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prognostic Value of Ct Radiomic 
Features in Resectable pancreatic 
Ductal Adenocarcinoma
Farzad Khalvati1,2, Yucheng Zhang1,2, Sameer Baig1,2, Edrise M. Lobo-Mueller3, 
paul Karanicolas4, Steven Gallinger2,5,6 & Masoom A. Haider  1,2,7

In this work, we assess the reproducibility and prognostic value of CT-derived radiomic features for 
resectable pancreatic ductal adenocarcinoma (PDAC). Two radiologists contoured tumour regions on 
pre-operative CT of two cohorts from two institutions undergoing curative-intent surgical resection 
for PDAC. The first (n = 30) and second cohorts (n = 68) were used for training and validation of 
proposed prognostic model for overall survival (OS), respectively. Radiomic features were extracted 
using PyRadiomics library and those with weak inter-reader reproducibility were excluded. Through 
Cox regression models, significant features were identified in the training cohort and retested in the 
validation cohort. Significant features were then fused via Cox regression to build a single radiomic 
signature in the training cohort, which was validated across readers in the validation cohort. Two 
radiomic features derived from Sum Entropy and Cluster Tendency features were both robust to 
inter-reader reproducibility and prognostic of OS across cohorts and readers. The radiomic signature 
showed prognostic value for OS in the validation cohort with hazard ratios of 1.56 (P = 0.005) and 1.35 
(P = 0.022), for the first and second reader, respectively. CT-based radiomic features were shown to be 
prognostic in patients with resectable PDAC. These features may help stratify patients for neoadjuvant 
or alternative therapies.

Pancreatic ductal adenocarcinoma (PDAC) is the third most common cause of cancer-related death in the US 
with an extremely poor prognosis. Over the past four decades, the 5-year survival rate has only marginally 
increased from 3% to 8.5%1. As the only definitive treatment, about 20% of PDAC cases are eligible for surgical 
resection2 with these patients having a 5-year survival of 19%3.

The most common clinicopathologic factors significantly associated with 5-year survival are lymph node sta-
tus, tumour size, margin status at surgery, histological tumour grade, and receipt of adjuvant chemotherapy3–6.

As an evolving paradigm in cancer biomarker discovery and validation, radiomics has shown early promise 
in exploiting the latent information in medical images and establishing links between quantitative imaging bio-
markers, and patient outcome and response to systemic chemotherapy and radiation7–9. Radiomics refers to the 
extraction and analysis of a large amount of quantitative features from medical images10,11. These quantitative 
imaging features can be used to build prognostic models to risk-stratify patients based on different clinical out-
comes such as survival. The ability to capture the entirety of a tumour gives radiomics the capability of assessing 
one of the key features of cancer, heterogeneity. Radiomic parameters related to heterogeneity have been shown 
to be a prognostic factor for patient outcome in other cancer sites such as lung12.

Radiomic features include different classes of quantitative imaging features that each captures a different prop-
erty of a region of interest (ROI). Fist-order (e.g., intensity) and second-order statistical features (e.g., texture 
such as contrast and homogeneity) are among the most frequently used radiomic features where the former 
are calculated using the histogram of grey-level pixels, regardless of the spatial relationship among the pixels, 
and the latter are calculated using grey level co-occurrence matrices (GLCM)13. Other radiomic feature classes 
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include morphological features to capture ROI shape characteristics14 and edge detection features that highlight 
the boundaries of objects in the ROI15.

In PDAC, computed tomography (CT) is the main diagnostic tool for assessment of local extent of disease and 
surgical planning16. As a standard-of-care imaging modality, CT images can be used to extract radiomic features 
with no extra image acquisition cost to the healthcare system, thus providing comprehensive information on the 
phenotypic and textural structure of the tumour. Neoadjuvant therapy has been shown to improve the survival of 
patients with resectable PDAC17. If radiomic features can identify patients with more aggressive disease, it might 
help select patients most in need of neoadjuvant treatment.

