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Using sensory discrimination in 
a foraging-style task to evaluate 
human upper-limb sensorimotor 
performance
Dylan t. Beckler1, Zachary C. thumser1,2, Jonathon s. Schofield1 & paul D. Marasco  1,3

Object stiffness discrimination is fundamental to shaping the way we interact with our environment. 
Investigating the sensorimotor mechanisms underpinning stiffness discrimination may help further 
our understanding of healthy and sensory-impaired upper limb function. We developed a metric that 
leverages sensory discrimination techniques and a foraging-based analysis to characterize participant 
accuracy and discrimination processes of sensorimotor control. our metric required searching 
and discriminating two variants of test-object: rubber blocks and spring cells, which emphasized 
cutaneous-force and proprioceptive feedback, respectively. We measured the number of test-objects 
handled, selection accuracy, and foraging duration. These values were used to derive six indicators 
of performance. We observed higher discrimination accuracies, with quicker search and handling 
durations, for blocks compared to spring cells. Correlative analyses of accuracy, error rates, and foraging 
times suggested that the block and spring variants were, in fact, unique sensory tasks. These results 
provide evidence that our metric is sensitive to the contributions of sensory feedback, motor control, 
and task performance strategy, and will likely be effective in further characterizing the impact of 
sensory feedback on motor control in healthy and sensory-impaired populations.

The ability to detect an object’s compliance plays a fundamental role in shaping the exploration and manipulation 
of that object within its environment. The resulting sensory information drives the identification, classification, or 
discrimination of the object and directly influences the motor interactions. For example, when an object of high 
compliance is sensed by the fingers and hand, it may be an indication of fragility, and as such the contact forces 
imparted by the hand will be precisely controlled to avoid crushing or damaging the object1. Here, sensory feed-
back informs motor output, creating a physiological closed-loop control system. These sensorimotor mechanisms 
underpin motor-error correction and adjustment to perturbation during object manipulation2.

This interrelationship between sensation and motor control is particularly evident in sensory-impaired popu-
lations, often presenting as significant motor deficits; an active area of study in those affected by stroke3–5, multiple 
sclerosis6, and cerebral palsy6–9. Inversely, in these populations the presence of sensation, or improved sensation 
through intervention, has been observed to improve motor function5–8,10. Beyond observing affected populations, 
conventional sensory-assessment tools typically evaluate motor function and sensation independently, providing 
limited quantitative insight in characterizing the impact of sensation on motor control. This inadequacy creates 
challenges in determining the success of sensory-related interventions as the effect of sensation on overall func-
tion cannot be directly evaluated. This has particularly relevant implications in determining the influence of 
sensation on function in a number of sensory-impacted populations such as neural-machine interfaces including 
users of advanced sensate limb prostheses, and brain computer interfaces. Other populations of interest include 
stroke, hand transplantation, and upper limb involved spinal cord injury. Current assessments often use discrimi-
nation paradigms to evaluate one’s ability to detect changes exclusively in sensation11–15. In this study, we combine 
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a sensory discrimination paradigm and a ‘search-and-select’ style foraging task to evaluate the effectiveness of 
motor and sensory strategies.

Many of the activities we perform as humans may be considered nothing more than the successive execution 
of search-and-acquisition tasks. As we go through our day, scouring the refrigerator for food, searching for our 
keys, looking for a parking spot, or finding a table in the cafeteria, we engage in goal-motivated search-directed 
behaviors. The same mathematics that describe animals foraging, such as lions searching and hunting for prey on 
the savannah16, have applicability to a vast range of goal-oriented search-and-acquisition type human behaviors. 
An early investigation of these fundamental mathematical relationships was presented in Holling’s seminal 1959 
disc equation paper17. Holling investigated how parameters such as prey density, forager search rate, and prey 
handling rate affected the overall rate of prey capture. Additionally, Holling developed several of the axioms that 
formed the foundations of modern optimal foraging theory (OFT), such as the mutual exclusivity of the time 
spent searching for prey versus consuming it18.

Modern OFT is a collection of mathematical models that describe how biological foragers search for, acquire, 
and consume food. The core concept of these well validated models is that organisms inherently adopt strate-
gies, movement patterns, and prey types that maximize their long-term rate of gain, as natural selection favors 
these behaviors19–22. The net energy gained from a prey item is the difference between its caloric content and the 
energy expenditure required to capture and consume the prey22. The time spent foraging is generally divided 
into two phases: a search phase where the forager spends time locating prey, and a handling phase where the 
forager spends time acquiring (e.g., chasing, hunting, and gathering) and consuming the prey. Thus, rate of gain is 
mathematically defined as the net energy gained divided by the total time spent foraging, and is used to describe 
the relative value of prey items and/or forager behavior. Profitability is a measure derived by dividing net caloric 
energy by handling time. This value provides perspective into foraging strategy, for instance when a potential 
prey item is encountered, the decision to consume it or continue to forage for a higher reward item is influenced 
by the profitability of prey items in the environment. Long-term rate of gain and profitability have helped provide 
insight into biological decision-making in a broad range of foraging species, such as bacteria23, insects24,25, fish26, 
birds20,27,28, and mammals25,29,30.

There is flexibility inherent to this mathematical approach. For instance, the general concept of ‘caloric energy’ 
can be interchanged with ‘task performance’31, which then provides the mathematical foundation for OFT to 
describe biological, micro-economic, and “all human choice-making” phenomena32,33. In this context, the utility 
of OFT has been vastly expanded to describe numerous biological and human behaviors including: navigation34, 
information gathering32,35, tool use36,37, scholastic performance38, domestic burglary39, and design-and-analysis 
optimization31.

Combining sensory discrimination with a foraging task would closely align with the well-established variant 
of OFT known as the cryptic prey model. Traditionally, the cryptic prey model describes the situation when prey 
is not readily identifiable as food and must be discriminated by the forager40. Therefore, the forager must spend 
time to recognize the prey item, a quantity defined as recognition time40,41. Conventionally, this model has been 
used to study forager decision-making processes with regard to discrimination of prey species42, prey size20,42, 
numerical distribution43, and non-food items44. This model provides appropriate evaluation tools for human 
sensorimotor performance as it inherently accounts for discrimination and decision-making activities. In fact, the 
aforementioned Holling disk equation was initially developed using a tactile-based sensory task, as human partic-
ipants were instructed to forage for sandpaper discs while blindfolded17. Interestingly, Holling keyed into a distin-
guishing facet of the cryptic prey model, 20 years before the model would be explicitly defined41; when he asked 
participants to locate the sandpaper discs by tapping a pencil, he noted a moment of hesitation before each disc 
was handled. He termed this time period, “identification time”, a concept which would later be refined by Hughes 
as “recognition time”41. Despite OFT’s foundation and demonstrated applicability in sensory tasks, it is seldom 
used as a platform for investigating psychophysics and sensory processes per se. Here, we develop a sensorimotor 
assessment toolset that utilizes a video analysis, similar to cryptic prey video analyses used in OFT20,21, to quantify 
participant speed and performance in a tactile and proprioceptive foraging-style search-and-acquisition task.

