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processing complexity increases in 
superficial layers of human primary 
auditory cortex
Michelle Moerel1,2,3,4, Federico De Martino2,3,4, Kâmil Uğurbil4, Essa Yacoub4 &  
elia Formisano  1,2,3

The layers of the neocortex each have a unique anatomical connectivity and functional role. Their 
exploration in the human brain, however, has been severely restricted by the limited spatial resolution 
of non-invasive measurement techniques. Here, we exploit the sensitivity and specificity of ultra-high 
field fMRI at 7 Tesla to investigate responses to natural sounds at deep, middle, and superficial cortical 
depths of the human auditory cortex. Specifically, we compare the performance of computational 
models that represent different hypotheses on sound processing inside and outside the primary 
auditory cortex (PAC). We observe that while BOLD responses in deep and middle PAC layers are equally 
well represented by a simple frequency model and a more complex spectrotemporal modulation model, 
responses in superficial PAC are better represented by the more complex model. This indicates an 
increase in processing complexity in superficial PAC, which remains present throughout cortical depths 
in the non-primary auditory cortex. These results suggest that a relevant transformation in sound 
processing takes place between the thalamo-recipient middle PAC layers and superficial PAC. This 
transformation may be a first computational step towards sound abstraction and perception, serving to 
form an increasingly more complex representation of the physical input.

The human neocortex consists of six layers, each with a distinct anatomical connectivity and functionality. Across 
the primary sensory cortices (i.e., primary visual, auditory, and somatosensory cortex) the anatomical build up 
and connectivity of these cortical layers is relatively similar. Input from the thalamus to the primary sensory 
cortex arrives in layer IV, cortico-cortical connections arise from superficial layers II-III, and efferent subcortical 
projections originate from deep layers V–VI1,2. As a result of this layer-specific connectivity, the deep, middle, 
and superficial layers support different functions. While sensory processing in the middle input layers may be 
relatively simple, inherited from thalamic processing, superficial and deep layers may comprise increasingly com-
plex stimulus representations as a result of columnar processing, horizontal connections, and cortico-cortical 
feedback3,4.

In the primary visual and somatosensory cortex, laminar processing differences have been repeatedly shown. 
For both sensory modalities, processing is simplest and most representative of the physical sensory input in 
the thalamo-recipient middle layers, and increases in complexity towards superficial and deep layers5–7. For 
the auditory cortex, consistent principles of laminar processing have been more difficult to demonstrate. While 
early studies reported conflicting findings3, recent studies provide evidence for an auditory laminar organiza-
tion that is similar to the other early sensory cortices. In the PAC, the fastest responses to sounds are seen in 
layer IV8, followed by deep and superficial layers (but see also reports of faster sound responses in deep layers, 
possibly due to direct thalamic connections9,10). Results from cat PAC showed systematic processing variations 
throughout the cortical depth, where processing complexity increased with distance from granular layer IV10. 
Accordingly, recordings in the awake marmoset monkey showed that while neurons in middle thalamo-recipient 
layers respond well to simple sounds, many neurons in superficial PAC could not be that easily driven11. Instead, 
superficial PAC neurons displayed sustained responses to complex sounds and con-specific vocalizations12. Thus, 
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while layer IV may contain a relatively faithful representation of the spectrogram of incoming sounds, other cor-
tical depths may incorporate more complex sound representations.

To date, the spatial resolution of non-invasive measurements has prohibited investigating if similar differences 
in laminar processing are present in the human auditory cortex. This is a crucial omission, as human audition 
is unique in its flexibility and richness, e.g., for processing speech and language. Therefore, results from animal 
studies are not directly transferable to the human. Moreover, while the PAC was traditionally considered to be 
a simple feature analyser, more recent studies highlight its role in processes beyond the physical sound analysis. 
For example, processing in the PAC is rapidly modulated with changing task demands13,14, and is affected by 
signals from other sensory cortices15. Furthermore, the PAC has been implicated in auditory object formation16, 
and auditory category learning17,18. These complex auditory processes, going beyond the physical sound anal-
ysis, may occur within PAC as information flows through the layers of the canonical microcircuit. Exploring 
layer-dependent sound processing may shed light on how PAC computations support auditory cognition.