Although previous studies have shown the prognostic value of CT radiomic features for different cancer sites 
including non-small cell lung cancer7,18, renal clear cell carcinoma19,20, and metastatic colorectal cancer21, there 
is scarcity of multicentre radiomics research on PDAC. Our preliminary results were published on a single small 
cohort (n = 30) exploring a limited number of radiomic features for prognostication (5 second-order statistical 
features) showing two features were predictors of overall survival (OS) for PDAC patients undergoing curative 
intent surgical resection22. Another study investigated radiation induced changes in CT radiomic features (8 
first-order features) in a cohort of 20 patients with pancreatic head cancer over a period of 5 weeks and associ-
ation between changes in radiomic features and pathologic response was reported9. Recently, a larger cohort of 
161 patients with resected PDAC was analyzed to study the prognostic accuracy of radiomic features combined 
with preoperative serum carbohydrate antigen 19-9 (CA19-9 levels) and pathology score (The Brennan score) 
where it was reported that adding the pathology score to radiomic features and serum cancer antigen improves 
the prognostic power of the model23.

In this retrospective study, we aimed to address the shortcomings of the previous radiomic studies of PDAC 
by including assessment of reproducibility across different readers, using data from different institutions and 
CT scanners, and using separate training and validation sets. To achieve this goal and further validate CT radi-
omic parameters as prognostic biomarkers in PDAC patients, we investigated these parameters in two separate 
pre-operative cohorts from two institutions and contoured by two radiologists with different levels of expertise 
through the analysis of a comprehensive set of radiomic features with a standard analytic library (PyRadiomics 
version 2.0.1)24. The purpose of this study was to assess the reproducibility and prognostic value of CT-derived 
radiomic features for resectable PDAC.

Materials and Methods
Patients. This retrospective study was approved by the Research Ethics Board of Sunnybrook Health Sciences 
Centre and University Health Network and all methods were carried out in accordance with relevant guidelines 
and regulations. Two cohorts from two separate institutions consisting of 30 and 68 patients undergoing cura-
tive intent surgical resection for PDAC from 2007–2012 and 2008–2013, respectively, who had pre-operative 
contrast-enhanced CT available for analysis and were part of ongoing studies where survival data was being 
collected were included. Patients were resectable and had not received neo-adjuvant treatment. To minimize the 
effect of post-operative complications on outcomes analyses, patients who died within 90 days after surgery were 
excluded. Institutional review board approval was obtained for this study from both institutions and the need for 
written informed patient consent was waived. The demographic information for both cohorts is shown in Table 1.

We previously used the first cohort (n = 30) in a pilot study where only few in-house developed radiomic 
features extracted from single reader contours were investigated for prognostic value of OS in PDAC patients22.

Image acquisition. Patients underwent contrast-enhanced CT with a biphasic pancreas protocol consisting 
of arterial or pancreatic phase and portal venous phase acquisitions. As CT scans were not all from the same 
institution, the exact contrast bolus volume, timing, and injection rate varied over the time period. In addition, 
there was inconsistent timing related to variation in CT protocols during the arterial/pancreatic phase imaging. 
This resulted in variable enhancement of the tumour and background pancreas. As a result, in many cases, the 
tumour was inconsistently visualized on the arterial/pancreatic phase. The portal phase was consistent in timing 
and enhancement of background tissue across the entire cohorts. For these reasons, all pancreatic cancer bound-
aries were drawn on the portal venous phase of acquisition as this phase was most consistent across all exams. 
CT images were reconstructed with 5 mm and 2 mm intervals for the first cohort and second cohort, respectively. 
Detector width was 40 mm and kV was 120 kVp for the portal phase for both cohorts. Examination was per-
formed on a 64 row multidetector helical CT (first cohort: GE Medical Systems, LightSpeed VCT, second cohort: 
Toshiba, Aquilion).

Cohort 1 Cohort 2

Age (years) Mean ± Standard Deviation 69 ± 8 65 ± 11

Sex Male/Female/Total 13/17/30 35/33/68

Size (diameter - cm) Mean ± Standard Deviation 3.76 ± 0.97 4.34 ± 1.47

Grade G1/G2/G3/G4/Total 3/19/8/0/30 17/44/6/1/68

Patients with Negative/Positive Nodes (N stage) N0/N1/Total 6/24/30 15/53/68

Margin R2/R1/R0/Total 0/16/14/30 0/10/58/68

CA19-9 (U/ml) Mean ± Standard Deviation 893 ± 1514 2241 ± 9118

Survival Time (months) Mean ± Standard Deviation 31 ± 25 25 ± 16

Table 1. Cohorts’ demographic information.
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Image analysis. An in-house developed volume of region contouring tool (ProCanVAS)25 was used by an 
experienced radiologist with 18 years of experience as an oncologic imager (Reader 1) and a radiology research 
fellow (Reader 2) blinded to patient outcome, to review the images and contour the ROIs on the slice with the 
largest visible cross section of the tumour on the portal venous phase. To differentiate the tumour and the pan-
creas background, relative contrast difference was considered and in cases where tumour boundary was not clear, 
tumour boundary was defined by the presences of pancreatic or common bile duct cut-off and review of pancre-
atic phase images22.