Methods
To maximize the ease of implementation, and the potential utility of our measures, we developed our assessment 
task within the context of a set of pre-defined goals: (1) minimal rules and instructions, such that participants’ 
performance strategies are unrestricted, (2) sensitivity to the participants’ sensorimotor strategies, (3) sensitivity 
to the effects of sensory feedback by specifically forcing discrimination judgments informed through cutaneous 
or proprioceptive information, (4) the elimination of ceiling effects, providing the framework for potential com-
parison of multiple populations and interventions, and (5) multiple outcome scores rather than a single “good or 
bad”, or completion time score, allowing researchers a more in-depth examination of how participants use their 
sensory feedback and possible trade-offs they may be making.

participants. A cohort of fifteen able-bodied adults was recruited (11 female, 4 male, 13 right-handed, 2 
left-handed, average age 28 years, age range 23–48 years). Participants reported no deficits in the mobility and 
sensation of their upper limbs. Each participant completed testing with their dominant hand. Research ethics 
approval was received through the Institutional Review Boards for the Cleveland Clinic and Department of Navy 
Human Research Protection Program, and all research was performed in accordance with these guidelines and 
regulations. All participants provided informed consent prior to participating in this study. Participants were 
naïve to the specific aims of the experiment, but were informed that they would be discriminating objects of 
varying stiffness, and that speed and accuracy would be measured. Two experiments were performed, the block 
test, in which polyurethane rubber blocks were manipulated, and the spring test in which custom-made spring 
cells were manipulated.
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the block test. Experimental setup. Our goal was to develop a functional test that was inexpensive, simple 
to implement, and in a format that was understandable and accessible to clinicians. This necessitated designing 
the format of the test with reproducible manufacturing and readily available materials. The block test used poly-
urethane rubber blocks (25.4 mm cubes) of different stiffnesses. Durometers of 40A, 60A, and 80A were selected 
to provide compressibility under physiological grip forces without sacrificing durability. Additionally, blocks in 
this range of durometers were similar in appearance and surface texture, minimizing the ability for participants 
to indirectly discriminate block stiffness through vision or roughness.

The distribution of durometers was based on findings by Srinivasan and LaMotte, who found that under 
“almost natural conditions”, participants can distinguish changes as small as 12% difference in the compliance of 
surface-deformable objects1. Because our rubber blocks were obtained based on shore durometer, stiffnesses for 
our materials were calculated based on empirically derived relationships between shore durometer and Young’s 
modulus45, and the known dimensions of our rubber blocks. We found that the percent difference (absolute dif-
ference divided by average) of stiffness (applied force divided by displacement) increments used in our study were 
7 to 8 times greater, assuring that participants would perform above guess-based chance.

The experimental setup for the discrimination task (Fig. 1) was presented in a partitioned space to divide 
the searchable test-objects from the selected test-objects. In this instance we utilized the box from a standard 
two-compartment Box & Block test (Sammons Preston Inc., Boiling Brook, Il, USA)46 because it is a widely used 
and familiar format in standardized validated tests of upper limb motor performance46,47. However, in principle, 
any partition (e.g., a painted line or strip of tape) is sufficient for the purpose of this test.

One compartment was filled with a mixture of twenty each of 40A durometer (soft), 60A durometer 
(medium), and 80A durometer (hard) polyurethane blocks (60 blocks in total). The box was placed on a 0.75 m 
tall table, with the filled compartment on the same side as the participant’s dominant hand. Next to the filled 
compartment, we placed three reference blocks: one soft, one medium, and one hard, with the stiffnesses clearly 
labelled (“soft”, “medium”, or “hard”) on each block with colored adhesive tape. Two digital video recorders cap-
tured the testing area which included the participant’s testing hand, the filled compartment of the box, the empty 
compartment, and the reference blocks. Video data were captured at 30 frames per second.

During the experiment, participants wore disposable earplugs, noise cancelling headphones, and frosted gog-
gles. Gray noise was played through the headphones to reduce possible auditory cues from the blocks being 
manipulated or dropped during testing. The frosted goggles were made from panoramic safety glasses which 
were finely misted with clear plastic paint. These goggles reduced visual acuity roughly by a factor of 3, thereby 
mitigating possible visual cues (such as material compressibility or sheen), while still allowing the blocks to be 
visually located within the experimental setup.

Experimental procedure. Participants stood in front of the two-compartment box. They were informed that the 
box contained soft, medium, and hard blocks and that they would be searching for either soft or hard blocks. Each 

Figure 1. Schematic of the experimental setup. A two-compartment Box-and-Block-style setup had one 
compartment filled with polyurethane rubber blocks that the participant would discriminate, transfer over 
the center partition, and release in the drop-off area. The participant wore frosted goggles and noise cancelling 
headphones, and two digital recorders captured video data.
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trial began with the participant resting their testing hand on the table, and the investigator would indicate which 
stiffness the participant needed to search for (either soft or hard) by tapping the corresponding reference block. 
The participant would then search for five blocks of the target stiffness, one at a time, and transfer them over the 
center partition and into the other compartment of the box. When five blocks were successfully transferred, the 
trial was complete. The number of correct blocks transferred was reported to the participant, and the setup was 
reset for the next trial.

The quantity of five target blocks for each trial (out of a possible 20 target blocks) was selected to avoid sig-
nificant depletion effects. Each time the participant grabbed a block, there was some probability that it would 
be a target block, based on the total proportion of correct blocks in the container. As the participant removed 
correct (or incorrect) blocks from the container the probability of encountering a correct block would decrease 
(or increase). For example, the probability of a participant encountering a correct block ranged from 33% at the 
beginning of a trial (20 correct blocks out of 60 blocks total) to a worst case scenario of 28.6% at the end of a trial 
if the first four blocks selected were all correct (16 correct blocks remaining out of 56 blocks total).

Participants were informed that speed and accuracy were both being measured, and that they should be as 
fast and accurate as possible. Additionally, they would periodically perform a baseline trial where they would 
not search for a particular stiffness, but instead, quickly transfer any five blocks into the other compartment. We 
explained that the investigator would tap the medium reference block when they should do a baseline trial. The 
baseline trials served to capture the time required to simply transfer a block to the empty compartment without a 
decision about stiffness (no discrimination).

