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Familiarization with treadmill 
walking: How much is enough?
Christian Meyer  1,2, Tim Killeen1, Christopher S. easthope1, Armin Curt1, Marc Bolliger1, 
Michael Linnebank2,3, Björn Zörner1,2 & Linard Filli  1,2

Treadmill-based gait analysis is widely used to investigate walking pathologies and quantify treatment 
effects on locomotion. Differential sensorimotor conditions during overground vs. treadmill walking 
necessitate initial familiarization to treadmill walking. Currently, there is no standardized treadmill 
acclimatization protocol and insufficient familiarization potentially confounds analyses. We monitored 
initial adaptations to treadmill walking in 40 healthy adults. Twenty-six walking parameters were 
assessed over 10 minutes with marker-based kinematic analysis and acclimatization profiles were 
generated. While 16 walking parameters demonstrated initial acclimatization followed by plateau 
performance, ten parameters remained stable. Distal lower limb control including ankle range of 
motion, toe trajectory and foot clearance underwent substantial adaptations. Moreover, intralimb 
coordination and gait variability also demonstrated acclimatization, while measures of symmetry and 
interlimb coordination did not. All parameters exhibiting a plateau after acclimatization did so within 
6–7 minutes (425 strides). Older participants and those naïve to treadmill walking showed adaptations 
with higher amplitudes but over similar timescales. Our results suggest a minimum of 6 minutes 
treadmill acclimatization is required to reach a stable performance, and that this should suffice for 
both older and naïve healthy adults. The presented data aids in optimizing treadmill-based gait analysis 
and contributes to improving locomotor assessments in research and clinical settings.

Gait disorders are commonly encountered in patients with orthopedic and neurological disorders and in other-
wise healthy aging1–3. Walking impairment is associated with significant reductions in functional independence 
and an increased risk of falls and subsequent injury, morbidity and mortality4–6. Investigations into new thera-
pies and interventions for locomotor disorders generally use ordinal clinical scores and scales, often with poor 
sensitivity and reliability, as well as simple time- or distance-based walking assessments to measure therapeutic 
responses7–9.

Instrumented gait analysis offers distinct advantages over such functional walking assessments as direct 
inferences regarding the mechanism of deficits and treatment responses can be made by analyzing kinetic and 
kinematic parameters10–12. Such analyses may be performed during overground walking, but this needs large 
acquisition volumes and invariably requires participants to execute turns or walk in circular paths, compli-
cating data processing and interpretation. Treadmill-based gait analysis can be undertaken in relatively small 
laboratories or in clinical settings and allows for the collection of many consecutive gait cycles and precise con-
trol of gait velocity13–15. To what extent analyses of treadmill walking can be generalized to everyday walking is 
debated16,17, but acclimatization to the often unfamiliar task of walking on a moving belt is known to mitigate 
some treadmill-related differences17–20. While several studies have demonstrated a highly comparable walking 
pattern during overground and treadmill walking after sufficient acclimatization to the latter18,19,21,22, there is 
currently no consensus on how much acclimatization is needed.

Studies investigating the acclimatization period to treadmill walking in young, healthy individuals have 
reported divergent findings ranging from a few seconds to many minutes19,22–27. Wall & Charteris investigated 
angular and temporal aspects of gait and found that a large degree of acclimatization occurs in the first 10 seconds 
of treadmill walking, but that a true steady-state is not reached even after 10 minutes23. Later work reported that 
most spatio-temporal parameters reached steady-state after around 30 seconds of treadmill walking, although 
stride length required 10 minutes to reach a plateau24. Three studies with different kinematic and kinetic outcome 
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measures have similarly reported acclimatization periods between 4 to 6 minutes22,25,26. While Wass, Taylor, 
& Matsas reported that older individuals were not able to familiarize to the treadmill even after 15 minutes27, 
Schellenbach et al. found that older subjects showed only minor changes in gait pattern after the same period of 
15 minutes of treadmill walking in a virtual environment and that this period was comparable to that required 
by young participants19. Older subjects did, however, show a tendency towards higher amplitudes of acclimatiza-
tion, especially for the parameters step length and cadence. The contradictory results on acclimatization periods 
may be partly explained by the studies’ use of different definitions of acclimatization or by divergent outcome 
measures, as different parameters may be associated with different acclimatization durations. These studies also 
differed in whether the use of handrails was permitted during treadmill walking. Furthermore, the potential con-
founding factor of treadmill experience has rarely been reported. Detailed knowledge of acclimatization periods 
and the mechanisms underlying familiarization to treadmill walking would inform assessment protocols and 
facilitate interpretation of treadmill-based gait analysis in clinical and research settings.