Feature extraction was performed on the ROI using the PyRadiomics library (version 2.0.1) in Python24. To 
remove the fat and stents, the images were thresholded where voxels with HU (Hounsfield unit) <−10 and >500 
were excluded from the analysis. We used a subset of well-known PyRadiomics features, which include first order 
features and second order features extracted from GLCM matrix using different filters (no filter, exponential, 
gradient, logarithm, square, square-root, and local binary pattern filters). In total, 410 radiomic features were 
extracted which included different classes of features listed in Table 2.

Statistical analysis. We used the first cohort (n = 30) and second cohort (n = 68) as the training and valida-
tion datasets, respectively. The goal was to build a single radiomic signature, which is both robust to inter-reader 
reproducibility and prognostic of OS across the cohorts and readers. Constructing a single radiomic signature 
instead of using a set of features reduces feature space dimension mitigating multiple testing problem. In addition, 
a multi-feature signature accounts for the inter-feature interactions which usually leads to improved predictive 
modeling compared to individual features10,26.

First, individual radiomic features of both Reader 1 and 2 in the training set were evaluated for their 
inter-reader reproducibility by calculating Intraclass Correlation Coefficients (ICC) for each pair of features. ICC, 
which represents how strongly the features in the same class resemble each other, is generally regarded as poor if 
less than 0.327–29. We excluded features with ICC < 0.3 to eliminate unstable features among the contours of both 
readers. The more reproducible features were then tested for their ability to predict OS in the training cohort 
using a Cox proportional-hazards regression model30 where the features were treated as continuous variables. 
This was done using Reader 1 contours as Reader 1 was the more experienced radiologist. Any features that were 
not prognostic of OS in the training cohort were eliminated. A feature selection method (LASSO31) was applied 
to significant features (P < 0.05) in the training cohort to select the ones with best prognostic power.

Each radiomic feature derived above in the training cohort was then tested in the validation cohort. This was 
done by retesting these selected features on both Reader 1 and 2 contours in the validation cohort using a univar-
iate Cox regression model and Wald test. Given that this was the validation phase, to control the multiple testing 
problem, false discovery rate (FDR) control was applied32. The feature was considered validated if its adjusted 
P-value was <0.05.

As a final step, the remaining significant features in the training cohort were run through a Cox regression 
model to generate a single radiomic signature. To validate the reproducibility of the constructed radiomic sig-
nature, the ICC was calculated in both training and validation cohorts. To validate the prognostic value of the 
constructed radiomic signature, Cox regression and Wald test were run in the validation cohort for both Reader 
1 and 2 contours.

Clinical factors that may be prognostic of OS were also used in univariate Cox regression models. These fac-
tors include age, sex, tumour size, grade, N stage, margin, and CA 19-9 levels.

Results
Out of 410 initial radiomic features generated from PyRadiomics library, 133 features were removed due to hav-
ing zero or constant values for all patients. Out of 277 remaining features, 251 features had ICC > 0.3 among the 
contours of two readers in the training cohort. When the Cox regression model followed by feature selection 
was applied to these 251 reproducible features in the training cohort with Reader 1 contours, 3 features were 
significant (P < 0.05). These 3 features were then assessed using Cox regression in the validation cohort with 
both readers’ contours, and 2 remained significant after applying FDR multiple testing control (P < 0.05). Table 3 
summarizes the hazard ratios, P-values, and ICC values for these significant radiomic features (and radiomic 
signature) for prognostication of OS in the training and validation cohorts. It also lists the median values of the 
significant features (and radiomic signature) in the training cohort, which were used for dichotomization of the 
validation cohort.

Figures 1 and 2 show the Kaplan-Meier plots of cumulative OS for these 2 radiomic features in the validation 
cohort for Reader 1 and 2, respectively.

As it can be seen from Table 3, the 2 significant features are second order features extracted from GLCM 
matrix: one feature is Sum Entropy calculated on the original image and the other is Cluster Tendency calculated 
on the filtered images (squared root). Sum Entropy is a texture feature that measures the randomness in the image 
as shown in Equation 1.