At the beginning of the session, each participant completed six trials of practice: two soft, two hard, and two 
baseline trials. It was explained to the participants that the practice trials were not timed and that they should 
focus on resolving the differences between the stiffnesses. After completing the practice trials, participants 
completed 10 rounds of testing, where each round consisted of one soft, one hard, and one baseline trial in a 
pre-determined randomized order. In total, each participant sorted 50 blocks during soft trials, 50 during hard 
trials, and 50 during baseline trials, for a total of 150. Participants were given a rest of at least one minute after 
the third and sixth rounds of testing. Testing took approximately 30 to 45 minutes to complete, depending on the 
speed of the participant.

the spring test. Experimental setup. The spring test setup was identical to the block test setup, except that 
the blocks were replaced with spring cells (Fig. 2). The spring cells provided large displacements when squeezed, 
thereby requiring a higher dependence on proprioceptive information to discriminate relative to the block test, 
which largely required cutaneous pressure information1. Each spring cell was constructed from two 38.1 mm-long 
telescoping aluminum tubes; the outer tube had 31.8 mm-outer diameter and the inner tube had 25.4 mm-outer 
diameter (Fig. 2). A 76.2 mm-long spring was epoxied to two opposing press-fit end caps, such that squeezing 
the telescoping tubes into each other compressed the spring along its longitudinal axis, providing approximately 
25.4 mm of compression. Polytetrafluoroethylene (PTFE) tape was applied to the interior surface of the outer tube 
to reduce stiction and play in the construction. Three stiffnesses of springs were used, 1.4 N/mm, 2.1 N/mm, and 
2.6 N/mm. Due to the size of the spring cells relative to the size of testing area, only 12 of each stiffness was used 
during testing (36 spring cells in total).

Experimental procedure. The spring test used the same procedure as the block test, with specific differences. The 
spring cells could conceivably be handled with at least two different methods: a cylinder grip where compression 
was done with the thumb, such as the way a joystick may be held while pressing a button located at its top; and 
a tripod grip where the index and/or middle finger opposed the thumb to squeeze the spring cell. We did not 
demonstrate any method to the participants or instruct them to use any specific grip, but after the practice trials, 
participants were instructed to continue using their selected grasping and squeezing strategy for the entirety of 
the test.

We instructed participants to sort four spring cells per trial (rather than the five sorted in the block test), 
because fewer spring cells were used, and we wanted to keep depletion effects similar between the two tasks (the 
probability of grabbing a correct spring cell by chance ranged from 33% to 27.3%). However, the number of trials 
was increased to 13 to compensate for the reduced number of springs discriminated per trial. In total, each par-
ticipant discriminated 52 soft, 52 hard, and 52 baseline spring cells during testing.

scoring procedure. The block and spring tests were scored individually, post-experiment, via video analysis, 
according to the same protocol. For each participant, the video footage from both cameras was synchronized, 
and recordings were viewed in a media player which allowed forward and backward frame-by-frame scrub-
bing. We used a video analysis procedure that reflected video analyses used in cryptic foraging studies20,21 to 
extract four key time measures per trial from the video footage (Fig. 3): search time (Ts), the time spent search-
ing for a to-be-selected block or spring cell (referred to herein as test-objects); involvement time (TI), the time 
spent interacting with the to-be-selected test-object; handling time (TH), the time spent transferring the selected 
test-object over the center partition and into the empty compartment of the box; and recognition time (TR), the 
time spent extracting sensory information to inform decision making. Additionally, we documented the number 
of test-objects that the participants manipulated prior to making a selection. The start of each foraging cycle was 
explicitly defined as the moment a participant’s tested hand broke contact with the table as it was raised from the 
start position. This marked the start of search time, and was captured from the video footage timestamp. Search 
time ended when the participant first made contact with the test-object that they would ultimately select. This 
time also marked the beginning of involvement time. Involvement included all of the time that the participant 
spent interacting with the to-be-selected test-object, and ended when the participant transferred and released that 
test-object. The release marked the conclusion of a single foraging cycle and the start of the next one.
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Figure 2. Spring cell design. (a) The overall dimensions of the assembled spring cells detailing diameters of 
the inner tube and outer tube, as well as the overall height. (b) An exploded assembly view of the spring cell 
components detailing the end caps, inner tube, outer tube, and spring.

Figure 3. Foraging cycle. A breakdown of the foraging phases and time outcome measures extracted from 
review of experimental video footage. Where TS, TR, TH, and TI denote search time, recognition time, handling 
time, and involvement time, respectively. The gray dashed box represents the time periods during testing that 
defined involvement time.
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Recognition time represented the interval in which participants squeezed a to-be-selected object and inter-
preted the sensory information to inform their selection. The derivation of this value was dependent on the 
baseline trials that participants performed throughout the testing. As the baseline trials did not require a discrim-
ination decision to be made, they were assumed to purely characterize the time required to grasp and transfer a 
test-object (defined as handling time). Therefore, the difference between the experimentally measured involve-
ment time and the handling time quantified the time spent making a decision (recognition time). These values are 
shown formulaically in Eqn. 1,

= −T T T (1)R I H

where TR, TI, and TH denote recognition time, involvement time, and handling time, respectively. During baseline 
trials it was assumed TR = 0.

During discrimination, participants often manipulated multiple test-objects before finally making a selection. 
The number of test-objects manipulated was recorded and defined as “encounters”. This total included the final 
selected test-object. Any trials that were invalid were excluded from the analysis, such as if the participant stopped 
to ask a question, or did not correctly follow the testing protocol.

Data analysis. The block and spring test results were analyzed separately. Accuracy (A) was calculated as 
the number of correct test-objects a participant selected divided by the total number of test-objects a participant 
selected. Three time-duration measures were computed that broke down the average time spent in each of the 
foraging phases: search time (TS), recognition time (TR), and handling time (TH).

In order to determine the decisions that participants made when they were rejecting test-objects, we derived 
false positive (alpha, α) and false negative (beta, β) error rates using the number of test-objects participants 
encountered and Bayes’ Theorem. We used Bayes’ Theorem to statistically infer the rate at which participants 
made alpha and beta errors. Empirically determining these error rates would have required the stiffness of every 
individual test-object that the participant interacted with (picked up, assessed, and returned to the box) to have 
been known. With respect to the video analysis, the test-objects were not visually distinguishable which pre-
vented us from empirically determining the stiffness of the test-objects that were rejected. Without knowing the 
stiffnesses of all the test-objects that were interacted with, Bayes’ Theorem allowed us to make a strong statistical 
inference about which blocks were being rejected. Alpha quantified the probability of the participant incorrectly 
selecting a non-target test-object given that the test-object in hand was a non-target object (false positive, see: 
Eqn. 2). It is important to note that alpha is different from the proportion of wrongly selected items. Conversely, 
beta quantified the probability of the participant incorrectly rejecting a target test-object given that the test-object 
in hand was a target object (false negative, see: Eqn. 3).