Ultra-high field magnetic resonance imaging (MRI) profits from an increased sensitivity and specificity to 
neuronal activity, and allows investigating the human brain at a sub-millimetre spatial resolution19. Given that the 
thickness of the human PAC is ~2–3 mm20, this sub-millimetre spatial resolution enables acquiring independent 
signals from deep, middle (presumably reflecting thalamo-recipient layer IV), and superficial cortical depths. 
Here we investigate responses to natural sounds across cortical depths of the human auditory cortex. We observe 
that while BOLD responses in deep and middle PAC layers are equally well represented by a simple frequency 
model and a more complex frequency-specific spectrotemporal modulation model, responses in superficial PAC 
are significantly better represented by the more complex model. This suggests that the neuronal populations 
underlying the responses to natural sounds in superficial PAC display an increase in processing complexity com-
pared to deep and middle PAC layers. This increased processing complexity is present throughout cortical depths 
in the non-primary auditory cortex as well. Thus, a transformation in sound processing takes place between 
middle and superficial PAC. This transformation may be a key step from a representation of the physical sensory 
input toward an increasingly complex, categorical, and abstract sound representation.

Results
We obtained high resolution anatomical data (0.6 mm isotropic) and functional data (0.8 mm isotropic) while 
subjects listened to natural sounds. We observed significant responses to the sounds throughout the supratempo-
ral plane, including HG (the putative location of primary auditory cortex), Heschl’s sulcus, planum polare (PP), 
planum temporale (PT), and the parts of the superior temporal gyrus and sulcus that were covered by the fMRI 
field of view.

Cortical responses to the sounds were analyzed with two encoding models, representing different hypoth-
eses on sound processing. A first frequency model was simplest, describing sound processing in terms of the 
frequency preference of cortical neuronal populations. A second spectrotemporal modulation model described 
cortical sound processing as the frequency-specific tuning of neuronal populations to combined spectral and 
temporal modulations. The performance of the models based on the responses in the auditory cortex as a whole 
(including all voxels with a significant response to the sounds; p < 0.05 uncorrected) is shown in Fig. 1a. Both the 
simpler frequency model and the spectrotemporal modulation model could predict responses to testing sounds 
above chance (average prediction accuracy [SEM] = 0.83 [0.02] for the spectrotemporal modulation model, and 
0.71 [0.03] for the frequency model), and thus provided a meaningful representation of sound processing in the 
auditory cortex. In agreement with our previous study21, the spectrotemporal modulation model outperformed 

Figure 1. Model performance. Model performance is evaluated by the prediction accuracy of responses to test 
sounds (i.e., sound identification score). (a) Performance of the models on the entire dataset, which covers the 
majority of the supratemporal plane (STP) and parts of the superior temporal gyrus (STG). The dashed line 
corresponds to chance performance (score = 0.5), and the error bars indicate the standard error across subjects 
(N = 6). (b,c) The cortical depth dependent model performance ranging across deep, middle, and superficial 
grey matter for the part of the grid with the highest (i.e., primary auditory cortex) and lowest (i.e., non-primary 
auditory cortex) 50% of myelin-related contrast in solid and dashed lines, respectively. Statistical results are 
indicated by NS (not significant), *p < 0.05, and **p < 0.001. (d) The cortical depth dependent difference in 
model performance (ranging across deep, middle, and superficial grey matter) between primary auditory 
cortex and non-primary auditory cortex. In b-d, the error bars indicate the standard error across hemispheres 
(N = 12).
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the frequency model (two-sided paired t-test after Fisher transformation of the prediction accuracy values; 
t(5) = 7.19; p = 8.09 × 10−4). This finding was not driven by a subset of sounds, but instead was observed across 
the large majority of sound categories (Fig. S1a).

We further examined the fitted spectrotemporal modulation model by creating large-scale topographic maps 
for each of the three acoustic features. Maps of tonotopy (i.e., best frequency [BF]), preferred temporal modu-
lation rate, and preferred spectral modulation scale are shown in Fig. 2. The tonotopy maps were in accordance 
with previous reports22–25. That is, the tonotopy maps showed a cortical region responding best to low frequencies 
situated on the posterior part of HG and anterior part of Heschl’s sulcus, surrounded anteriorly and posteri-
orly by regions preferring higher frequencies (Fig. 2a). The temporal modulation rate and spectral modulation 
scale maps displayed both similarities and differences compared to previous findings. We observed a signifi-
cantly negative correlation between the temporal modulation rate and spectral modulation scale map (mean 
[SE] = −0.027 [0.002]; p = 0.031; two-tailed non-parametric signed rank test on Fisher transformed correlation 
values between individual maps prior to spatial smoothing) in agreement with previous results21,26, yet this corre-
lation was weaker than reported before21. Consistent with our previous results21, the medial and lateral part of the 
STP preferred higher and lower temporal modulation rates, respectively (Fig. 2b). More specifically, the cortical 
region at the posterior adjacency of the medial HG preferred the highest modulation rates, while regions along 
the STG preferred the lowest temporal modulation rates. In the maps of spectral modulation scale preference, 
observations consistent with our previous results include tuning to higher spectral modulation scales along the 
anterior part of HG and on the PP, and a preference for lower spectral modulation scales in the majority of the 
PT and STG (Fig. 2c).