First-order features Histogram-based features

Second-order texture features Features extracted from Gray-Level Co-Occurrence matrix (GLCM)

Morphology features Features based on the shape of the region of interest

Filters No filter, exponential, gradient, logarithm, square, square-root, local binary pattern

Table 2. List of radiomic feature classes and filters.
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The radiomics signature derived from these 2 radiomic signatures combined is shown in Equation 3:

= . × + . ×eRadiomics Signature (3)F F0 44 0 111 2

where F1 is original_glcm_SumEntropy and F2 is squareroot_glcm_ClusterTendency.
The hazard ratios in the validation cohort for the radiomic signature were 1.56 (Confidence Interval (CI): 

1.15–2.13) and 1.35 (CI: 1.04–1.75) for Reader 1 and 2, respectively. The P-values in the validation cohort for the 
radiomic signature were 0.005 and 0.022 for Reader 1 and Reader 2, respectively with ICC value of 0.63 (Table 3).

Figure 3 shows the Kaplan-Meier plots for OS using the radiomics signature in the validation cohort for the 
two readers. Figure 4 shows two typical examples from the validation cohort contoured for tumour by both 
Reader 1 and 2 with specific survival time and radiomic signature values.

Out of clinical factors, only N stage was significant in the validation cohort with P-value of 0.03 and haz-
ard ratio of 2.27 (CI: 1.06–4.86). To investigate whether the radiomic signature adds prognostic value to the 
model built with N stage, we tested a bivariate Cox regression model using N stage and radiomic signature and 
it was found that the bivariate model (N stage plus radiomic signature) is significantly different (with improved 

Radiomic Feature

Hazard Ratio (HR) and 
P-value in Validation 
Cohort Reader 1

Hazard Ratio and 
P-value in Validation 
Cohort Reader 2

Median Value 
in Training 
Cohort

ICC in 
Training 
Cohort

ICC in 
Validation 
Cohort

Original_glcm_ SumEntropy
HR = 1.41
(CI: 1.04–1.92)
P = 0.036

HR = 1.39
(CI: 1.05–1.84)
P = 0.042

−0.05 0.33 0.72

squareroot_glcm_ClusterTendency
HR = 1.39
(CI: 1.04–1.86)
P = 0.036

HR = 1.40
(CI: 1.04–1.88)
P = 0.042

−0.33 0.70 0.63

Radiomic Signature
HR = 1.56
(CI: 1.15–2.13)
P = 0.005

HR = 1.35
(CI: 1.04–1.75)
P = 0.022

0.94 0.46 0.63

Table 3. List of hazard ratios, P-values, median values, and ICCs of significant radiomic features prognostic of 
OS in the training and validation cohorts. Abbreviations: CI: confidence interval; ICC: intraclass correlation; 
OS: overall survival: Original_glcm_SumEntropy, sum entropy feature extracted from original image via grey 
level co-occurrence matrix; Squareroot_glcm_ ClusterTendency: cluster tendency feature extracted from 
filtered image (square root) via grey level co-occurrence matrix.

Figure 1. Kaplan-Meier plots for OS for the validation cohort with Reader 1 contours dichotomized based on 
the median values of significant features in the training cohort.
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performance) than the univariate model (N stage alone) (Likelihood-ratio test P-value: 0.005). This indicates that 
adding radiomic signature to the clinical factor model (N stage) further improves the prognosis performance. 
CA19-9 levels were available for a subset of patients; 25 and 39 patients for training and validation cohorts, 
respectively. In the subset, CA19-9 factor was only significant in the validation cohort with P-value of 0.047 and 
hazard ratio of 1.37 (CI: 1.00-1.88). Adding radiomic signature to CA19-9 model significantly improved the prog-
nostic performance of OS (P-value: 0.01) confirming that the radiomic signature adds to the prognostic power of 
the model with of CA19-9, which is an established clinical biomarker.

Table 4 summarizes the P-values for all clinical factors for prognostication of OS in the training and validation 
cohorts.