α = |∼ =
∼ | ∗

∼
P s t P t s P s

P t
( ) ( ) ( )

( ) (2)

and

β = ∼ | = − | = −
| ∗P s t P s t P t s P s
P t

( ) 1 ( ) 1 ( ) ( )
( ) (3)

were calculated using the standard format of Bayes’ Theorem, where P(s) was the probability of selecting any 
given test-object (see: Eqn. 4), found by dividing the number of test-objects the participants were required to 
select (100) by the number of test-objects they encountered (N),

=P s
N

( ) 100 , (4)

and P(t) was the prior probability that any given test-object was the target stiffness, a foreknown quantity based 
on the concentration of each test-object stiffness. Tilde (~) is used to indicate negation. At the start of a trial, 
P(t) = 1/3, but as the participant removed test-objects, this quantity would increase or decrease as incorrect or 
correct test-objects were selected, respectively. We therefore used a corrected average P(t) value using each partic-
ipant’s accuracy to determine the average concentration of correct test-objects remaining after each selection they 
made. A summary of all the video-extracted and calculated outcome measures are provided in Table 1. The data-
sets generated and/or analyzed during the current study are available from the corresponding author on request.

statistical analyses. Comparisons and correlations across outcome metrics, stiffnesses, and test-objects 
were performed using bonferonni-corrected paired t-tests and Pearson’s correlation coefficients, respectively. P 
values less than or equal to 0.05 were considered significant.

Results
Our task and test-objects were designed to differentially prioritize the role of tactile and proprioceptive feedback 
in informing discrimination decisions1. Therefore, we compared performance scores (Fig. 4) and correlations 
(Fig. 5) in averaged and individual participant data, respectively, to characterize how this sensory-prioritization 
propagated throughout our measures. It was found that participants performed significantly better on 4 of the 6 
block measures relative to the spring measures (Bonferonni-corrected paired t-tests, all p-values ≤ 0.01, Fig. 4). 
The block test scores demonstrated significantly higher accuracy (87.2% to 95.3%, p = 0.01), search times (6.61 s to 
3.97 s, p < 0.01), and handling times (1.21 s to 1.06 s, p < 0.01) when compared to the spring test results. Beta error 
rate and recognition time were the only 2 measures demonstrating no statistical differences (p = 0.09 and p = 0.47, 
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respectively). Strong and significant correlations were present across the two tasks for both recognition and han-
dling times (r = 0.59 and r = 0.89, p = 0.02 and p < 0.01, respectively). Search time, which made up the majority 
of the time each participant spent foraging (Fig. 4c), had a moderate, non-significant correlation between the 
two tests (r = 0.43 and p = 0.11). Accuracy, alpha error rate, and beta error rate demonstrated weak correlations 
(Fig. 5).

Average participant performances between soft and hard objects were compared to quantify how physical 
changes in test-objects and the corresponding changes in sensory information manifested in the test scores. The 
non-linear scaling of test-object stiffnesses allowed us to assess how participants’ abilities to discriminate the 
objects changed across a range of stiffnesses, as well as validate our tests’ abilities to capture those changes in dis-
criminatory ability. Soft-object versus hard-object comparisons were performed for the block test and spring test 
separately. On average, participants’ scores were improved when foraging for soft objects in two of the outcome 
measures: accuracy and alpha error rate (Figs 6 and 7); this was present in both the block and the spring tests (all 
p-values ≤ 0.05 using Bonferonni-corrected paired t-tests). The remaining measures: search time, recognition 
time, and beta error rate did not demonstrate significant differences in the performance during discrimination 
of hard and soft objects.

We expected no learning time or learning effects for our test as using one’s senses of touch and proprioception 
to determine an object’s stiffness is a common everyday task. To quantify learning effects, we examined the aver-
age performance of each of our participants during the first third (33 trials) and last third (33 trials) of the block 
and the spring tests (Fig. 8). Accuracy, number of encounters per object selection, and average foraging time were 
specifically evaluated as every remaining measure was derived from these three variables. No significant differ-
ences (using paired t-tests) were detected for either the block or the spring tests.

Additionally, we explored the relationships between learning effects and overall performance by evaluating 
correlations between the number of trials a participant spent “learning” and their final scores (Fig. 9). The run-
ning average score (starting with trial one) was used, and “learning time” was defined as the number of trials 
required for each participant’s running average to enter and stay within the bounds of their final 95% confidence 
interval (Fig. 9g). Each participant’s learning time was compared against their final overall performance in accu-
racy, encounters per selection, and foraging time per object (Fig. 9a–f). No correlations between learning time 
and overall performance for any of the three measures in either the block or the spring tests were found.

Discussion
The objective of this work was to develop a psychophysical touch and proprioception measure that would allow 
us to investigate sensorimotor behavior and strategy of participants as they performed a sensory discrimination 
task. The development of our metric was guided by five key criteria. (1) Minimal rules and instructions: The acts 
of selecting, discriminating, and transferring test-objects were unconstrained, and participants were given an 
initial practice period to organically arrive at their preferred sensorimotor strategies. (2) Sensitivity to sensorimo-
tor strategies: Our sensory discrimination tasks provided multiple outcome measures sensitive to sensorimotor 
strategies. For example, if a participant were overly cautious in their discrimination we would anticipate increased 
search time and increased beta error rate, or if a participant were simply guessing and transferring objects as 
quickly as possible, this would present as an accuracy close to chance with reduced search and recognition times. 
(3) Sensitivity to the effects of sensory feedback: Our tasks were specifically designed to evaluate one’s ability to 
make discrimination choices informed through cutaneous and proprioceptive sensory information. (4) The elim-
ination of ceiling effects: Ceiling effects may occur in clinical tests when patient performance improves to the 
point that the test is insufficiently difficult to measure their ability, and thus the test can no longer detect improve-
ments in their condition. To the detriment of allowing comparisons across populations, often a test will stratify 
users by providing tasks that are insufficiently challenging for able-bodied, yet too difficult for the sensorimotor 
impaired. Our task provides a suite of metrics, including time-based measures, which scale in our application 

(a) Measures extracted from video footage

Measure Symbol Definition Units

Search time TS Time spent searching for to-be-selected test-object. seconds

Involvement time TI Time spent interacting with the to-be-selected test-object. seconds

Handling time TH Time spent transferring and releasing the selected test-object. seconds

Encounters N Number of test-object manipulated in a foraging cycle. integer value

(b) Calculated measures

Measure Symbol Definition Units Eqn. number

Recognition time TR Time spent extracting sensory information to inform decision making. seconds (1)

Accuracy A The ratio of correctly selected test-objects to total test-objects selected. % correct n/a

Alpha error rate α The probability of incorrectly selecting a test-object (false positive). probability (2)

Beta error rate β The probability of incorrectly rejecting a correct test-object (false negative). probability (3)

Table 1. A summary table of experimental measures. (a) The measures extracted through frame-by-frame 
analysis of experimental video footage. (b) The measures derived through calculations of experimental data. 
Table categories provide: the symbolic annotation of each measure as used in the equations of the methods 
section, a general definition, the units of each measure, and the corresponding equation describing the 
derivation of each measure (where applicable).
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to accommodate all participant populations and their abilities. (5) Multiple outcome scores rather than a single 
“good/bad” or completion-time score: Our utilization of an OFT cryptic prey style video analysis provided a variety 
of measures to characterize foraging and decision making behaviors. Specifically, we extracted four quantitative 
measure from experimental data to directly characterize task performance. Additionally, error analyses were per-
formed, creating predictive models of the types of errors participants were most likely to make. Together, these 
outcomes allow for a nuanced description of sensorimotor performance.