Next, we explored the performance of the sound representation models at a smaller spatial scale. That is, as 
the primary auditory cortex (PAC) is more densely myelinated than surrounding auditory regions27,28, we used 
myelin-related contrast (MRC) maps to obtain a non-invasive estimate of the PAC in each hemisphere (Fig. 3). 
Throughout hemispheres we localized PAC to the postero-medial part of HG (Figs 3 and S2). The region iden-
tified as PAC moved posteriorly when incomplete or complete duplications of HG were present (e.g., the left 
hemisphere of S1 in Fig. S2). Our definition of PAC covered approximately half of the HG.

Finally, we analysed model performance in the PAC and the non-PAC, at deep, middle, and superficial corti-
cal depth (Fig. 1b–d). The GE-EPI signal is strongest at the cortical surface, and this has been shown to correlate 
with an overall prediction accuracy increase towards superficial cortical depths29. The improved performance 
of both models towards the cortical surface, as can be observed in Fig. 1b,c, should therefore not be interpreted 
as a neuroscientific result. On the other hand, we previously confirmed experimentally that the cortical depth 
dependent difference in model performance removes the effect of the signal strength (and thus the bias towards 
the surface)29, making the depth dependent effects interpretable (Fig. 1d). In the PAC only, we observed a signif-
icant interaction such that the difference in model prediction accuracy varied with cortical depth (two-way RM 
ANOVA after Fisher transformation of the prediction accuracy values; significant interaction between the factors 
‘Computational Model’ and ‘Cortical Depth’; F[2,22] = 5.31; p = 1.31 × 10−3). Only at a superficial depth of the 
PAC, did the spectrotemporal modulation model significantly outperform the frequency model (one-sided paired 
t-test; t(11) = 3.01; p(corrected) = 1.79 × 10−2). In the non-PAC, there was a significant difference in model per-
formance (main effect of ‘Computational Model’; F[1,11] = 7.12; p = 2.18 × 10−2) which did not vary with cortical 
depth (no significant interaction between the factors ‘Computational Model’ and ‘Cortical Depth’; main effect of 
‘Cortical Depth; F[2,22] = 5.77; p = 9.60 × 10−3). In other words, the spectrotemporal modulation model signifi-
cantly outperformed the frequency model in these non-primary auditory regions uniformly throughout cortical 
depth. The improved performance of the spectrotemporal modulation model in the non-PAC compared to the 
PAC was not confined to a subset of sounds, but was observed for all sound categories (Fig. S1b).

Discussion
To date, it remains unclear if the laminar anatomical connectivity pattern of the human PAC is paralleled by 
layer-specific variations in sound processing. Using ultra-high field MRI, we observed that BOLD responses in 
middle PAC layers were equally well represented by a simple frequency model and the spectrotemporal modulation 
model. Instead, BOLD responses in superficial PAC were significantly better represented by the spectrotemporal 
modulation model, suggesting that neuronal populations in superficial PAC underlying the BOLD responses 
displayed an increased processing complexity. This increased complexity of sound processing was propagated 
throughout cortical depths in non-primary auditory cortex, and in accordance with our previous report at lower 

Figure 2. Group topographic maps. (a–c) CBA-based group maps for preferred frequency (tonotopy), temporal 
modulation rate, and spectral modulation scale, on an inflated representation of the left and right hemisphere 
(in the left and right column, respectively). The white dashed line outlines HG.
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field strength and spatial resolution21, was preserved throughout the supratemporal plane. The observed increase 
in processing complexity in superficial PAC and throughout non-PAC may reflect neuronal sensitivity to acoustic 
feature combinations, such as previously described in the auditory cortices of echo-locating bats30, songbirds31, 
and the marmoset monkey12. Tuning to acoustic feature combinations may serve as a stepping stone towards the 
creation of an auditory object, and provide a mechanism by which those sounds that are ecologically important 
can be more efficiently (i.e., sparsely) represented12. Overall, the modified sound representation in superficial 
PAC may be a first computational step in the transformation of the physical input towards sound abstraction and 
perception32.

