LC-MS condition. HILIC detected more 
low-abundant features than RP, consistent with it having more favorable retention and ionization conditions 
leading to enhanced MS detection sensitivity54. For example, while only 5 features made up 50% of the signal for 
RP (−), 102 different features accounted for the same proportion on the HILIC column (Fig. 4).

Analytical reproducibility. Using a unique identifier and corresponding normalized peak area for each HQF, we 
evaluated the reproducibility of the untargeted measurement across extraction replicates using principal compo-
nent analyses (PCA). When comparing the nine samples and three controls for each LC-MS condition, a strong 
separation was observed (Fig. S5) providing additional evidence that the variation observed in the LMW DOM 
profiles was nonsystematic, but instead related to biogeochemical variation with depth. One outlier (sample 5) 
separated apart from both the other samples and the controls, but after careful evaluation of the soil sample, the 
experimental conditions, and the resulting data, it was not immediately obvious what was driving that separation, 
and thus further analysis would be warranted for a more detailed study. PCA also revealed separation between the 
four LC-MS conditions (Fig. S6) further demonstrating their orthogonality. HILIC (−), which detected the high-
est number of HQFs, showed the most variation across the nine extractions, while RP (−), which detected the 
fewest, showed the least amount of variation. Interestingly, the three extraction replicates within the HILIC (−) 
dataset that stood out from the other six, clustered closer to the other three LC-MS conditions and corresponded 
to samples 1–3 from the top section of the horizon. These data suggest that at the top of this organic horizon, there 

LC-MS 
Condition

All 
Features

High-
Quality 
Features

Unique 
HQFsa

Abundant 
HQFsb

Varied 
significantly 
with depthc

Significant HQFs 
with MS1 match 
(+/−5 ppm)

HILIC (+) 1455 438 206 247 164 35

HILIC (−) 8343 1705 1132 257 79 14

RP (+) 1828 1462 700 202 12 8

RP (−) 1298 85 47 10 2 2

Table 1. LMW DOM coverage by HILIC and RP in positive- and negative-ionization modes at each level of 
data filtering, expressed as the number of features detected across all nine soil water extracts. aUnique high-
quality features observed by only one LC-MS condition, determined by examining the overlap of the neutral 
precursor masses (+/−0.001 Da). bAbundant features were observed in at least 2 of 3 extraction replicates at 
each depth above an intensity threshold of 1.0E5 ion counts. cAbundant features with differential abundances 
that varied significantly (log2 fold change >1.5, p-value < 0.05) between soil core depths.

Figure 3. Overlap of HQFs detected by HILIC and RP in positive- and negative-ion MS polarities (based on the 
MS1 neutral mass for the corresponding [M + H]+ or [M − H]− ion, +/−0.001 Da).
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may exist a common set of abundant, amphiphilic compounds that ionize in both MS polarities that do not get 
transported deeper into the soil profile.

Overall, the number of features detected by the combined LC-MS conditions and the reproducibil-
ity of the untargeted measurements across extraction replicates demonstrates the robustness of the workflow 
developed here. Substantially more information (60% more features) was obtained by integrating HILIC and 
negative-ionization mode, emphasizing the complementarity of the optimized LC-MS conditions and the ability 
of this untargeted technique to expand coverage of LMW DOM in these complex, organic-rich soils.

Application of the untargeted metabolomics approach to evaluate relative variations in LMW 
DOM availability with depth. After filtering the data to identify the most reproducible, “abundant HQFs” 
(see Materials and Methods), HILIC was found to have detected a total of 247 and 257 features in positive- 
and negative-ion modes, respectively, while RP detected 202 in positive-ion mode and 10 in negative-ion mode 
(Table 1). RP (−) had less favorable mobile phase conditions and more variable chromatography which likely 
led to weaker ionization, lower intensities, and fewer reproducible features. By examining the PCA for each con-
dition separately, we found that even though the soil core represented a single horizon (organic) and would be 
represented as such in most biogeochemical models, the untargeted approach evaluated here revealed a finer-level 
spatial heterogeneity in LMW DOM availability along the length of the horizon (Fig. 5). However, instead of 
separating into three distinct groupings as one might expect based on our operationally-defined depths, only two 
groups emerged, suggesting this seemingly-homogenous organic horizon would more accurately be described 
as having two distinct layers due to biogeochemical variation, indicated by measurable differences in the LMW 
DOM profiles.