The aim of this study was to investigate the process of acclimatization to treadmill walking in healthy individ-
uals and to determine the duration of the process, looking specifically at the evolution of 26 key gait parameters.

Material and Methods
This study was approved by the Zurich cantonal ethics committee (KEK-2013-0601). All experiments were per-
formed at the University Hospital Zurich in accordance with the standards of the Declaration of Helsinki and 
Good Clinical Practice guidelines. Participants were recruited locally via flyers and posters into two predefined 
age groups; 21–50 years and 51–80 years, with 20 participants and an equal gender distribution in each group. 
Participants were excluded if they reported any treadmill experience within the last 60 days or if any orthopedic 
or neurological diagnoses were reported. All participants gave written, informed consent.

Participants underwent a detailed clinical examination by a physician to exclude neurological or locomotor 
pathology before their maximum walking velocity was determined using the mean of two trials of the timed 
25-foot walk test (T25FW)28. All experiments were performed in a dedicated gait laboratory equipped with an 
instrumented treadmill (FDM-T, zebris medical GmbH, Germany). The treadmill was equipped with handrails 
and a transparent, non-weight-bearing security harness. All participants were instructed to use the handrails only 
if required to prevent a fall. A 3D motion capture system (Vicon, UK) with 14 infrared cameras (Vicon Bonita) 
was used for data collection at a sampling frequency of 200 Hz. Forty-six, 14 mm-diameter spherical reflective 
markers were fixed directly on the skin over anatomical landmarks according to a modified Plug-In-Gait marker 
constellation29. During all recordings, participants were asked to fix their gaze on a black cross displayed on a 
22-inch monitor placed at eye-height in front of the treadmill.

Participants began walking on the treadmill at a constant velocity of 50% of their maximum overground 
walking velocity, without acclimatization. The objective speed definition (50% of maximal walking speed) allows 
to assess gait function at a walking speed that is proportional to participants’ walking ability. The treadmill was 
accelerated quickly (1.2 m/s2) and data collection was started manually as soon as the treadmill reached the target 
velocity. Kinematic recording continued while the participant walked for 10 minutes. Participants were asked to 
indicate when they felt fully adapted to the treadmill by saying “yes”. Besides this, any interaction with or distur-
bance of the participant during recording was not permitted.

Data were processed using Vicon Nexus 2.2.3 motion capture software (Vicon, Oxford, UK). Proprietary 
algorithms within the software were used to fill gaps in the marker trajectories before a low-pass Woltring filter 
was applied to all trajectories. The position of the hip joint rotation center was calculated using the Plug-in-Gait 
model; all other calculations were performed using a 3D vector-based approach without further modelling30,31. 
Parameters of interest were extracted using ProCalc 1.1 (Vicon, Oxford, UK) gait analysis software and tempo-
ral gait events were defined by velocity zero-crossings of the toe and heel markers as described previously32,33. 
Twenty-six outcome parameters of interest were calculated for each step cycle and extracted in 25-step bins using 
ProCalc and Matlab (2013a & 2017a, Mathworks Inc. Natick, MA, USA). The following parameters were calcu-
lated and classified into eight functional domains:

 (1) End-point measures: step length, toe height, toe trajectory length;
 (2) Range of motion (ROM): hip ROM, knee ROM, ankle ROM, calculated as angles between vectors;
 (3) Stability: step width, C7 trajectory length, center of mass (COM) path medio-lateral, COM path 

antero-posterior;
 (4) Symmetry: ratio (left/right) of hip ROM, knee ROM, ankle ROM;
 (5) Interlimb coordination: temporal coordination of right and left extremities as defined by phase 

dispersion34,35;
 (6) Intralimb coordination: shape differences of hip-knee and knee-ankle cyclograms were characterized as the 

square root of the sum of squared distances (SSD36) with the last bin as reference cyclogram, and cycle to 
cycle consistency of the hip-knee and knee-ankle cyclograms within a bin was quantified by the angular 
component of coefficient of correspondence (ACC37);

 (7) Gait phases: double limb support phase (DLS), swing phase, stride time;
 (8) Variability: coefficient of variation (COV) within a bin of step length, C7 trajectory length and stride time.