Sound processing complexity in superficial PAC may increase through processes operating at a local spatial 
scale, resulting from the flow of information throughout the canonical microcircuit3. Previous electrophysiologi-
cal studies showed that processing of spectral and temporal modulation information undergoes a radical change 
from thalamus to the granular PAC input layers33 and, within PAC, with increased distance from middle input 
layers10 or in superficial layers12. Our results show an increase in processing complexity when moving from mid-
dle to superficial cortical depths. However, we did not observe an increased processing complexity in infragran-
ular layers, as may have been expected based on cat recordings10 and laminar processing principles in other early 
sensory cortices5,7. This discrepancy could represent a species-specific difference. While processing complexity 
increases in infragranular cat PAC, this may not be present in the marmoset monkey12 or in the human. An 
exclusive change in supragranular PAC processing complexity may result through influences originating within 
the auditory cortex, through lateral connections of pyramidal cells in superficial PAC layers6 or as a result of 
short-distance feedback projections from secondary auditory cortical areas34. Alternatively, the reason for not 
observing increased processing complexity in infragranular PAC could be methodological. BOLD fMRI is an 
indirect measure of neuronal activity, which represents neuronal input (i.e., LFP) rather than spiking activity35. 
Input to middle PAC is thalamic, and also input to deep PAC layers may be partially thalamic9. The thalamic 
input to deep and middle layers could have driven the BOLD responses that we obtained from these cortical 
depths, while the BOLD responses collected from superficial cortical depths may have reflected cortical auditory 
processing33.

Two methodological issues related to the execution of the analysis and the interpretation of our findings 
require further discussion. First, the non-invasive identification of the PAC is still a matter of debate, largely 
resulting from the fact that tonotopic maps alone are insufficient to delineate the PAC36. Non-invasive functional 
measures beyond tonotopy have been proposed to identify the PAC37–39, but none of these have been consistently 
adopted. The PAC is more densely myelinated than surrounding auditory regions27,28 and, consequently, maps of 

Figure 3. Analysis pipeline. The left and right temporal lobe (top and bottom row, respectively) of a 
representative subject (S2; see Supplementary Fig. 2 for the data of all individuals). Light and dark grey regions 
represent gyri and sulci respectively. The white dashed line outlines Heschl’s gyrus (HG). Major anatomical 
landmarks are shown in (b; first column), and include HG, planum polare (PP), planum temporale (PP), the 
superior temporal gyrus (STG) and the superior temporal sulcus (STS). The red shaded region in the first 
column approximates the region with highest myelin-related contrast (MRC; >50%). For each subject and 
hemisphere a cortical depth-dependent grid, situated on the postero-medial part of HG, is defined. The cortical 
ribbon is sampled at nine cortical depths, range from approaching the white matter (WM) to approaching the 
cerebrospinal fluid (CSF; coloured lines in second column of a). The cortical depth dependent grids are used to 
sample the MRC maps, which are thresholded to define the primary auditory cortex (PAC; MRC > 50%, bright 
and dark red colours in the third column), and non-PAC (MRC < 50%; light and dark grey colours in the third 
column). The cortical depth dependent grids are furthermore used to sample the functional data, allowing for 
cortical depth dependent fitting of the computational models and resulting in cortical depth dependent maps of 
feature preference (e.g., tonotopy; fourth column).
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myelin related contrast (MRC) were shown to be valuable for its localization40–42. Myelination and, correspond-
ingly, the MRI-based MRC, varies gradually throughout the STP. We considered the half of the grid with the high-
est MRC as the PAC. While this threshold is necessarily arbitrary, it resulted in plausible PAC definitions. That 
is, the localization of the PAC to the postero-medial part of HG, as well as the posterior movement of PAC with 
(in)complete HG duplications, is consistent with results from cytoarchitecture27,43–45. While the size of our PAC, 
covering approximately half of the entire HG, is a smaller cortical area than the definition in a number of previous 
fMRI studies23,46, this size concurs with cytoarchitectonic PAC definitions47. Overall, while it is possible that our 
definition of PAC did in fact not cover the complete PAC, it is highly likely that the region we refer to as PAC is 
indeed fully situated within the primary auditory cortex. The remainder of the grid, which we refer to as non-PAC, 
covers regions anterior and posterior to HG. In most hemispheres, it included the anterior part of HG and the first 
transverse sulcus, and posteriorly extended to Heschl’s sulcus, the lateral part of a second HG when applicable, 
and the anterior part of the PT. These regions can be considered secondary auditory cortex (medial and lateral belt 
respectively), and may reflect part of regions ‘MBelt’ and ‘LBelt’ as recently described by Glasser et al.48.