Relative quantitation and putative annotation of LMW DOM features that varied across space. To visualize more 
detailed patterns of LMW DOM availability along the length of the horizon, two-way hierarchical clustering 
using heatmaps was performed on the abundant HQFs detected by each LC-MS condition. An example of this is 
shown in Fig. 6a using the HILIC (+) dataset. The extracts from either depth (top or bottom) clustered together, 
indicated by the top dendrogram, and metabolites that varied similarly with depth were clustered together, shown 
in the dendrogram to the left. While there were LMW DOM features that were equally abundant across the 
entire length of the horizon, differences in the normalized peak areas were especially apparent for two clusters 
that either increased or decreased from the top to the bottom of the horizon (Fig. 6a, insets). While replicate 
cores and additional data (i.e. compound-specific extraction efficiencies, biomass and DOC content) would be 
valuable, our results alone already demonstrate the ability of the optimized approach to detect subtle variations 
in the availability of LMW DOM between replicates and across space in soil. In addition, to generate a more 
ecologically-relevant list of features for annotation, we normalized peak areas to per gram dry soil and identified 
which abundant HQFs varied significantly (log2 fold change >1.5, p-value < 0.05 by t-test) between the top and 
bottom of the horizon, indicating a change in availability due to biological variation. The number of features 
that met these criteria for each LC-MS condition are reported in Table 1. HILIC (+) and (−) detected the high-
est number of differentially-abundant LMW DOM features with 164 and 79, respectively, while the RP condi-
tions detected 14 in total, demonstrating that the conservative thresholds applied here helped ensure a robust 
measurement.

The features that varied consistently and significantly with depth were searched against multiple freely-available  
online databases using high-mass accuracy (<5 ppm) MS1 measurements. When compounds matched to multiple  
database hits, possible matches were examined in an iterative approach by comparing the experimental fragmentation  
pattern (MS2) with available data (see Supplementary Information). It is important to note that because the MS2 
spectra in the various databases were often collected at different CID energies than the experimentally-obtained 
MS2 spectra here, there were varying degrees of similarity among the putatively annotated compounds, and thus 
confirmation with an authentic standard at the same CID energy on the same system would be necessary to make 

Figure 4. High-quality features ranked by abundance (1 = most abundant, 1705 = least abundant) and the 
relative contribution of each to the cumulative abundance demonstrating the depth of measurement for each 
LC-MS condition evaluated. The number of LMW DOM features detected by each LC-MS condition accounting 
for half and the total cumulative abundance are reported.
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a full identification. While there are numerous examples of fragmentation interrogation in the supplementary 
figures, one example of this has been highlighted in Fig. 6.

The feature (highlighted in red in Fig. 6a) eluted in the void volume on the RP column but was effec-
tively retained (RT 6.1 min) by the HILIC column, further supporting the use of dual-chromatographic sep-
arations for the analysis of LMW DOM from soil (Fig. 6b). The feature was detected in positive-ion mode 
([M + H]+ = 116.0703 m/z) reproducibly across replicates (CV < 3.0%) and decreased significantly (4-fold log2 
change, p-value < 0.05) with depth. The MS1 accurate mass matched to multiple hits in the MMCD and HMDB 
databases but was putatively annotated as proline by comparing the MS2 spectrum to available data in MassBank 
(Fig. 6b), emphasizing the value of collecting data-dependent MS2 fragmentation data. Proline is an amino acid 
and osmolyte that accumulates in microorganisms and plants to help protect against stresses such as the drying 
and rewetting of soils55,56. That it was detected appreciably in the LMW DOM pool in soils that were collected 
from a saturated, low topographical area (i.e. not drought stressed) on the landscape may suggest that it had accu-
mulated due to an increase in protease activity coupled with reduced uptake by plants/microbes57, or enhanced 
exudation of excess proline from plant roots (i.e. priming) or microbial turnover, possibly due to alkaloid/salt 
stress58,59. The decrease in this LMW DOM metabolite with depth may indicate that it is taken up by plants and/
or microbes deeper in the soil profile, consistent with recent findings that the direct uptake of organic nitrogen 
may become more important in nitrogen-limited environments like Alaskan tundra systems60,61. This example 
demonstrates the capabilities of this untargeted, hypothesis-generating approach at identifying hotspots of bioge-
ochemical variation for further analysis. A full list of the LMW DOM compounds that were putatively annotated 
in this way, using high-resolution MS1 and MS2 data within an average mass error of 3.3 ppm, can be found in the 
supplementary information (Table S2).