Although the acts of manipulating, discriminating, and transferring a test-object are relatively straightforward, 
information is available that enables measures reflecting three primary aspects of performance: motor control, 
sensory feedback, and strategy (Table 2). Recognition time is almost exclusively a function of sensory feedback, as 
it accounts for the time that the participants spent extracting sensory information from a test-object and making 
a discrimination choice. Accuracy is a measure of how successful a participant’s sensory system was in providing 
relevant information to guide the selection of a test-object. Accuracy is also affected by the strategic decisions 
of the participant, such as the degree of caution used when selecting objects. Handling time is calculated from 
baseline trials, which consist of only the grasp and transfer of the selected test-objects, and therefore is primarily 
a function of the participant’s motor control. This phase is nearly identical to the traditional Box and Block test46: 
during baseline trials, participants are instructed to move the test-objects one at a time, over the center partition, 
into the other compartment as quickly as possible. Search time is dependent on the sensory and motor systems 
as the participant is required to navigate through the experimental space while manipulating test-objects, using 
sensory information to reject non-target objects, and locate a target object. A participant might strategize during 

Figure 4. A breakdown of the six metrics collected during testing, for both blocks (blue) and springs (red). 
Panel (a) shows the average of all participants’ selection accuracies for both blocks and springs. The fill of the 
object segments represents the average number of correct objects the participants identified per trial (out of 
five blocks or four spring cells), whereas the y-axis indicates the percentage of correctly selected objects that the 
participants identified from all trials (as a percentage). Panel (b) shows average Type I error rate (α) and Type 
II error rate (β) of all participants. P-value indicates significantly lower error rates. Panel (c) shows the average 
time participants spent in each foraging phase for both blocks and springs. The staggered bar plots represent 
different foraging phases and correspond to the labels on the left. The sum of each set of three bars represents 
the average total foraging time per respective test-object. Note that the error bars describe the variability of each 
foraging phase independently, and are not additive. P-value indicates significance level of both * (the top bars) 
and ** (the bottom bars). All error bars represent ±1 standard deviation of the respective plotted variable.
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search time by minimizing the re-visiting of non-target test-objects or by searching in “hot spots”. The alpha error 
rate (false positive) describes the probability that the participant will mistakenly select a non-target object each 
time one is encountered. Alpha error rates are minimized through the use of sensory information and strategic 
decisions, such as weighing the discrimination certainty against the time cost of finding a new object. Beta error 
rate (false negative), which describes the probability that the participant will mistakenly reject a target object each 
time one is encountered, is influenced by both sensory feedback and strategy in a similar manner.

Comparing participants’ results between the block and spring cell tasks allowed us to describe how participant 
strategy and performance changed based on the sensory modalities with which they presumably interacted, and 
characterize which aspects of performance translated across the test variants. Previous work by Srinivasan and 
LaMotte revealed that the sensory modalities needed to discriminate objects of different stiffnesses was in part 
dependent on the surface deformability of those objects. Specifically, compliant objects with deformable surfaces 
(rubber specimens) required only tactile sense to discriminate, whereas compliant objects with non-deformable 
surfaces (spring cells) required both cutaneous pressure and proprioception to discriminate1. We designed our 

Figure 5. Correlations between block and spring performance for the six metrics collected during the test. 
Block performance is shown on the y-axes and spring performance is shown on the x-axes. Axes are scaled 
to include all data and maximize viewing area. Each marker indicates the block and spring performance of 
a different participant. The dotted lines are the trend lines. The correlation coefficient (r) and significance 
level of the correlation is labelled for each plot. The two plots at the bottom (Panels (e and f)) show significant 
correlations between blocks and springs for those for metrics. The label “prob.” denotes probability.
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tasks using their findings as a guide so that the two variants of our task, blocks and spring cells, would each pri-
oritize a different sensory modality: cutaneous pressure and proprioception, respectively. In our analyses, it was 
found that the average accuracy of the block test was significantly higher than the spring test (Fig. 4a), with the 
average foraging time being significantly less (Fig. 4c). Additionally, the block and the spring test accuracy scores 
did not demonstrate correlation. This implies that different accuracy was being achieved across the differentially 
prioritized sensory modalities, and the magnitude of these differences were individual to each participant. These 
findings are paralleled by Srinivasan and LaMotte. In their experiments, participants also made stiffness discrim-
inations about rubber test-objects and spring cells and differences in performance were attributed to presence 
of cutaneous touch and proprioception, respectively1. However, in their work, participant finger indentation 
parameters (e.g., joint angles, loading velocities, peak force contact, and specimen edge avoidance) were carefully 
controlled, and discrimination was tested under both active touch (with kinesthesia) and passive touch (without 

Figure 6. Soft blocks vs. hard blocks performance for five different metrics. All y-axes represent soft 
performance and all x-axes represent hard performance. For all panels, axes have been scaled/reversed such that 
better performance is to the top and right. Each open square marker represents a different participant. Larger 
filled square markers represent the average of all participants and the error bars represent 95% confidence 
intervals of the respective averaged data. The dotted 1:1 line in each plot represents equal performance between 
soft and hard blocks. Markers that lie above the dotted 1:1 line in the shaded orange region labelled soft indicate 
that participant performance for that metric was better for soft blocks, whereas markers that lie below the dotted 
1:1 line in the shaded purple region labelled hard indicate that participant performance for that metric was 
better for hard blocks. Subplots 6a and 6c show statistically better performance for soft blocks than hard blocks, 
with labelled p-values indicating the significance level. The label “prob.” denotes probability.
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kinesthesia)1. This is in contrast to our study where participants were not constrained in how they manipulated 
the test-objects. Despite this, our data, combined with the findings of Srinivasan and LaMotte, support the idea 
that both tests are unique sensory tasks evaluating two separate sensory aspects of upper limb control.