Except for symmetry parameters, bilateral parameters were only considered on the right side.

Data analysis & Statistics. For each parameter, mean and COV were calculated for each bin of 25 strides 
for each individual and each group. All participants achieved at least 20 full bins over 10 minutes, so each con-
tributed their first 20 bins to the analysis. Kolmogorov-Smirnov and Shapiro-Wilk tests indicated that most 
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parameters were not normally distributed within bins. Consequently, non-parametric statistical tests were used 
for statistical analyses at a significance level of α = 0.05.

To describe the process of acclimatization, the first bin (representing initial performance) was tested against 
all later bins (performance at later time points) using repeated measures Friedman tests followed by corrected 
Dunn’s post-hoc tests.

To characterize the acclimatization process of a given parameter, we defined 4 categories of acclimatization a 
priori. These categories of acclimatization cover the principal and most frequent forms of gait adaptations during 
familiarization to treadmill walking in healthy subjects. We characterized the 4 categories using statistical criteria, 
without any presumptions to the course or direction of a parameter’s evolution:

 (1) Acclimatization with plateau: ≥4 consecutive bins must be statistically significantly different from the first 
bin in post-hoc tests for plateau onset to be defined. The plateau is maintained if no subsequent bin is sig-
nificantly different from the initial bin of the plateau (if this requirement is not met, plateau onset is moved 
to a later bin until criteria are met), and no run of ≥4 bins is no longer significantly different from the first 
bin.

 (2) Steady acclimatization without plateau: Plateau onset as defined in 1 but subsequent bins after plateau 
onset are significantly different from the initial bin of the plateau.

 (3) Acclimatization with interim plateau: a plateau as defined in (1) ends if ≥4 further consecutive bins were 
no longer significantly different from the first bin. No further plateaus meeting criteria (1) are reached.

 (4) No acclimatization: none of the above criteria apply.

The intention of categories 1 and 3 was the detection of plateaus and the exclusion of fluctuations. Parameters 
showing no acclimatization, either in the form of no significant changes from baseline (category 4) or exhibiting a 
steady and unidirectional change (category 2), indicating incomplete familiarization within the 10 minutes, were 
also captured by our classification algorithm. The temporal onset of a plateau is reported with the mean number 
of steps taken to reach steady-state and the corresponding time is calculated using the mean stride time of all 
participants.

To characterize the acclimatization of locomotion in more detail, the amplitude and the direction of changes 
were determined for every gait parameter. For this purpose, the absolute and relative change of every bin with 
respect to the first bin were calculated for the group. The maximum change was used as a measure for the ampli-
tude and the direction of acclimatization for those parameters meeting the acclimatization criteria.

Subgroup analyses. To investigate the effects of the factors age, gender and treadmill experience (no tread-
mill experience; treadmill experience >12 months; <12 months), participants were separated into subgroups for 
each covariate. Acclimatization definitions were the same for these subgroups as the overall cohort. Subgroup 
differences in frequency of parameters with acclimatization were analyzed by Fisher’s exact test.

Results
Forty healthy subjects were included in this study (age [mean ± standard deviation]: 51.0 ± 17.6 years; 
height: 170.3 ± 11.0 cm; weight: 67.7 ± 12.9 kg; 20 females). Mean treadmill speed (±standard deviation) was 
4.3 ± 0.6 km/h. All participants were able to walk unassisted (i.e. without using the handrails). Considerable adap-
tations of the gait pattern were observed during initial treadmill walking, but not all 26 parameters studied were 
affected (Fig. 1). Ten parameters were stable throughout recording (category 4), whereas 16 parameters showed 
significant adaptations resulting in a stable performance only after a certain acclimatization period (category 1; 
Figs 1 and 2). The duration of this acclimatization period ranged from 100 to 375 strides (mean = 239 strides) 
depending on the parameter investigated, corresponding to a time of 99 to 373 seconds (mean = 237 s). The short-
est acclimatization period was exhibited by variability parameters (ACC hip-knee, COV step length, COV stride 
time). Generally, acclimatization periods were longer for the more distal (i.e. ankle ROM and AAC knee-ankle) 
versus proximal aspects of gait (i.e. hip ROM, knee ROM, ACC hip-knee). The subjective rating of the onset of 
stable performance was 95 ± 120 seconds, shorter than the mean objective quantification for any gait parameters. 
No category 2 or 3 acclimatization profiles (i.e. steady acclimatization or fluctuations) were observed in the overall 
cohort (Fig. 1).