The second methodological issue that requires additional discussion concerns the spatial specificity of our 
fMRI measurements. Using GE-EPI, the acquired fMRI signal contains contributions from large pial veins situ-
ated on top of the grey matter49, diving veins penetrating the grey matter, and the microvasculature50. As a result 
of the pial vein contribution, the observed signal changes are strongest at the cortical surface (high sensitivity) 
and spatially less specific than those at deeper cortical depths (low specificity)51–53. A first implication of these cor-
tical depth-dependent changes in sensitivity and specificity is that GE-EPI cortical depth-dependent topographic 
maps may be biased in the assignment of the voxels’ preferred feature29,51,52. We therefore do not report cortical 
depth-dependent maps of tonotopy and spectrotemporal modulation preference. These cortical depth-dependent 
maps were previously reported based on a more spatially specific, predominantly T2-weighted, dataset54. A second 
implication is that an alternative explanation for the difference in model performance between PAC and non-PAC 
observed in our data may exist, namely that the higher performance of the spectrotemporal modulation model in 
superficial PAC is merely a vascular artefact. For example, the higher spectrotemporal modulation model perfor-
mance may have ‘bled in’ from non-PAC, and did so only in superficial layers as this cortical depth has the lowest 
spatial specificity due to its proximity to pial veins. While it is difficult to exclude this scenario altogether, the 
results reported in our previous study make this alternative explanation unlikely29. If the increased performance 
of the spectrotemporal modulation model compared to the frequency model in superficial PAC was a large vein 
artefact, we would expect this relative increase in model performance to be strongest in superficial locations clos-
est to veins. Instead, after quantification of each gridpoint’s distance to a vein we observed that while the overall 
model performance was dependent on proximity to veins, the difference in model performance was unrelated 
to vein proximity (see Fig. 5f in29). Thus, in spite of the contribution of large veins to the signal, we argue that 
through model comparison and careful evaluation of the data, the cortical depth dependent effect is reliable and 
interpretable.

Feature-selective auditory attention, auditory category learning, and input from other sensory modalities have 
been shown to modify primary auditory processing14,15,18,55. While our current results characterized fundamental 
processing differences across the layers of the human primary auditory cortex, the major functions of the laminar 
architecture of the neocortex may only emerge fully when it is engaged in such behaviourally relevant tasks. Our 
results, describing stimulus-evoked laminar PAC processing, provide a framework and the methodology that can 
be employed for exploring how laminar processing differences in PAC support auditory behaviour throughout 
increasingly complex environmental settings and demands.

Methods
Ethics statement. The Institutional Review Board (IRB) for human subject research at the University 
of Minnesota approved the experimental procedures. The experiment was performed in accordance with the 
approved guidelines and the Declaration of Helsinki. We obtained written informed consent from each partici-
pant before the measurements were started.

Participants. The participants consisted of six healthy volunteers (four females and two males; mean age 
[SD] = 28.5 [7.8]) who did not have a history of neurological disease or hearing disorders.

Experimental stimuli and design. We described the data analysed in this study in an earlier methodolog-
ical study29 that examined how a T2- vs. a T2*-weighted dataset, both acquired at submillimetre spatial resolution, 
performed across various fMRI analyses. In that study we observed that the T2-weighted data was preferable for 
the examination of cortical depth dependent preference maps requiring high specificity, while the T2*-weighted 
data was preferable for model-based comparisons. Therefore, we now compare the performance of computational 
models based on an optimized subset of the dataset. The anatomical data reported in this study was previously 
used in a study that examined the columnar stability of preference maps in auditory cortex54.