Of the HQFs that consistently and significantly varied between depths, 59 (23%) were putatively annotated 
and 198 (77%) were unmatched, highlighting a critical advantage of our approach—the ability to detect previ-
ously uncharacterized compounds that vary across space due to some biogeochemical process, thus providing 
targets for further inquiry. For example, one unmatched feature was retained by HILIC (−), detected reproduci-
bly across replicates (CV < 5%) at RT 22.7 min with an accurate mass of 281.1440 m/z, and was found to increase 
significantly (7-fold, p-value < 0.0007) with depth. Analyzing the high-mass accuracy fragmentation data, neutral 
losses of 43.9897 m/z, 18.0106 m/z, and 14.0155 m/z were observed; likely a carboxylic acid group, water loss, and 
methylene group respectively, emphasizing the utility of this technique to provide structural information about 
unknown LMW DOM compounds. Molecular networking for untargeted -omics datasets is a growing area of 
research in the mass spectrometry community62–64, and leveraging high-resolution MS2 fragmentation informa-
tion like this can assist in grouping unknown compounds based on their structural (spectral) similarity.

The 59 compounds putatively annotated from a single water extract ranged in polarity and aromaticity, from 
plant and microbial metabolites to organic acids, osmolytes, sugars, lipids, and simple peptides (Table S2), yield-
ing insights into the chemical diversity and reactivity of LMW DOM in Arctic soil water detected by the opti-
mized platform. As with any untargeted approach, the number of features annotated depends on the data analysis 

Figure 5. Principal component analyses of high-quality features detected in soil water extracts analyzed by 
(a) HILIC (+) and (b) HILIC (−) demonstrating the sensitivity of the untargeted technique to detect subtle 
variations in LMW DOM across space in these organic-rich soils.
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Figure 6. (a) Heatmap of the unique IDs and normalized log2 peak areas for each abundant HQF detected by 
HILIC (+). The dendrogram to the left of the heatmap clusters LMW DOM metabolites that varied similarly 
between the top and bottom of the soil core. To the right, we call out two clusters that starkly increased or 
decreased with depth after normalizing to per gram dry weight soil. One feature that decreased with depth, 
highlighted in red, is further analyzed in (b). (b) Cross-sectional diagram of the soil core showing three depth 
increments and corresponding extraction replicate sample numbers. Stacked extracted ion chromatograms and 
mass spectra (MS1 and MS2, insets) for a feature (116.0703 m/z) detected by HILIC (+) at RT ~6.1 min. The feature 
was detected (intensity >1.0E5) in all six soil extracts but not in the blanks or controls. Extraction triplicates 
yielded similar amounts (CV < 3%) despite some peak splitting, and there was a 4-fold difference between the log2 
peak areas of the top and bottom sections of the core (p-value < 0.05 by t-test). The feature was putatively identified 
as proline by matching the MS1 spectrum in MMCD and confirming with the MS2 spectrum in MassBank.
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thresholds and the level of curation of each database. As such, the features listed here do not represent all LMW 
DOM molecules that can be detected by the described technique. It’s important to note that our aim was not to 
identify each feature detected but instead to benchmark the analytical performance of the untargeted approach in 
this unique and complex matrix, demonstrate the value of the approach in revealing an information-rich molecu-
lar profile of LMW DOM availability in soil, and to analyze how this approach may be used to evaluate variations 
in those profiles across space (here, with depth). Further examination of feature clusters that varied similarly and 
significantly with depth would likely reveal additional biogeochemical processes impacting the availability of 
these compounds. In addition, follow-up targeted analyses (e.g. isotopic or flux analyses) could be carried out for 
absolute quantitation of LMW DOM analytes-of-interest or to monitor a specific metabolic pathway (e.g. meth-
anogenesis) over time for example.