All parameters in the locomotor domains of end point measures, intralimb coordination, gait phases and varia-
bility showed significant adaptations to treadmill walking (Figs 1 and 2). Some parameters within the functional 
domains range of motion (1/3) and stability (2/4) showed evidence of acclimatization within 10 minutes, while no 
parameters relating to symmetry or interlimb coordination did so. Parameters characterizing end point measures 
showed relative changes due to acclimatization of about 8%, exemplified in the study population by increased step 
length and toe trajectory length, as well as by a reduced mid-swing toe height (Fig. 3C). Step-to-step consistency 
improved considerably after initial acclimatization as indicated by reduced COV values (Fig. 1) and enhanced 
consistency of angle-angle cyclograms and toe trajectory (Fig. 3G,H). Acclimatization-driven changes in leg joint 
movements (ROM) were only observed at the ankle joint, which displayed increased excursions corresponding 
to improved foot roll dynamics (higher dorsal extension prior to toe off; higher plantarflexion at toe off and after 
heelstrike) after initial familiarization (Fig. 3B). Hip and knee excursions exhibited only minor adaptations, in 
keeping with the lack of significant acclimatization for the ROM of these joints (Fig. 3B). Adaptations in the sta-
bility domain resulted not only in decreased step width (Fig. 3E) and anterior-posterior excursion of the COM for 
the whole group but were also observable as improved consistency of the COM trajectory at an individual level 
(Fig. 3I).

In a subgroup analysis, we evaluated the effects of the covariates age, gender and treadmill experience on 
acclimatization of the gait pattern during initial treadmill walking. Detailed characteristics of the subgroups are 
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provided in Table 1. The younger and older age groups were demographically similar, however, older subjects 
walked significantly slower (4.7 ± 0.5 vs 4.0 ± 0.6 km/h; Table 1). Overall, the number of gait parameters show-
ing significant adaptations during treadmill walking was not different between younger and older participants 
(Fig. 4; p = 0.40; Fisher’s exact test). One category 3 acclimatization with interim plateau was observed in the 
younger subgroup (ACC Hip Knee; Table 1). Relative adaptation amplitudes were generally higher in the older 
group, with, for example, step length adaptation 3.8% in younger and 12.2% in older adults. Likewise, adaptation 

Figure 1. Acclimatization profiles of 26 key gait parameters during treadmill walking. Twenty-six key gait 
parameters were assessed with respect to acclimatization periods and amplitudes during treadmill walking. 
Stable parameters without any acclimatization are marked in blue (category 4, see methods), whereas walking 
parameters demonstrating acclimatization resulting in stable plateau performance are illustrated in red 
(category 1). The duration of acclimatization (i.e. time to reach a stable plateau) is indicated in number of 
strides and seconds. Relative and absolute amplitudes of adaptations are provided, indicating the degree and 
direction of acclimatization. Absolute amplitudes are given in the following units: step length [mm], toe height 
[mm], toe trajectory length [mm], Ankle ROM [deg], Step width [mm], COM AP [mm], SSD Hip Knee [au], 
SSD Knee Ankle [au], ACC Hip Knee [au], ACC Knee Ankle [au], Stride time [s], COV step length [au], COV 
C7 trajectory length [au], and COV stride time [au]. For the parameters with % as unit (DLS, swing phase), 
relative amplitudes represent the absolute difference to the first bin (i.e. absolute differences do not exist for 
these parameters). Abbreviations: Abs.: absolute; au: arbitrary units; ACC: angular component of coefficient of 
correspondence; COM: center of mass; COV: coefficient of variation; DLS: double limb support; ROM: range of 
motion; Rel.: relative; SSD: sum of squared distances.
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of stride time variability (COV stride time) was −31.2% in the younger group vs. −51.0% in the older group. 
In contrast, the duration of the acclimatization to treadmill walking was comparable between groups (younger: 
range = 100–400 strides, median = 275 strides; older: range = 100–375 strides, median = 250 strides).