In the current study we used the data of the first two of the original three scanning sessions. In the first ses-
sion, we collected high resolution anatomical data for segmenting the white matter (WM) – grey matter (GM) 
boundary and GM – cerebrospinal fluid (CSF) boundary. We furthermore used the anatomical data to sample 
the cortical layers56 and to compute a myelin related contrast (MRC) map41,42. In the second session, we collected 
GE-EPI data at high spatial resolution while complex, natural sounds were presented to the participants. We 
presented a total of 144 sounds that covered six categories: speech utterances, voice sounds, animal cries, musical 
instruments, tool sounds, and scenes of nature (24 sounds per category). The sampling rate of the sounds was 
16 kHz and they were 1000 ms in duration. We equalized the energy (RMS) across sounds, and ramped their onset 
and offset with a 10 ms linear slope. We used MRI-compatible S14 model earbuds of Sensimetrics Corporation 
(www.sens.com) to present the sounds in the scanner.
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We divided the 144 sounds into 4 non-overlapping sets (36 sounds per set). This division was pseudorandom 
as we ensured that each set contained an equal number of sounds of each semantic category (i.e., 6 category 
exemplars per set). Data in the second scanning session was collected in 12 fMRI runs. We presented one set of 36 
sounds per run, and each sound was repeated once in that run. A set of sounds was presented in three runs, such 
that each sound was presented a total of three times across the whole experiment. We jittered the inter-stimulus 
interval with 2, 3, or 4 TRs, and played the sounds with an additional random jitter in the silent gaps between the 
functional data acquisition. We also added 8% of silent trials to increase the variability in the acquired BOLD sig-
nal. Participants performed a one-back task, and pressed a button if they heard the same sound in two consecutive 
trials. This occurred in 6% of the trials, and we excluded these “repeat trials” from the analysis.

Acquisition of MRI data. We performed the measurements using a 7 Tesla whole body magnet (Magnex 
Scientific, Abingdon, UK) that was driven by a Siemens console (Siemens Medical Systems, Erlangen). Specifically, 
a 32 channel loop transceiver (custom-built, whole head) along with a high performance head gradient insert was 
used. In the first session we collected the following anatomical datasets: Two T1 datasets, a proton density [PD] 
dataset, and a T2* weighted dataset at a high spatial resolution (voxel size = 0.6 mm isotropic). The T1 weighted 
data was acquired using a modified magnetization-prepared rapid gradient-echo (MPRAGE) sequence (repeti-
tion time [TR] = 3100 ms; time to inversion [TI] = 1500 ms; time echo [TE] = 3.45 ms; flip angle = 4°; generalized 
autocalibrating partially parallel acquisition [GRAPPA] = 3; matrix size = 384 × 384; 256 slices). PD images were 
acquired with the same MPRAGE sequence as used for the collection of the T1 weighted images, but without the 
inversion pulse (TR = 2160 ms; TE = 3.45 ms; flip angle = 4°; GRAPPA = 3; matrix size = 384 × 384; 256 slices; 
pixel bandwidth = 200 Hz/pixel). A T2* dataset was acquired using a modified MPRAGE sequence that allows 
freely setting the TE (TR = 3700 ms; TE = 16 ms; flip angle = 4°; GRAPPA = 3; matrix size = 384 × 384; 256 slices). 
Acquisition time for the T1, PD, and T2* datasets were ~14, 5, and 8 minutes, respectively.

We acquired GE-EPI data during the second scanning session (voxel size = 0.8 mm isotropic; TR = 2400 ms; 
TE = 22.8 ms; time of volume acquisition [TA] = 1200 ms; silent gap = 1200 ms; GRAPPA = 3; multiband = 2; 
slices = 36). Slice placement included the bilateral superior temporal plane (STP) and parts of the superior tem-
poral gyrus (STG), covering the auditory cortices. This session comprised 12 runs, each ~5 minutes in duration. 
A T1 weighted scan was acquired for the purpose of realignment across sessions and for slice placement.

Anatomical data analysis. We divided the T1 dataset by the PD images to minimize inhomogeneities 
induced by the receive coil profile (Van de Moortele et al.57; left column of Fig. S3). We further corrected the 
resulting dataset for residual inhomogeneities, down-sampled it to the spatial resolution of the functional data, 
and brought it to anterior and posterior commissural (ACPC) space. Then, we used BrainVoyager QX 2.8 (Brain 
Innovation, Maastricht, Netherlands) to identify the WM – GM boundary and the GM – CSF boundary. These 
boundaries were manually edited to correct segmentation mistakes (i.e., general corrections throughout the brain 
and detailed editing of both boundaries within the supratemporal plane).