Recognition time is a sensory-based value that represents the time required to extract and interpret sensory 
information, as well as make a decision. We found that regardless of the sensory modalities being prioritized 
in the block and the spring tests, the average recognition times did not significantly differ but instead demon-
strated significant correlation. This suggests that the sensory content (cutaneous-force, or proprioception and 
cutaneous-force) does not significantly influence this time, and/or any non-significant differences are scalable 
across individual participant performances. When foraging for cryptic prey, there is an optimal tradeoff between 
search rate and the probability of prey detection. Slow searching may provide improved prey detection but 
requires more time, and searching faster allows more area to be investigated but may detect less prey; thus, there 

Figure 7. Soft springs vs. hard springs performance for five different metrics. All y-axes represent soft 
performance and all x-axes represent hard performance. For all panels, axes have been scaled/reversed such that 
better performance is to the top and right. Open circle markers each represent a different participant. Larger 
filled circle markers represent the average of all participants and error bars represent 95% confidence intervals 
of the respective averaged data. The dotted 1:1 line in each plot represents equal performance between soft and 
hard springs. Markers that lie above the dotted 1:1 line in the shaded orange region labelled soft indicate that 
participant performance for that metric was better for soft springs, whereas markers that lie below the dotted 1:1 
line in the shaded purple region labelled hard indicate that participant performance for that metric was better 
for hard springs. Subplots 7a and 7c show statistically better performance for soft springs than hard springs, 
with labelled p-values indicating the significance level. The label “prob.” denotes probability.
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is a tipping point where neither alternative will further increase the overall rate of prey capture48. In our case, 
search rate and probability of prey detection are both heavily influenced by recognition time. Therefore, the aver-
age recognition time that we found (approximately 1.1 seconds [Fig. 4c]) likely represents the optimized duration 
for participants to spend engaging with sensory information, regardless of the sensory content; any further time 
would yield diminishing returns on the quality of the discrimination decision.

Different handling time durations may be expected between the tasks as the two test-objects are different 
shapes and require different methods for grasping and handling. Indeed, we found that participant handling times 
measured from the block task were significantly different than those measured in the spring task. We also found 
that participant handling times between the block and spring tasks were strongly correlated (Figs 4c and 5f), i.e., 
participants who transferred objects quickly in one test were likely to be quick in the other. Handling time is pri-
marily influenced by motor control and therefore a marker for the motor capabilities of the person being tested. In 
our experiments, participants were effectively using identical motor control systems (with arguably similar motor 
capabilities): their physiological hand and arm. We suggest that in this case, differences in participants’ handling 
times could also be thought of as a proxy for level of engagement with the task.

We examined the participants’ test results for learning effects to understand how sensory feedback modality 
influenced the rate at which participants optimized the foraging discrimination task. Additionally, we quantified 
correlations between how quickly a participant learned and their overall task performance. This provided insight 
into how the “slowness” or “quickness” of a participant’s learning may be related to their overall task ability, e.g., 
are fast learners better at the task? No significant difference was demonstrated in average performance during the 
first and last third of testing, in accuracy, encounters per selection, or foraging time (Fig. 8). This finding supports 
that participant performances were stable over the duration of testing. Furthermore, the size of the final 95% con-
fidence intervals suggest that this likely stems from minimal changes in mean values rather than large variances in 
scores. Figure 9 highlights the number of trials prior to participants converging on stable performance (maintain-
ing scores within their final 95% confidence interval). No statistically significant correlations were found between 
the number of trials to converge and performance. In other words, how quickly one learns the task and adopts 
a sensorimotor strategy does not appear to influence their ability to perform the task. As a group, participants 
typically demonstrated convergence quickly within the first third of the trials.

Our tasks were specifically designed to be unstructured in the way participants engaged with, and explored 
test-objects; yet, during the experiments, we observed some participants adopting organized strategic behaviors. 
As our analyses did not explicitly quantify these behaviors, we completed an additional observation-based analy-
sis to capture the way participants searched and grasped test-objects (Fig. 10). Specifically, when searching, some 
participants engaged in more “systematic” search styles, such as organizing rejected test-objects to separate them 
from potential target objects, and/or working exhaustively from one area of the box to another. This is in contrast 
to more “random” search strategies, where participants placed rejected test-objects in their original location or 
randomly around the box, and switched their search area erratically. We classified participants as systematic or 

Figure 8. Group mean performance during the first third and the last third of the experiment. Group 
mean performance was examined for accuracy, encounters per selection, and foraging time. The block test 
performance is shown as blue squares and the spring test performance is shown as red squares. Empty markers 
represent performance during the first third of the test, which was approximately 33 trials, and filled markers 
represent performance during the last third of the test (also 33 trials). Error bars represent 95% confidence 
intervals of the respective plotted variables. Axes are scaled to maximize viewing area.
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Figure 9. Comparing each participant’s learning time to their overall performance for blocks and springs. 
Learning time was measured in number of trials, and performance was examined in three different measures 
(accuracy, encounters per selection, and foraging time per object). Blue blocks represent participant data 
from the block test (a–c) and red circles represent participant data from the spring test (d–f). For (a–f), the 
x-axis shows the number of trials spent “learning”, that is, the number of trials it took each participant for their 
performance to stabilize within the 95% confidence intervals of their final performance. (g) Shows an example 
participant to illustrate how learning time was determined. The number of trials for the participant’s running 
average performance to enter and stay within the 95% confidence intervals of their final performance was 
considered to be the number of trials spent “learning”. Stable performance for this participant is indicated by the 
red vertical line.
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random searchers based on how frequently and deliberately they organized rejected test-objects, and how likely 
they were to exhaustively search test-objects by location. Although systematic strategy was observed in some 
participants, the majority of participants fell into the random searchers category. This finding is consistent with 
other biological foragers, in which semi-random search strategies are employed and may be described through 
stochastic mathematical models such as Levy flight49. Importantly, traditional OFT models assume a memoryless 
random search phase, and in our data, no difference in performance was observed between participants perform-
ing random and strategic-sorting search strategies, supporting that the memoryless assumption stands for our 
analyses. We also observed grasping strategies during the spring test. Participants fell into one of two categories: 
thumb grasping and tripod grasping, as described in Methods. We classified all participants into these searching 
and grasping strategies (Fig. 10). The strategy one adopts to manipulate the spring cells may have two possi-
ble explanations: (1) participants may have selected their grasping strategy for motor control reasons, e.g., they 
selected a method which allowed them to grasp the spring cells quickly, comfortably, or in a way that minimized 
muscular exertion or fatigue, (2) a participant’s grasping strategy may have been selected on a sensory discrimina-
tion basis, e.g., they determined that their chosen grasping method allowed them to most accurately and quickly 
collect sensory information. Significant differences between thumb grasp and tripod grasp strategies were not 
found in any of our performance measures (data not shown), suggesting that either the effect of grasping strategy 
was too small to detect, or grasping strategy was selected based on some other unknown variable.