Discussion
PDAC has a very low survival rate33. Better treatment options, fundamental understanding of the disease and 
earlier detection methods are needed. In this exploratory study, we evaluated the potential of radiomic features 
in PDAC on CT as part of early validation. We have demonstrated the potential of a radiomic signature as a prog-
nostic biomarker in PDAC that can be used across different CT scanners and readers. Although radiomic features 
have been found to be prognostic of patient outcome in different cancer sites such as lung7,18, kidney19,20, and 
colorectal cancer21, there is limited work on PDAC9,22,23. These studies are all single institution exploring a limited 
number of radiomic features. In addition, only one reader contour has been used for the analysis, and standard 

Figure 2. Kaplan-Meier plots for OS for the validation cohort with Reader 2 contours dichotomized based on 
the median values of significant features in the training cohort.

Figure 3. Kaplan-Meier plots for OS using Radiomic Signature. Left: Kaplan-Meier plots for OS for the 
validation cohort with Reader 1 contours dichotomized based on the median values of Radiomic Signature in 
the training cohort; hazard ratio: 1.56 (CI: 1.15–2.13), P-Value: 0.005, ICC: 0.63. Right: Kaplan-Meier plots for 
OS for the validation cohort with Reader 2 contours dichotomized based on the median values of Radiomic 
Signature in the training cohort; hazard ratio: 1.35 (CI: 1.04–1.75), P-Value = 0.022, ICC 0.63.
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radiomic libraries are not used in most of these studies. By using an open source code library (PyRadiomics24), 
there is an opportunity for other centres to validate the findings presented in this study. If further validated, this 
signature could be used to help select patients that may benefit from neoadjuvant treatment.

Radiomics studies for cancer prognosis are usually limited by the “Large P, small N” dataset problem10 where 
the number of features is far greater than the number of patients in the dataset. This challenge combined with 
the reproducibility issues inherent in different readers annotating the same image differently, and inconsistency 
in images acquired by different scanners, which might lead to unreliable features, cast doubt on the reproduci-
bility of radiomic features as prognostic biomarkers for cancer. In this study, the main goal was to address these 
challenges by generating a single radiomic signature using the contours of two readers on two cohorts from two 
institutions where the first cohort was used for radiomic signature discovery and the second cohort was used for 
validation. This allowed us to separate the training and testing data and thus, to perform a proper validation of 
the generated radiomic signature.

Excluding features with low agreement between the readers ensured the reproducibility of the final radiomic 
signature. The radiomic signature was generated by combining the features that were significant in the training 
cohort and remained significant in the validation cohort after multiple testing correction. It is encouraging to 
observe that the radiomic signature that was generated in the training cohort remained significant in the valida-
tion cohort for both readers. This confirms the reproducibility of radiomic features as cancer biomarkers across 
not only different scanners/institutions which has also been shown in other studies for different cancer sites such 
as lung34 but also different readers.

It was interesting to observe that a significant number of radiomic features (251 out of 277) were robust with 
respect to inter-reader variability in ROI contouring. The fact that out of 277 robust features (with moderate 
and high ICC), only 3 were found to be prognostic of OS in the training cohort may be due to small sample size 
(n = 30). A larger sample size will increase the probability of finding more prognostic features in the training 
phase.

As an indicator of tumour heterogeneity, entropy-related radiomic features (e.g., entropy9, joint entropy22, 
and sum entropy35) have been shown to be prognostic of OS for different cancer sites. Entropy measures the 
degree of randomness or non-uniformity in the image and it has been hypothesized that it can act as a surrogate 
for tumour heterogeneity. The comparison of pairs of synchronous metastases from the same primary tumour has 
shown that entropy in each pair is highly correlated suggesting that it is capable of representing tumour biological 
characteristics36. It is promising to note that one of the radiomic features validated in this work is also based on 
entropy-related features (Sum Entropy), which strengthens the hypothesis that this specific radiomic feature may 
capture the underlying tumour phenotype.

Figure 4. Representative patients from the validation cohort contoured for tumour with specific survival and 
radiomic signature values as follows: Left: Experienced Reader (Reader 1), Right: Inexperienced Reader (Reader 2). 
Top: Survival time: 4 months, Radiomic Signature - Reader 1: 1.25, Reader 2: 1.80. Bottom: Survival time: 44 months; 
Radiomic Signature - Reader 1: 0.49, Reader 2: 0.45.
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Although tumour size measured as the maximal diameter of the mass on gross pathologic examination has 
been shown to be a histopathologic feature for prognosis of OS5, the corresponding radiomic feature (ROI diame-
ter or ROI area) was not significant. This may be in part related to the poor definition of cancer margins and high 
interobserver variability in size measure on CT of PDAC. This indicates that features such as entropy that capture 
tumour characteristics beyond size may be needed for prognostication of PDAC.