Ultimately, these results demonstrate an optimized untargeted metabolomics approach for the analysis of 
LMW DOM from Arctic soil water extracts. The approach evaluated here was high-throughput, sensitive, and 
robust, with a high tolerance for salts, and could feasibly be applied in a broad range of soils. The nano-LC-MS 
conditions were highly complementary and revealed a broad diversity of small molecules in Arctic soil water 
extracts. LMW DOM profiles were reproducible and distinguishable between samples, allowing for the spatial 
variability of these organic substrates to be observed at the molecular level. Even subtle differences in the relative 
abundance of features with depth were detected with robust data mining strategies, highlighting the potential of 
the LMW DOM pool to be used to identify biogeochemical hotspots in soils. Reproducible retention profiles and 
high-mass accuracy molecular and fragmentation data provided both qualitative and relative quantitative data, 
yielding an information-rich chemical snapshot of biogeochemical activity in soil. Future work should include 
applying the technique across multiple cores or in different systems, correlating shifts in LMW DOM chemistry 
with microbial community composition and environmental variables to assist with mapping LMW DOM com-
pounds to metabolic pathways. Furthermore, this approach could be leveraged in larger-scale studies to provide 
insight into LMW DOM origins and transformations over space or time and detailed stoichiometric information 
for mechanistic models, helping to reduce uncertainty in predictions of how Arctic landscapes will respond under 
a warmer climate.

Materials and Methods
A schematic of the experimental workflow established in this study is shown in Fig. 2.

Chemicals. A description of mobile phases, solvents, and a list of authentic standards used to evaluate the 
optimized approach developed here can be found in the Supplementary Information.

sample collection and soil processing. A soil core horizon (10 cm diameter, ~15 cm depth) was collected 
from the organic-rich active layer of a saturated, continuous-permafrost landscape on the Barrow Environmental 
Observatory, AK (71° N, 156° W) and shipped frozen to Oak Ridge National Laboratory (Oak Ridge, TN) where 
it was stored at −80 °C until processing. The frozen core, representing a single organic horizon, was cut into three, 
5 cm sections using a band saw. Each section—defined here as top, middle, or bottom—was thawed at 4 °C over-
night and then homogenized by hand, removing any mineral, inorganic, or live plant material65.

Optimized LMW DOM extraction. Soils were extracted in triplicate with LC-MS-grade H2O (pH = 5.0, 
1:3 w/v) in 50 mL centrifuge tubes (VWR) at 4 °C on a standard orbital shaker (VWR, Model 1000) at ~120 rpm 
for 1 h, resulting in three extracts per depth (9 total) to be analyzed by nanoLC-MS. Three controls were pre-
pared by adding LC-MS-grade H2O to centrifuge tubes with no soil to undergo the same extraction procedure. 
Extracted soils and controls were centrifuged (Eppendorf Centrifuge 5804 R) at 4 °C and 4500 rpm for 15 min 
and the supernatant was then transferred to pre-rinsed centrifugal filter units (Amicon Ultra, 3 kDa) for con-
centration. The filtered extracts were evaporated down to 0.5 mL (12x concentration) in a Thermo Savant 
SC210A SpeedVac Concentrator and separated into two 0.25 mL aliquots. One aliquot was further evaporated 
to near-dryness and brought back up to 0.25 mL in 95:5 (v/v) acetonitrile:water, creating one organic and one 
aqueous aliquot per sample for analysis by HILIC and RP, respectively. Although no heat was applied, any volatile 
compounds that came out of solution during vacuum evaporation would not be included in this analysis.

Nano-LC-MS/MS analyses. Measurements of standards (Table S1) and samples were carried out using a 
Dionex UltiMate 3000 HPLC pump (ThermoScientific) coupled to an LTQ-Orbitrap Velos Pro mass spectrometer 
(ThermoFisher) equipped with a nano-electrospray ionization source (Proxeon, Denmark) operated in positive- 
or negative-ion mode under direct control of the XCalibur software, v2.2 SP1.48 (ThermoFisher). Detailed source 
conditions and instrument parameters can be found in the Supplementary Information.

Extracts were thawed and prepared immediately prior to injection by adding either 0.1% formic acid (FA) or 
ammonium hydroxide (NH4OH) to help with ionization, and either 6-methylaminopurine riboside (6-MAP) 
or adenosine (final concentration, 10 µmol L−1) as an internal standard for positive- or negative-ion mode, 
respectively. Internal standards were added to evaluate method performance and reproducibility, and to assist 
with retention time (RT) alignment and annotation of LMW DOM66. Analyses were randomized to minimize 
instrument-derived variation, and technical blanks representing the column re-equilibration conditions were run 
regularly to monitor background ions and carry-over.

