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Liquid embolic Agents in spectral 
X-Ray photon-Counting Computed 
tomography using tantalum 
K-edge Imaging
Isabelle Riederer  1,2, Daniel Bar-Ness3,4, Melanie A. Kimm  1, Salim si-Mohamed  3,4, 
Peter B. Noël  1, Ernst J. Rummeny1, Philippe Douek3,4 & Daniela pfeiffer1

the aim was to evaluate the potential of spectral photon-Counting Computed tomography (spCCt) 
to differentiate between liquid embolic agents and iodinated contrast medium by using tantalum-
characteristic K-edge imaging. Tubes with a concentration series of tantalum and inserts with different 
concentrations of iodine were scanned with a preclinical SPCCT system. Tantalum density maps (TDM) 
and iodine density maps (IDM) were generated from a SPCCT acquisition. Furthermore, region-of-
interest (ROI) analysis was performed within the tubes in the conventional CT, the TDM and IDM. 
TDM and IDM enable clear differentiation between both substances. Quantitative measurements of 
different tantalum concentrations match well with those of actually diluted mixtures. SPCCT allows for 
differentiation between tantalum and iodine and may enable for an improved follow-up diagnosis in 
patients after vascular occlusion therapy.

Arteriovenous malformation (AVM) is a vascular anomaly with a connection between arteries and veins and a 
lack of intervening capillary bed. AVMs can occur in the central nervous system with a prevalence of <1%1–4. 
Depending on multiple factors such as localization, size, feeding arteries and draining veins, AVMs can be treated 
by endovascular embolization, surgery, radiosurgery or by their combinations5–7. A variety of embolic agents has 
been introduced6,8,9 that can be divided into solid and liquid agents, with the latter being more commonly used. 
One of the essential requirements for these glues is  radiopacity to control the process of intervention, success of 
vessel occlusion or potential complications in digital subtraction angiography.

Current liquid embolic agents are Onyx (producer: Covidien, eV3 Neurovascular, Irvine, Calif. USA)10–12 
and Squid (producer: emboflu, Gland, Switzerland)13 consisting of ethylene vinyl alcohol copolymer dissolved in 
dimethyl sulfoxide (DMSO). Micronized tantalum powder is added for radiopaque visualization.

CT-angiography of the brain after embolization can be necessary to assess possible remaining feeders as well 
as the nidus in order to plan further procedures. The micronized tantalum powder, added to the liquid embolic 
agent for  radiopacity, however, can cause severe beam hardening artifacts in these CT images. Sometimes it is 
difficult to appropriately assess brain tissue and vessels around the clot of liquid embolic agent (Fig. 1). This might 
affect diagnosis and therapy management14–16. In these cases, techniques reducing artefacts would be desirable to 
improve image quality.

Advanced CT imaging methods have been developed in the last years providing spectral information17 for the 
analysis of tissue composition as X-ray attenuation is energy- and material-dependent. Recently, several Spectral 
Photon-Counting CT (SPCCT) systems have been introduced, where X-ray photons are individually counted and 
spectrally binned by analyzing the pulse heights generated in a semi-conductor detection layer18–23. This concept 
allows to incorporate a multiple (more than two) energy bins for energy-selective data acquisition. Using one 
such prototype system, we could show that the SPCCT system enables differentiation between gadolinium-based 
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and non-ionic iodine-based contrast material in a colon24 and liver25 phantom. Furthermore, it has been demon-
strated that discrimination between gold nanoparticles and iodinated contrast agent is possible in different organs 
in vivo in animals using the SPCCT system26. First experiences of human imaging using a SPCCT system were 
carried out in cadaver18 and phantom studies27 or in vivo regarding the abdominal system28 and the vascular 
system of the head and neck29.

The aim of this specific study was to explore the feasibility of SPCCT for material decomposition of tantalum 
using its characteristic K-edge. Furthermore, we intended to analyze the potential of SPCCT for the differentia-
tion between tantalum and iodine for an improved visualization.