Next, for each subject and hemisphere, we measured cortical thickness using a procedure based on the Laplace 
equation52,56,58 (as implemented in BrainVoyager QX) and defined a cortical depth-dependent grid that covered 
HG and cortical regions in its immediate vicinity (Figs 3 and S3). These grids contained nine cortical depths 
ranging from 0.1 (corresponding to deep grey matter) to 0.9 (corresponding to superficial grey matter) cortical 
depth. The WM-GM and GM-CSF boundaries themselves were not part of the cortical depth-dependent grids.

Myelination is more dense in primary sensory cortices, including in the PAC, than in the surrounding cor-
tex27,28, and therefore MRC maps can be used to non-invasively define the PAC in individuals. We created MRC 
maps by dividing the T1 weighted dataset by the T2* weighted dataset, which reduced receive coil inhomoge-
neities and enhanced the intracortical anatomical contrast (see De Martino et al.41 for details; right column of 
Fig. S3). Next, the T1/T2* dataset was corrected for residual inhomogeneities and brought to ACPC space. We 
limited the MRC maps to the supratemporal plane as segmentations of sufficient precision existed only for this 
brain region, and created the maps by color coding the intensity of the T1/T2* dataset within the cortical ribbon. 
We used the T2* weighted dataset to define and remove veins from the MRC maps (see29 for details). In each indi-
vidual hemisphere, the PAC was identified by dividing the cortical depth dependent grid in two parts of equal size 
based on the MRC map (see Fig. 3 for a representative subject, and Fig. S2 for the data of all subjects). We refer to 
the half of the grid with higher MRC as PAC, and to the half of the grid with lower MRC as non-PAC.

Functional data analysis. We analysed the functional data with BrainVoyager QX and custom MATLAB 
code (The MATHWORKS Inc., Natick, MA, USA). The functional data were pre-processed by correcting for 
slice scan time, correcting for motion, applying a temporal high pass filter (removing drifts of 2 cycles and less 
per run), and temporally smoothing the time series (2 data points). We then co-registered the functional to the 
anatomical data and transformed the dataset to ACPC space.

We estimated the response in each voxel to the natural sounds following the procedure outlined in37,59. In 
short, we first denoised the data60 (using the toolbox available at http://kendrickkay.net/GLMdenoise/) and then 
estimated the hemodynamic response function (HRF) separately for each voxel but common to all sounds61. This 
HRF was used to, per voxel, compute a response estimate (beta weight) for each sound.

Cortical responses to the sounds were analysed with two encoding models that represent different hypotheses 
on sound processing. A first frequency model was simplest, describing sound processing in terms of the frequency 
preference of cortical neuronal populations. We represented sounds in the space of the frequency model by using 
a biologically-inspired model of auditory cochlear to midbrain processing62 (i.e., the first stage of the NSL Tools 
package; available at http://www.isr.umd.edu/Labs/NSL/Software.htm). That is, the sounds were passed through 
a filterbank that produces sound spectrograms as output (128 overlapping bandpass filters equally spaced along a 
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logarithmic frequency axis covering 5.3 octaves; minimum frequency = 180 Hz; maximum frequency = 7040 Hz). 
We averaged these spectrograms over time, which resulted in 128 model parameters to be estimated. A second 
spectrotemporal modulation model described cortical sound processing as the frequency-dependent neuronal 
processing of spectrotemporal modulations. We represented sounds in the space of the spectrotemporal modu-
lation model by passing the output of the first stage of the NSL model to a second model stage that represents 
cortical auditory processing. That is, a set of modulation filters (temporal modulation rates of ω = [1, 3 9, 27] Hz; 
spectral modulation scales of Ω = [0.5, 1, 2, 4] cycles/octave) was applied to the sounds’ spectrograms to extract 
their modulation content. We averaged the resulting sound representation over time, divided the frequency axis 
in 8 bins with equal bandwidth in octaves, and averaged the modulation energy within each frequency bin, which 
resulted in 128 model parameters to be estimated (8 frequencies x 4 temporal modulation rates x 4 spectral mod-
ulation scales). We refer to the representation of the sounds in the space of the computational models as feature 
matrix W (of size [S × F], where S is the number of natural sounds and F is the number of features to estimate).