Male and female participants showed significant differences in height and weight, but not in age nor tread-
mill speed (Table 1). Males demonstrated adaptations in a similar number of parameters as females (Fig. 4; 8 vs 
11; p = 0.57, Fisher’s exact test). Duration and amplitude of the adaptations were comparable between genders 
(female: range = 125–325 strides, median = 250 strides; male: range = 175–325 strides, median = 250 strides).

Figure 2. Adaptation curves of all locomotor parameters during acclimatization to treadmill walking. Twenty-
six locomotor parameters were monitored in 40 healthy subjects over the course of 10 minutes of treadmill 
walking (i.e. 20 bins of 25 strides each). Data represent mean values ± SEM. Stable parameters without 
acclimatization according to our pre-defined criteria (category 4, see methods) are shown in blue, whereas 
parameters revealing acclimatization (category 1) are highlighted in red. Plateau onset (if applicable; category 
1) is illustrated by a horizontal red dashed line. Abbreviations: ACC: angular component of coefficient of 
correspondence; COM: center of mass; COV: coefficient of variation; DLS: double limb support; ROM: range of 
motion; SSD: sum of squared distances.
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Figure 3. Adaptations of the locomotor pattern during familiarization with treadmill walking. (A) Illustration 
of the experimental setup. (B–I) Representation of initial (fist bin; blue) and terminal (last bin; red) treadmill 
walking performance. (B) Mean sagittal excursions of the hip, knee and ankle joint (n = 40). Data represent 
mean values ± SEM. (C) Mean toe trajectory (n = 40). (D) Mean hip-knee and knee-ankle cyclograms (n = 40). 
(E) Step width (mean ± SEM, n = 40, Wilcoxon signed-rank test, p < 0.0001). (F) Stick figures representing 
leg movements during stance and swing phase of a representative subject. (G) Hip-knee and knee- ankle 
cyclograms of 25 strides of a representative subject. (H) Toe trajectories of 25 strides for a representative 
subject. (I) 2D-representation of the COM displacement on the floor for 25 strides of a representative subject. 
Representative data in (F–I) were collected from the same participant. Abbreviations: ACC: angular component 
of coefficient of correspondence; SEM: standard error of the mean; SSD: sum of squared distances.