Results
Figure 2 displays the results of the material decomposition for tantalum that is provided by the SPCCT system. 
Figure 2A shows a schematic explaining the content of the different tubes with a dilution series of tantalum in the 
range from 3.125% to 100% and a control tube containing DMSO. A conventional CT image of the phantom is 
contained in Fig. 2B, where one can observe that it is difficult to discriminate between the different dilutions in 
the low ranges. In the obtained tantalum density maps (TDM) (Fig. 2C), however, already the smallest dilution 
could be visually discriminated from the control tube containing pure DMSO (100%). Figure 2D contains an 
overlay of the conventional HU image and the TDM.

Figure 3 shows a calibration curve of the tantalum material. With its aid, additional scans were analyzed 
and tantalum dilution concentrations were calculated. The quantitative measurements of the tubes with dif-
ferent tantalum concentrations matched well with the actually known mixtures (measured: 92.92 ± 0.004%, 
expected: 100%; measured: 58.85 ± 0.01%, expected: 50%; measured: 27.03 ± 0.01%, expected: 25%; meas-
ured: 11.84 ± 0.01%, expected 12.5%; measured: 0.73 ± 0.002%, expected: 0%; RMSE = 0.05). A corresponding 
Bland-Altman plot is displayed in Fig. 4, highlighting the difference between measured and expected tantalum 
concentrations versus the average of measured and expected tantalum concentrations. All measurements are 
located within the range of confidence limits (1.96).

We observe that the TDMs and IDMs provided by SPCCT enable clear differentiation between tantalum and 
iodine. This is shown in Fig. 5, where Fig. 5A represents the conventional HU values, Fig. 5B the TDM and Fig. 5C 
the IDM. In the conventional HU-CT, the values of the tubes containing low concentrated tantalum, DMSO or 
high concentrated iodine are similar and can, therefore, not be differentiated. In the TDM, the values of the tubes 
correspond to the prepared dilution series; the tubes containing DMSO and iodine have values below 0. In the 
IDM, the dilution series of iodine can be reproduced and tantalum has negative values. DMSO has similar high 
values as high concentrated iodine, obviously due to similar physical background.

Discussion
In this study, we demonstrated that SPCCT allows for material decomposition of tantalum and discrimination 
between tantalum and iodine.

Recently, we could already show that spectral images using different techniques allow for material quantifi-
cation and that reliable measurements of iodine concentrations are possible even for very low concentrations of 
0.5 mg/ml30,31. As SPCCT offers the potential to improve image quality and to lower image noise, further studies 
have to be performed using this promising novel technique.

Photon-counting detectors provide the possibility to measure the energy level of each detected photon 
based on pulse height analysis and enables material-specific imaging in CT by delivering information about 
energy-based attenuation profiles of tissues20. One highlight of the SPCCT system is its ability to specifically 
detect exogenous contrast media due to edges in the X-ray attenuation profiles of elements such as gold32. Since 
tantalum has its K-edge binding energy in the relevant energy range of the X-ray spectrum (67.4 keV), K-edge 
imaging of tantalum is feasible in the clinical setting. One study has recently been published using K-edge 

Figure 1. Un-enhanced CT scans of the brain after embolization of Arteriovenous malformations (AVMs) with 
Onyx, in the left occipital lobe (A), in the left parietal region (B) and left parietotemporal region (C). Noticeable 
are the artifacts that reduce diagnostic image quality.
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imaging of the SPCCT system33 to differentiate between two contrast agents (iodine and gadolinium) in vivo. 
The advantage of using SPCCT for tantalum imaging has been highlighted in our study. Material decomposition 
of tantalum is possible enabling discrimination between iodinated contrast agent and liquid embolic agent – 
containing tantalum powder. One study could show that tantalum has high attenuation, generates high contrast 
and provides higher signal and better element-specific image CNR in SPCCT over tungsten, gold and bismuth34. 
Furthermore, another study could show that tantalum enables to reduce the amount of contrast medium and 
radiation dose due to higher contrast enhancement and greater contrast-to-noise ratio compared to iodine-based 
contrast agent, and, thus, may improve vascular imaging in overweight patients35. A recent published study29 

Figure 2. CT-Scan of the phantom model containing tubes with a concentration series of tantalum diluted 
in DMSO. (A) Schematic of the phantoms contents, (B) HU image, (C) tantalum density map, and (D) fusion 
image of (B + C) using OsiriX (http://www.osirix-viewer.com).