Out of other clinical factors available for both cohorts (age, sex, tumour grade, N stage, and margin), only N 
stage, which is a postoperative factor was prognostic of OS in the validation cohort. It is important to note that 
the radiomic signature improved the prognostic power when added to N stage model. This indicates that the radi-
omic signature harbours prognostic information not necessarily captured by N stage factor. This, combined with 
the fact that radiomic signature is a preoperative biomarker, reconfirms the prognostic value of radiomic signa-
ture as a potentially reliable biomarker for PDAC. CA19-9 levels which had been shown to be associated with the 
OS of PDAC37 were available for a subset of patients in both cohorts and it was significant only in the validation 
cohort. Similar to N stage, the radiomic signature improved the prognostic power when combined with CA19-9.

Limitations of this work was the relatively small sample, and outcome was limited to overall survival. We hope 
to extend this work to larger cohorts and multicentre studies with more clinical outcome and genomics data soon. 
Moreover, CA19-9 and carcinoembryonic antigen (CEA) which have been shown to be associated with the OS 
of PDAC37 were not available for all patients. In future studies, the added prognostic value of radiomic signature 
to these preoperative biomarkers will be investigated using the full cohorts. Nevertheless, when these biomarkers 
are obtained, which is after diagnosis, radiomic features are readily available with no extra cost. Thus, a reliable 
radiomic signature with prognostic power is of significant value independent of other preoperative biomarkers.

Once validated, these biomarkers may have a role in selection of patients who should undergo neoadjuvant 
treatment with chemotherapy and/or radiation therapy prior to surgery. This also provides a potential signature to 
be tested in different PDAC populations such as unresectable patients. Further work on histologic correlates such 
as tumour stroma which is a potential druggable target in this disease would also be of interest.

In this study, we have demonstrated a set of imaging biomarkers and a signature that are both reproducible 
across different readers and CT scanners and prognostic in preoperative patients. These parameters provide a 
reasonable starting set of quantitative measures for prospective validation in future trials in surgical candidates 
with PDAC.

Conclusion
Conventional staging CT-based radiomic features related to Sum Entropy and Cluster Tendency show promise 
for prognostication of OS for PDAC patients undergoing surgical resection across different institutions.

Ethics approval and consent to participate. The Sunnybrook Health Sciences Centre and University 
Health Network Research Ethics Boards approved these retrospective single institution studies and waived the 
requirement for informed consent.

Data Availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on rea-
sonable request pending the approval of the institution(s) and trial/study investigators who contributed to the dataset.

Clinical Feature
Hazard Ratio (HR) and 
P-value in Training Cohort

Hazard Ratio (HR) and P-value 
in Validation Cohort

Age
HR = 1.01
(CI: 0.95–1.08)
P = 0.69

HR = 1.02
(CI: 0.99–1.05)
P = 0.22

Sex
HR = 0.95
(CI: 0.34–2.63)
P = 0.92

HR = 0.93
(CI: 0.54–1.60)
P = 0.78

Size
HR = 1.02
(CI: 0.60–1.75)
P = 0.93

HR = 0.85
(CI: 0.69–1.14)
P = 0.36

Grade (G2 vs. G1)
HR = 2.12
(CI: 0.27–17.46)
P = 0.47

HR = 1.98
(CI: 0.98–4.01)
P = 0.06

Grade (G3 vs. G1)
HR = 4.26
(CI: 0.50–36.03)
P = 0.18

HR = 1.30
(CI: 0.43–3.87)
P = 0.64

N Stage
HR = 0.42
(CI: 0.13–1.42)
P = 0.16

HR = 2.27
(CI: 1.06–4.86)
P = 0.03

Margin
HR = 0.47
(CI: 0.17–1.35)
P = 0.16

HR = 1.17
(CI: 0.55–2.49)
P = 0.69

CA19–9
HR = 1.15
(CI: 0.67–1.96)
P = 0.61

HR = 1.37
(CI: 1.00–1.88)
P = 0.047

Table 4. List of P-values and hazard ratios for clinical factors for prognosis of OS in the training and validation 
cohorts. Abbreviations: CI: confidence interval; OS: overall survival.
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