Younger Older P-Value

Volunteers [n] 20 20 na

Age [y] 35.5 ± 8.6 66.5 ± 7.7 <0.0001

Height [cm] 172.6 ± 10.9 168.1 ± 11.0 0.1963

Weight [kg] 67.3 ± 14.0 68.2 ± 12.1 0.8384

Treadmill Speed [km/h] 4.7 ± 0.5 4.0 ± 0.6 0.0003

Female [%] 50 50 na

Male Female P-Value

Volunteers [n] 20 20 na

Age [y] 50.6 ± 18.8 51.5 ± 16.8 0.862

Height [cm] 178.5 ± 8.5 162.2 ± 6.0 <0.0001

Weight [kg] 76.2 ± 11.9 59.2 ± 7.1 <0.0001

Treadmill Speed [km/h] 4.4 ± 0.6 4.2 ± 0.6 0.355

Female [%] na na na

Naive >12 mo <12 mo P-Value

Volunteers [n] 15 16 9 na

Age [y] 57.7 ± 15.8 48.5 ± 17.3 44.3 ± 19.4 0.112

Height [cm] 169.5 ± 12.5 170.6 ± 9.9 171.3 ± 11.6 0.921

Weight [kg] 69.3 ± 13.9 67.2 ± 12.6 66.1 ± 13.0 0.829

Treadmill Speed [km/h] 4.2 ± 0.8 4.4 ± 0.5 4.5 ± 0.4 0.548

Female [%] 40 50 66.7 0.449

Table 1. Demographic characteristics of subgroups defined based on age, gender and treadmill experience. Values 
represent participant numbers, the mean ± standard deviation or proportions (gender). P-values (right column 
of each table) represent results of the statistical subgroup comparisons (i.e. unpaired t-tests for the variables 
age,height, weight and treadmill speed; chi-square test for gender). Abbreviations: mo: months, na: not applicable.
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No significant difference in demographic characteristics or treadmill speed was observed between the sub-
groups defined by differential treadmill experience (Table 1). Subjects that had walked on a treadmill within the 
past 12 months showed the fewest parameters with significant adaptations (2 parameters) compared to those 
with treadmill experience >12 months ago (10 parameters) and entirely naïve treadmill walkers (10 parameters; 
over the 3 groups: p = 0.01; Fisher’s exact test). More experience with treadmill walking was associated with 
smaller amplitudes of locomotor adaptation (naive vs. >12 months), whereas the duration of acclimatization 
was again similar between these subgroups (naïve: range = 125–325 strides, median = 237.5 strides; >12 months: 
range = 100–425 strides; median = 250 strides; <12 months: 350 strides). Subgroup comparison of amplitudes 
and duration of acclimatization with the most experienced group were not performed, as only two showed evi-
dence of acclimatization.

Discussion
We present comprehensive norm data for 26 key gait parameters with acclimatization periods and amplitudes 
in healthy adults during treadmill walking. A majority of parameters showed significant plateaus after an initial 
familiarization period, with adaptation amplitudes from the first steps on the treadmill to the plateau phase of up 
to 68%. Of those parameters reaching an acclimatization plateau, all did so within 6 minutes of treadmill walk-
ing, suggesting this may be the minimal necessary acclimatization duration for treadmill-based kinematic gait 
analysis. Self-perceived attainment of plateau performance substantially preceded the plateau onset as defined 
by objective locomotor assessments, speaking against simple subjective criteria for the identification of stable 
walking performance.

While an acclimatization period of 6 minutes is similar to that observed in some previous studies22,25,26, others 
reported shorter or longer periods19,23,27. In our study, different parameters were associated with quite differ-
ent acclimatization patterns, likely accounting for the discrepancies and heterogeneity in the literature to date. 
Moreover, other studies used different measurement modalities (e.g. use of handrails, definition of plateaus, pre-
vious treadmill experience) and definitions of acclimatization, further hampering the comparison of findings 
between studies. Differences in acclimatization between gait parameters might be related to the fact that particu-
lar aspects of locomotion are controlled by different neural structures38,39. Several of the parameters that under-
went considerable acclimatization were those for which cortical control and the integration/feedback of visual, 
vestibular and somatosensory inputs might be more important – specifically those in the variability domain and 
relating to distal endpoint control40–43. Those parameters which showed little modulation were related to sym-
metry, interlimb coordination and proximal ROM, aspects of gait thought to be more influenced by brainstem 
and spinal centers, including the spinal pattern generator44–46. Processing and integrating sensory feedback in the 
novel treadmill setting is therefore evidenced in the former, more supraspinally-controlled parameters exhibiting 
feedback-driven motor adaptation and learning47,48.

Treadmill and overground walking are different locomotor tasks and vary in terms of sensory feedback in par-
ticular. During treadmill walking, visual flow is absent49, somatosensory perception is altered due to the moving 
belt13 and vestibular demands differ due to lack of propagation acceleration. It remains unclear whether some or 
all of the adaptations seen here represent reversion of an untrained treadmill gait to one more representative of 
everyday, overground walking, or if the steady state reached is reflective of specifically-optimized locomotion in 
the unnatural environment of a motorized treadmill. Previous studies reported that spatiotemporal parameters 
are highly comparable between overground and treadmill walking18,19,21,22. However, decreased gait variability 
during treadmill walking compared to overground walking has been reported50,51, which might be compatible 
with the rapid decreases in the variability domain seen in our analysis. Overall, it may be assumed that many 
adaptations observed during treadmill walking likely lead to a more natural walking pattern resembling over-
ground walking with the exception of gait variability parameters, where generalization to overground walking 
may require particular caution.

Covariate analysis of age, gender and treadmill experience revealed an influence of age and experience on 
familiarization with treadmill walking. Older individuals consistently demonstrated acclimatization amplitudes 
in the same direction but greater than their younger counterparts. The duration to plateau was broadly similar 
in both age groups, in keeping with previous work suggesting that older subjects begin walking on the treadmill 
with a gait pattern further from their optimal performance, perhaps due to increased anxiety regarding falling52, 
reduced sensory perception/integration53 or impaired motor learning/adaptive capacity54, but remain capable of 
adapting within the same timeframe as younger adults19.