Figure 3. Calibration curve of tantalum showing correlation between tantalum density values and the prepared 
tantalum dilution series. 100% tantalum corresponds to a mixture of 1/3 Squid18 and 2/3 DMSO.
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Figure 4. Bland-Altman plot showing difference between measured and expected tantalum concentrations 
versus average of true and expected tantalum concentrations. The black line represents the bias and the dashed 
lines represent upper and lower limits of the mean (confidence limits ± 1.96).

Figure 5. Bar plots showing the values of the region-of-interest (ROI) analyses within the tubes in Hounsfield 
Units (HU), tantalum density maps and iodine density maps.
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concluded that photon-counting CT might improve image quality of CT angiography compared to conventional 
single-energy CT scans using energy-integrating detectors CT. To summarize, it is obvious that photon-counting 
CT might improve image quality of CT scans of patients after AVM embolization.

First results of X-ray photon-counting CT scans of the brain in vivo could show a greater gray-white mat-
ter contrast compared with conventional CT36. CT scans of the brain are common in the clinical routine while 
evaluating brain injury in emergency cases or for follow-up controls. Beam hardening artifacts especially 
near to the base of the skull might affect diagnosis and potentially mimic intracranial hemorrhage. Also here, 
Photon-Counting CTs might be a promising technique to improve image quality.

One study18 used a photon-counting-detector CT scanner that is capable to image human-sized objects. The 
rotation time was 1.0 or 0.5 seconds, and is close to a conventional CT scanner with about 0.4 sec.37. Thus, it seems 
applicable for clinical use in the future.

One of the major concerns about CT technique is the radiation exposure with possible risks of cancer or cata-
ract. One study concluded that photon-counting CT imaging is possible at clinical dose rates with clinical levels of 
image quality, and furthermore, improved CNR relative to state-of-the-art CT18. A review about photon-counting 
CT38 concludes that photon-counting CT can minimize image noise and increase spatial resolution that will ena-
ble to reduce radiation doses up to 30–40%.

In this phantom study we used a tube current of 100 mA and a tube voltage of 120 kVp that is comparable to 
another study scanning human heads in vivo with a clinical spectral dual-layer CT scanner (120 kVp and 260 
mAs39).

The potential advantages of the SPCCT system, in particular material decomposition and artifact reduction, 
might also facilitate interpretation of CT examinations of patients after embolization therapies of brain AVMs. 
A frequent reported disadvantage of Onyx is the production of artifacts that often makes it difficult to interpret 
the areas near to the embolization material whether there is hemorrhage, the most important complication40, 
or a remaining feeder. Furthermore, the artifacts caused by the liquid embolic agents might affect planning of a 
subsequent radiotherapy and might lead to higher radiation doses16. Magnetic resonance imaging (MRI) instead 
of CT imaging might be a way to solve this challenge, but may not always be available or not possible in cases with 
contraindications such as a cardiac pacemaker. Furthermore, but to a lesser extent, Onyx can also cause suscep-
tibility artifacts in MRI16.

Another solution to reduce artifacts due to the liquid embolic agents is the use of new embolic agents; one 
study could show that the precipitating hydrophobic injectable liquid “PHIL” produces fewer artifacts than Onyx 
in an in vivo model by using covalently bound iodine instead of tantalum powder for radiopacity41,42. However, 
these agents are relatively new and further studies are required to evaluate their efficacy. The results of our study 
in vitro are promising to reduce artifacts caused by tantalum and to improve image quality in patients after AVM 
embolization. Further studies in vivo are necessary to assess the potential impact of the SPCCT system.