For each voxel that significantly responded to the training sounds (p < 0.05, uncorrected), we estimated the 
model parameters in 4-fold cross-validation. Each cross-validation used three out of four sound sets for model 
training (108 training sounds Strain), and the remaining sound set was used for model testing (36 testing sounds 
Stest). As these cross-validations followed the sound set division as implemented in the experimental design, in 
each cross-validation the responses to the training and testing sounds were estimated on completely distinct sets 
of fMRI data collection runs. We modelled the response to training sounds in each voxel i as a linear combination 
of the features in matrix Wtrain [Strain × F]:

=Y RW (1)train i itrain,

where Ri [Fx1] quantifies the contribution of each of the model features to the response of voxel i. We used ridge 
regression63 to solve equation 1, where we determined regularization parameter λ for each voxel independently 
by automatic inspection of the stability of the ridge trace21,64. We assessed model performance with a sound iden-
tification analysis21,65,66, where the model was evaluated by its ability to correctly predict responses to sounds not 
used in model training (i.e., testing sounds). That is, in each voxel the response to all testing sounds was estimated 
in the same manner as done for training sounds, with the exception that the voxel-specific HRF was based on the 
training sounds. Next, we predicted the response to the testing sounds in voxel i based on the estimated feature 
preference Ri [Fx1] and the representation of the testing sounds in the model space Wtest [Stest × F]:

=Ŷ RW (2)test i itest,

For each sound k, we horizontally concatenated the predicted responses to test sounds Ŷtest,k [1 × V] across 
the four cross-validations, and computed a sound identification score by correlating Ŷtest,k to the measured fMRI 
responses Ytest [Stest × V]. For each sound k, we then noted the rank of the correlation between predicted response 
Ŷtest,k and measured response of test sound Ytest,k. If the model was able to correctly match the predicted sound k 
with measured sound k, this rank would be equal to 1. Instead, a rank equal to Stest represents the worst prediction 
accuracy, and a rank equal to Stest/2 (Stest, the number of testing sounds, was equal to 36) represents chance. We 
defined the prediction accuracy Pk as 1 - the normalized rank:

= −
−
−

P r
S

1 1
1 (3)k

k

test

Values of Pk range between 0 (i.e., consistently wrong predictions) and 1 (i.e., perfect prediction), with 
chance = 0.5. We averaged the prediction accuracy across all testing sounds to obtain the model’s overall accu-
racy. Additionally, we obtained the prediction accuracy per sound category by averaging over the subsets of 
testing sounds belonging to the same category (i.e. separately for speech, voice, animals, music, tools, and nature 
sounds). We statistically compared the performance of the models, based on sound responses in the STP as a 
whole, by Fisher transformation of the prediction accuracy values followed by a two-sided paired t-test.

We assessed the cortical depth-dependent model performance by sampling the responses to the sounds 
(matrices Y) and the trained encoding models (matrices R) on the cortical depth-dependent grids and repeat-
ing the analysis procedure for deep, middle, and superficial cortical depths. Statistical differences in model 
performance were assessed separately for the half of the grid with highest and lowest MRC (i.e., the primary 
and non-primary auditory cortex, respectively). Per MRC-defined dataset, a two-way repeated measures (RM) 
ANOVA with the factors ‘Computational Model’ and ‘Cortical Depth’ after Fisher transformation of the predic-
tion accuracy values was performed, followed by a multiple comparison corrected paired t-test comparing the 
performance of the two models per cortical depth.

Maps of acoustic feature preference. We created maps of feature preference by color-coding each voxel 
or grid point according to the frequency, temporal modulation rate, or spectral modulation scale with the highest 
weight in the trained spectrotemporal modulation model. The voxels’ best frequency (BF; tonotopy maps) was 
mapped using a red-yellow-green-blue colour scale, where voxel tuning to low frequencies was indicated in red 
colours and tuning to high frequencies was indicated in blue. A yellow-green-blue-purple colour scale was used 
for the maps of temporal modulation rate and spectral modulation scale, where low and high rates and scales were 
assigned with yellow and purple colours, respectively.

We created group maps by bringing the individual hemispheres in cortex-based aligned (CBA)67 space. Each 
individual map was smoothed (FWHM = 2.4 mm), and sampled in this CBA space. Group maps were computed 
as the median of the individual subject maps at each vertex that was included in at least 4 individual maps.
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Data Availability
The data will be made available by the corresponding author upon reasonable request.
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