Similarly, those naïve to treadmill walking also showed greater acclimatization amplitudes while exhibiting 
similar durations to those with experience of the modality. Treadmill experience appears to mitigate the degree 
to which a participant must adapt their walking pattern but not the duration that this adaptation requires. This 
suggests that the lower amplitude of acclimatization is a manifestation of retained motor learning, leading to a 
long-term change of behavior, whereas duration could represent motor adaptation to locomotor environment47,48.

Several limitations must be considered; firstly, only one, relative gait speed was assessed (50% of maximal 
overground walking speed; no handrail support), thus restricting the generalizability of our acclimatization pro-
files. The applied speed definition resulted in a moderate and sustainable speed that was perceived as comfortable 
by most participants. However, the speed might not necessarily correspond to preferred walking speed. Secondly, 
due to the bin sampling approach, the resolution of acclimatization effects is limited to 25 steps, although the 
functional relevance of fluctuations below this resolution is questionable. Furthermore, our statistical approach 
required the definition of acclimatization at the group level and thus depends on the sample size. Hence, infer-
ences derived from subgroup analyses should be drawn with caution. When visually inspecting the acclimatiza-
tion profiles (Fig. 2), it is apparent that certain parameters (step length, toe trajectory, ankle ROM, SSD hip/knee, 
SSD knee/ankle, stride time) may still be undergoing adaptation at the end of the 10-minute analysis. While none 
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of these parameters met criteria for a steady unidirectional change (category 2), meaningful adaptation beyond 
10 minutes cannot be ruled out. Experiments investigating longer-term adaptation are inevitably complicated by 
the onset of exhaustion, particularly in older and patient populations. Furthermore, longer acclimatization peri-
ods would have limited feasibility in research and clinical settings due to fatigue and time efficiency.

In this study, acclimatization was evaluated in a single session and subgroup analysis showed evidence of 
retention of certain aspects of acclimatization in those accustomed to treadmill walking. Clinical investigation 
of gait disorders is primarily focused on patient groups (multiple sclerosis, Parkinson’s disease), in whom accli-
matization and its retention may be different. Further research is required to ascertain optimal acclimatization 
protocols in these important groups.

The norm data presented here for acclimatization to treadmill walking confirm the existence of considerable 
adaptations in a broad range of gait parameters describing many commonly-measured facets of human locomo-
tion. This finding highlights the importance for the inclusion of acclimatization periods in clinical and research 
protocols using treadmill-based locomotor measures. The ideal duration of acclimatization will depend on the 
metric(s) under investigation, but most parameters studied here reached a steady state within 300–400 strides, 
usually equating to around 6–7 minutes at a comfortable walking speed. Age and treadmill naivety appear to 
affect the amplitude of acclimatization more than its duration, perhaps reflective of underlying motor learn-
ing modalities. Future research should focus on acclimatization patterns in clinically relevant patient groups. 
Standardization of acclimatization protocols for treadmill-based gait analysis will improve the quality of clinical 
examinations and trials using locomotor outcomes.

Figure 4. Effects of covariates age, gender and treadmill experience on acclimatization profiles during treadmill 
walking. Acclimatization of the twenty-six key walking parameters was characterized in three subgroup 
analyses. Stable parameters without any acclimatization are marked for each subgroup in blue (category 4, see 
methods), whereas walking parameters revealing acclimatization resulting in a stable plateau performance are 
illustrated in red (category 1). The duration of acclimatization (i.e. time to reach a stable plateau) is indicated for 
all subgroups in number of strides and seconds. Relative and absolute amplitudes of adaptations are provided to 
assess the extent of acclimatization. Reltative amplitudes (highest difference to first bin) of acclimatization are 
provided in percent. For the parameters with % as unit (DLS, swing phase), relative amplitudes represent the 
absolute difference to the first bin (i.e. absolute differences do not exist for these parameters). Abbreviations: 
Abs.: absolute; au: arbitrary units; ACC: angular component of coefficient of correspondence; COM: centre of 
mass; COV: coefficient of variation; DLS: double limb support; ROM: range of motion; Rel.: relative; SSD: sum 
of squared distances.
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