A limitation of this study is that the absolute content of tantalum of the used liquid embolic agent (Squid 18) 
is unknown. We used a concentration series for our experiments. Additionally, DMSO has a high signal due to its 
chemical structure. In patients, DMSO is injected into the tubes before the injection of the liquid embolic agent 
to minimize the risk that it becomes hard within the tubes. Within the brain of the patient, DMSO is diluted and 
diffuses into the tissue, so this problem does not occur with patients. Furthermore, the errors in quantitative 
measurements were larger when measuring higher amounts of tantalum. One explanation could be that higher 
concentrations of tantalum lead to higher attenuation and thus photon starvation, which results in more artifacts 
resulting in higher errors. Further studies have to be performed to evaluate this observation.

To conclude, Spectral Photon-Counting CT provides tantalum density maps and allows for material decom-
position and differentiation between tantalum and iodine in vitro. Therefore, the introduction of SPCCT into the 
clinical field may improve diagnostic imaging especially in patients after embolization of AVMs.

Materials and Methods
Scan specimens. We used Squid13 the as a tantalum-based liquid embolic agent for endovascular occlusion 
as it is used in human patients. We diluted the stock solution Squid18 (emboflu, Gland, Switzerland) with DMSO 
(1/3 Squid18 + 2/3 DMSO) to gain a working dilution suspension and performed a serial dilution as follows: 
100%; 50%; 25%; 12.5%, 6.25%; 3.125%. Additionally, a tube was filled with 100% DMSO as control reference.

Inserts with different concentrations of iodine (0.75 mg/ml; 1 mg/ml; 2 mg/ml; 5 mg/ml, 10 mg/ml and 15 mg/
ml; QRM GmbH, Möhrendorf, Germany) were used. All tubes and inserts were embedded into a solid cylinder of 
water-equivalent material and 10 cm diameter. Each scan included three different scan positions and eight slices.

Spectral Photon-Counting CT. All experiments were performed with a five bin X-ray spectral 
photon-counting computed tomography (SPCCT) system (Philips Healthcare, Haifa, Israel) derived from a mod-
ified clinical CT system to obtain spectral and conventional data21. This system is provided with energy-sensitive 
photon-counting detectors made of the direct conversion high band gap semiconductor cadmium zinc telluride. 
The in-plane field of view was 168 mm, and the z-coverage of the scanner at the isocenter was 2.5 mm. Axial scans 
over 360° were obtained with a tube current of 100 mA, a tube voltage of 120 kVp, and a scanner rotation time of 
1 second.

Material decomposition and quantitative measurements. Multi-bin photon-counting data were 
pre-processed, and a conventional CT image was derived from the summed information contained in all 
energy bins. In addition, after pileup correction, the multi-bin counting data were used to perform a maximum 
likelihood-based material decomposition into a water and iodine material basis19,20 in projection space. The 
material-decomposed projections have been reconstructed using FBP with a standard filter kernel and no post 
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processing was done to further reduce image noise on FBP images. The iodine and virtual non-contrast images 
were averaged to a slice thickness of 1 mm after CT reconstruction.

Region of interest analysis. First, a reference scan with the dilution series of tantalum was performed 
to calibrate the following measurements. Then, measurements of all tubes and inserts, as described above, were 
performed. Region-of-interest (ROI) analysis was performed within the tubes in the conventional images, the 
TDM and IDM using an image processing program (ImageJ, National Institutes of Health (NIH), United States43). 
Circular ROIs were set in the center of the tubes with a volume of 10 mm².

Statistical analysis. Bland-Altman analysis was performed to determine the agreement between measured 
and expected tantalum concentrations, additionally root mean square error (RMSE) was calculated.

Data Availability
The datasets analyzed during the current study are available from the corresponding author on reasonable  
request.
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