In OFT studies that examine the optimal diet of foragers, the long-term rate of caloric gain and profitability 
(the value of an encountered prey item) play a fundamental role in predicting the prey items that are included 
as part of the forager’s optimal diet. The optimal diet model suggests that the most profitable prey item is always 
included in the forager’s diet. From this point, the inclusion of prey items into the diet is considered in order of 
descending profitability, and a prey item is included in the forager’s diet only if the prey’s profitability is greater 
than the forager’s net rate of food intake50. Although this is a cursory overview of the optimal diet model, the 
relevant point pertaining to the present study is that rate of net gain and profitability have been demonstrated to 

Outcome measure Sensory Motor Strategy

Recognition time ✔
Accuracy ✔ ✔
Alpha error rate ✔ ✔
Beta error rate ✔ ✔
Handling time ✔
Search time ✔ ✔ ✔

Table 2. The sensitivity of individual performance indicators and their sensitivity to sensory, motor, or strategic 
aspects of upper limb control.

Figure 10. Observed proportions of participants using different grasping and searching strategies. Participants 
were classified into two strategies of grasping (top: thumb versus tripod) and two strategies of searching (left: 
random versus systematic). The total number of participants using each searching strategy or each grasping 
strategy is shown by adding the numbers across each row or each column, respectively. The number of 
participants using particular combinations of grasp and search strategies can be seen by looking at specific cells 
(e.g., the number of people who searched systematically with a tripod grasp is shown in the bottom center cell.)
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be predictive in the decision-making of biological foragers. The values of rate of gain and profitability may have 
alternatives in the present study, and these values may potentially be useful with respect to the future goals of our 
sensorimotor task: characterizing sensory-impaired populations and sensory restoration interventions.

First, it is important to consider the concepts of prey reward and foraging accuracy. Generally, the forager’s 
reward from the prey is the prey’s (net) caloric content, whereas accuracy typically refers to the forager’s detec-
tion rate of the prey from the environment. In the present study, these are not distinct concepts; participants are 
only rewarded for detecting correct test-objects, (e.g., if soft test-objects are the target, medium and hard objects 
are both equally valueless). Any assigned reward value to the test-objects would simply be a scaling factor, and 
we therefore consider the reward of foraging to be interchangeable with the accuracy of foraging in our task. 
This departure from classical foraging theory affects the interpretation of foraging metrics, but better suits the 
long-term goals of our sensorimotor task.

The mathematical rate of gain of a forager’s diet is the long-term net caloric intake divided by total foraging 
time (described in units of caloric gain per unit time). In contrast, we calculate a modified version of rate of gain 
by dividing the number of blocks correctly selected by total task time (see: Eqn. 5). We refer to this quantity as 
efficiency. Although, this calculation has exceptions from classical rate of gain, we anticipate it may be useful 
to describe the effectiveness of therapeutic interventions in sensorimotor-impaired populations. For example, 
comparing two or more treatments might reveal differential improvements in sensory feedback and motor func-
tion, which may be captured through the measures of accuracy and foraging time, respectively. This hypothetical 
tradeoff between accuracy and speed could be quantified with efficiency. This would help to determine which 
intervention may provide the greatest benefit, just as rate of gain is used in the optimal diet model to predict 
which prey would benefit a forager’s diet.

Profitability is an essential quantity for a forager to (instinctively) consider when deciding whether or not to 
pursue a prey item. Profitability is calculated by dividing prey net caloric content by handling time, describing 
the relationship between an expected gain and the time taken to achieve it. In contrast, we calculate a modified 
version of profitability by dividing accuracy by recognition time (see Eqn. 7). We refer to this ratio as discrimina-
tion efficiency. The expected gain of each test-object is a function of the participant’s ability to correctly discrim-
inate the test-object (accuracy). The time taken to achieve that gain is the time spent making the discrimination 
decision (recognition time). While this is similar to profitability, there are important differences. Profitability is a 
prospective property of a prey item that is known to the forager upon encountering that prey item, and is therefore 
a strong predictor of the forager’s decision-making. Conversely, discrimination efficiency restrospectively describes 
the quality of the participant’s decisions when selecting test-objects. A participant is not able to determine the 
value of a test-object (the likelihood that it is a target) until a time cost has already been incurred. Therefore, 
discrimination efficiency would not be a predictor of a participant’s decision-making when selecting test-objects. 
However, discrimination efficiency provides a meaningful way to quantify the performance of a sensory system. 
If two sensory restoration interventions are compared, they may provide different benefits to the quality of sen-
sory information received versus how quickly that sensory information is useful to the patient. Discrimination 
efficiency provides a method to determine if tradeoffs between speed and accuracy are beneficial in a way that 
resembles how biological foragers make decisions about the balance between payoff and time investment.

Because the present study examined the performance of only able-bodied participants with intact sensorimo-
tor systems, the measures of efficiency and discrimination efficiency would be expected to simply show trends in 
performance, rather than quantifying tradeoffs between alternative interventions as described above. However, 
able-bodied performance data would provide a useful frame-of-reference for contextualizing performance 
improvements in sensorimotor impaired populations, so those able-bodied data are included here. Each partici-
pant’s efficiency (E, Eqn. 5) was calculated as

=
+ +

E A
T T T

,
(5)S R H

where A was their accuracy, and A was divided by the sum of their search time, recognition time, and handling 
time averages (TS, TR, and TH, respectively). Each participant’s discrimination efficiency was calculated using an 
adjusted accuracy (A’, Eqn. 6)

′ = − −A A A1
2

(1 ), (6)

so that an accuracy of 33% would yield an adjusted accuracy of 0. Adjusted accuracy was specifically used to 
accommodate for scoring based on chance, i.e., if a participant was unable to discriminate the test-objects above 
the threshold of guessing (33% accuracy), they would receive an adjusted accuracy and discrimination efficiency 
score of zero (reflecting the participant’s discrimination strategy relative guessing). Discrimination efficiency (D, 
Eqn. 7) was therefore calculated as

=
′
.D A
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We found that in the block task compared to the spring task, participants performed with greater efficiency 
(16.8%/s to 10.0%/s, p < 0.01) and discrimination efficiency (94.7%/s to 71.3%/s, p = 0.01) shown in Fig. 11. 
Additionally, efficiency as well as discrimination efficiency each strongly correlated across the two tasks (both 
r = 0.61 and p = 0.02), shown in Fig. 12. Comparing soft test-objects against hard test-objects revealed that there 
was not a significant effect of test-object stiffness on efficiency for either blocks or springs (Figs 13a and 14a). 
However, group-mean discrimination efficiency was significantly higher for soft compared to hard test-objects for 
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both blocks and springs (Figs 13b and 14b), likely due to higher accuracy scores in soft test-objects (Figs 6c and 7c)  
while changes in recognition times were insignificant (Figs 6e and 7e).