Separations were performed on 100 µm i.d. fused-silica (Polymicro Technologies) columns, which were 
laser-pulled in-house and pressure-packed to 20 cm with either Kinetex C18 resin (5 µm, 100 Å, Phenomenex) or 
zwitterionic, polymer-based ZIC-pHILIC resin (5 µm, Sequant, bulk material kindly provided by EMD Millipore) 
resulting in four separate LC-MS analyses per sample. Mobile phase compositions, gradient conditions, and MS 
parameters were systematically adjusted to provide the best ESI spray stability, signal strength, LC peak shape, 
and separation. Only mobile phase additives that were compatible with the ESI source were examined (Table S3). 
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Thus, ion-pairing agents and non-volatile buffers were excluded from method development. The final gradients 
used for each LC-MS condition are listed in Table S4. Prior to MS analysis, each column was washed off-line for 
1 h with an alternating gradient from 100% A to 100% B, but not exceeding 60% aqueous solvent on the HILIC 
columns so as not to disrupt the aqueous layer on the surface of the stationary phase25,67. Each column was 
positioned on the nano-spray source, aligned in front of the MS capillary inlet. Samples or standards were man-
ually injected directly onto the column using a 1 µL fused-silica loop, and nano-flow rates were achieved with a 
split-flow setup prior to the injection loop. The pump was set to 0.1 mL min−1, measuring ~250 nL min−1 at the 
tip. A post-gradient wash was applied at the end of each run to ensure column re-equilibration, and to maintain 
the ionic strength of the HILIC material.

Data Extraction and Processing. Raw LC-MS data were subjected to peak picking, alignment, and nor-
malization using the open-source MZmine2 (v2.28) software68. The optimized module parameters and data 
filtering strategy are described in detail in the Supplementary Information. Briefly, the resulting matrix of fea-
tures—defined here as a unique RT, MS1 m/z, and MS2 fragmentation spectrum—was filtered to remove any 
artifact signals (features with intensity >1.0E5 in blanks or controls) that originated from sample collection, 
preparation, or analysis (i.e. extraction leachates, solvent contaminants, columns background)69,70. Integrated 
LC peak areas were obtained from the aligned extracted ion chromatograms and normalized to the internal 
standards using a ratio factor determined with the standard compound normalizer module in MZmine. While 
an internal standard for each feature detected is recommended for absolute quantitation, a standard specific to 
each ionization mode was applied here to evaluate the effectiveness of the technique at detecting relative quanti-
tative variations across space and reduce the introduction of additional chemical species further complicating the 
chromatogram and/or mass spectrum71,72. Any features that had zero peak area after normalizing to the internal 
standard were also removed, resulting in a matrix of high-quality features (HQFs). The number and complexity 
of HQFs detected by each LC-MS condition were used to evaluate LMW DOM coverage, measurement depth, 
and the qualitative and quantitative reproducibility across replicates by comparing the accurate mass of the cor-
responding [M + H]+ or [M − H]− molecular ion and the peak area for each feature. To evaluate the ability of 
the technique to detect variations in the availability of LMW DOM across space, raw peak areas were normalized 
to per gram dry soil and a more conservative list of only the most reproducible, “abundant HQFs”—observed 
in at least 2 of 3 extraction replicates at each depth above an intensity threshold of 1.0E5 ion counts—was gen-
erated. Finally, to generate a list of features for annotation, Student’s t-test and two-way hierarchical clustering 
(heatmaps) were used to examine relative abundance differences and identify LMW DOM analytes that varied 
significantly between depth increments.

Feature Annotation. Using a precursor mass tolerance of +/−5 ppm, significant features were putatively anno-
tated using the open-source MZmine2 software and the MetaboSearch tool73, both of which search multiple, 
freely-available, online metabolite databases, including METLIN74, MMCD75, HMDB76, KEGG77, PubChem78, 
and LipidMaps79. Annotated compounds that matched to multiple MS1 hits in a database were manually scru-
tinized in an iterative approach by assessing high-resolution mass spectral data for consistent fragmentation 
profiles (see Supplementary Information). Only compounds that had a single MS2 match were included here.

Data Availability
The high-resolution LC-MS data generated and analyzed in the current study can be found through the NGEE- 
Arctic data portal at https://doi.org/10.5440/1464956 80.
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