While our task design and video analysis were influenced by OFT, we made several departures from classical 
OFT which are important to consider as they affect the interpretation of our results from an OFT perspective. 
First, accuracy (or prey detection) and prey value (e.g., calories) are conventionally separate quantities which 
together define a forager’s behavior48. In our task, we chose to assign value to correct discriminations only, as 
this allowed us to separate discrimination ability (e.g., accuracy) from foraging strategy (e.g., alpha and beta 
error rates). In contrast, if test-objects of different stiffnesses were differentially valued, then it would be unclear 
if the resulting accuracy and error rates of those objects were the result of an inability to discriminate them, or 
a strategic decision to ignore them in an attempt to improve foraging efficiency. The result of this decision was 
that a participant’s accuracy (the number of correct discriminations divided by the total foraging attempts) was 
synonymous with their foraging reward. Second, our adoption of accuracy as prey value carried over to the quan-
tities of efficiency and discrimination efficiency. Conventionally, these quantities refer to the value of prey items 
being foraged for; that is, a prey item has a profitability value relevant to the forager, and this profitability value 
is the basis for modelling the forager’s decisions. In our case, we were not interested in describing the value of 

Figure 11. Group-mean performance in efficiency and discrimination efficiency for blocks (blue) and springs 
(red). Panel (a) shows average efficiency of all participants. P-value indicates significantly higher efficiency in the 
block test. Panel (b) shows the average discrimination efficiency of all participants for blocks (blue) and springs 
(red). P-value indicates significant difference in group means.

Figure 12. Correlation between block and spring performance for efficiency and discrimination efficiency. Block 
performance is shown on the y-axes and spring performance is shown on the x-axes. Axes are scaled to include 
all data and maximize viewing area. Each marker indicates the block and spring performance of a different 
participant. The dotted lines are the trend lines. The correlation coefficient (r) and significance level of the 
correlation is labelled for both plots. Both metrics showed significant correlation across the block and spring tasks.
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the prey items. Rather, our goal was to describe participants’ abilities to discriminate the test-objects, as well as 
characterize the time spent and decision-making which led to the discrimination decisions. Since our task design 
eliminated the aspect of prey choice, efficiency and discrimination efficiency described the value of the single target 
stiffness relative to its cryptic background (the distractor test-objects). In this way, efficiency and discrimination 
efficiency may also be thought of as describing the value of the participant’s discrimination ability and foraging 
strategy when foraging for the target stiffness (the only prey available to them).

At a fundamental level, decision-making in OFT is generally explained through the mechanisms of Marginal 
Value Theorem and the time opportunity cost of foraging51,52. When a forager encounters a prey, it must make a 
decision of whether to pursue that prey item, or ignore it and continue searching. This decision depends on the 
immediate reward of the prey item and the time opportunity cost of engaging with the prey item, the latter being 
defined by the forager’s average net energy intake. When a forager encounters a prey item, it must decide whether 
pursuing it or ignoring is a better use of its time, based on the reward it expects to receive from either option. This 

Figure 13. Soft blocks vs. hard blocks performance for efficiency and discrimination efficiency metrics. Both 
y-axes represent soft performance and both x-axes represent hard performance. For both panels, axes have 
been scaled such that better performance is to the top and right. Each open square marker represents a different 
participant. Larger filled square markers represent the average of all participants and the error bars represent 
95% confidence intervals of the respective averaged data. The dotted 1:1 line in each plot represents equal 
performance between soft and hard blocks. Markers that lie above the dotted 1:1 line in the shaded orange 
region labelled soft indicate that participant performance for that metric was better for soft blocks, whereas 
markers that lie below the dotted 1:1 line in the shaded purple region labelled hard indicate that participant 
performance for that metric was better for hard blocks. Average participant discrimination efficiency (subplot 
13b) was significantly higher for soft blocks compared to hard blocks

Figure 14. Soft springs vs. hard springs performance for efficiency and discrimination efficiency metrics. Both 
y-axes represent soft performance and both x-axes represent hard performance. For both panels, axes have 
been scaled such that better performance is to the top and right. Open circle markers each represent a different 
participant. Larger filled circle markers represent the average of all participants and error bars represent 
95% confidence intervals of the respective averaged data. The dotted 1:1 line in each plot represents equal 
performance between soft and hard springs. Markers that lie above the dotted 1:1 line in the shaded orange 
region labelled soft indicate that participant performance for that metric was better for soft springs, whereas 
markers that lie below the dotted 1:1 line in the shaded purple region labelled hard indicate that participant 
performance for that metric was better for hard springs. Average participant discrimination efficiency (subplot 
14b) was significantly higher for soft springs compared to hard springs.
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fundamental decision-making mechanism of foraging is also present in our stiffness discrimination task. Each 
test-object that a participant selects or rejects carries with it an associated opportunity cost. Each time a partici-
pant encounters a test-object, they inherently decide the probability that it is a target test-object (i.e., its value) and 
they know the amount of time they have spent thus far finding and identifying the test-object. This is the imme-
diate value of the test-object. The participant must then make the decision to select it or reject it, and the forgone 
decision becomes the opportunity cost. The more confident the participant is that they have a correct test-object, 
the greater the opportunity cost of rejecting it (i.e., making a false negative error), as they will incur more time 
cost and receive diminishing gains in accuracy. Inversely, there is a tremendous opportunity cost associated with 
taking an incorrect test-object (i.e., a false positive error), as it provides 0 value, and in our task the number of 
foraging attempts allowed is explicitly limited; if an incorrect test-object is taken, the opportunity to find a correct 
one is permanently lost. Even at longer foraging times, there is still a great opportunity cost for taking an incorrect 
test-object as it provides no value. It would follow from the opportunity cost argument that participants in our 
task should bias towards false negative errors, while taking great care to avoid false positive errors, as false positive 
errors have large opportunity costs. We do in fact see this in the data, as for both the block and spring tasks, par-
ticipants were significantly less likely to make false positive errors than false negative errors (Fig. 4b).

We developed a foraging style task, that assessed the strategy and performance of human participants com-
pleting sensory discriminations. Our data analysis was able to describe the strategies used by the participants, 
as well as identify overall performance trends of a normative population to characterize how humans engage 
with object search-and-acquisition in the context of a tactile and proprioceptive sensory discrimination task. We 
suggest that this task could be a valuable tool for studying touch and proprioception, such as understanding the 
impact of altered sensation and/or motor control in impaired populations or those using assistive technologies 
such as upper limb prostheses. Our task may also have potential to be adapted as a format for foraging theory 
studies as a test-bed or validation tool in applicable foraging models.
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