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A novel generic dictionary-based 
denoising method for improving 
noisy and densely packed nuclei 
segmentation in 3D time-lapse 
fluorescence microscopy images
Lamees Nasser1,2 & thomas Boudier  3,4

Time-lapse fluorescence microscopy is an essential technique for quantifying various characteristics 
of cellular processes, i.e. cell survival, migration, and differentiation. To perform high-throughput 
quantification of cellular processes, nuclei segmentation and tracking should be performed in an 
automated manner. Nevertheless, nuclei segmentation and tracking are challenging tasks due to 
embedded noise, intensity inhomogeneity, shape variation as well as a weak boundary of nuclei. 
Although several nuclei segmentation approaches have been reported in the literature, dealing with 
embedded noise remains the most challenging part of any segmentation algorithm. We propose a 
novel denoising algorithm, based on sparse coding, that can both enhance very faint and noisy nuclei 
signal but simultaneously detect nuclei position accurately. Furthermore our method is based on a 
limited number of parameters, with only one being critical, which is the approximate size of the objects 
of interest. We also show that our denoising method coupled with classical segmentation method works 
properly in the context of the most challenging cases. To evaluate the performance of the proposed 
method, we tested our method on two datasets from the cell tracking challenge. Across all datasets, 
the proposed method achieved satisfactory results with 96:96% recall for the C. elegans dataset. 
Besides, in the Drosophila dataset, our method achieved very high recall (99:3%).

In cellular and molecular biology research, automatic segmentation and tracking of biological structures, i.e. 
cells or their nuclei are important tasks for further understanding of cellular processes. Time-lapse fluorescence 
microscopy (TLFM) is one of the most appreciated imaging techniques which can be used to quantify various 
characteristics of cellular processes, such as cell survival1, proliferation2, migration3, and differentiation4. The 
quantification of these processes plays a significant role in studying embryogenesis, cancer cells, stem cells, and 
other applications in the fields of molecular and developmental biology.

In TLFM imaging, not only spatial information is acquired, but also temporal information as well as spectral 
information, that produces up to five-dimensional (X, Y, Z + Time + Channel) images. Typically, the generated 
datasets consist of several (hundreds or thousands) images, each containing hundreds to thousands of objects to 
be analysed5. These large volumes of data cannot easily be parsed and processed, via visual inspection or manual 
processing within any reasonable time.

Nowadays, there is a growing consensus that automated cell segmentation methods are necessary to man-
age the time issue and provide a level of reliability and validity. Accordingly, the implementation of automated 
high-throughput cell nuclei detection and segmentation techniques may be able to improve the clinical diagnosis, 
predict the treatment outcome, and help to enhance therapy planning.
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Although TLFM imaging is a very powerful technique and can capture valuable information from cellular 
structures, it still poses several limitations that can be summarised as follows: 1) non-uniform background illu-
mination because of the fluorescence in cytoplasm and mounting medium; 2) low contrast and weak boundaries 
of non-obvious nuclei; 3) the degradation of image intensity over time due to photo-bleaching of fluorophores5. 
As a result of these limitations, obtained images become very noisy and difficult to interpret, which might lead to 
false detection and segmentation results.

Over the last few years, several methods have been proposed for filtering and denoising of cell nuclei micros-
copy images. Darbon et al.6 have used a Non-Local Mean approach to reduce the noise in microscopy images. 
This method relied on replacing the intensity value of a pixel with the average intensity values of the most similar 
pixels in the image. The algorithm demonstrated good performance in enhancing particles contrast, and reducing 
the noise in electron cryo-microscopy images. For Transmission Electron Microscopy (TEM) images, several 
digital filters have been introduced by Kushwaha et al.7 such as median or Wiener filter. A similar work proposed 
by Sim et al.8 and Aguirre9 based on employing an adaptive Wiener filter to enhance the effectiveness of the 
classical Wiener filter by considering the noise variance. Luisier et al.10 have suggested a Poisson Unbiased Risk 
Estimation-Linear Expansion of Thresholds (PURE-LET) technique for denoising images corrupted with Poisson 
noise. The method is based on three criteria: 1) minimising of an unbiased estimate of Mean Square Error (MSE) 
for Poisson noise, 2) linear parametrisation of the denoising process 3) preserving of Poisson statistics across 
scales. This algorithm is particularly promising for large datasets as well as images having a low signal to noise 
ratio. In addition, it has limited system requirements.

Over the past few years, deep learning methods have been successfully introduced for biological data process-
ing. For instance, Liu et al.11 suggested a convolutional encoder-decoder neural network method for denoising of 
cell nuclei in fluorescence microscopy images. This method based on using the stochastic characteristics of noise 
as well as the shape of nuclei for learning step, and then regenerating the clean nuclei image based on the learned 
priori knowledge. Weigert et al.12 proposed a method to enhance the axial resolution in 3D microscopy images by 
reconstructing isotropic 3D data from non-isotropic acquisitions using a convolutional neural network. Another 
approach has also been proposed by Weigert et al.13 that presented a content-aware image restoration (CARE) 
networks method to denoise fluorescence microscopy data. This method introduced a solution to the problem of 
missing training data for deep learning in fluorescence microscopy by generating training data without the need 
for laborious manual annotations.

For cell nuclei segmentation literature, the reported approaches are classified into two categories: simple 
approaches such as thresholding method14–17, edge detection18 and shape matching19–21, and more sophisticated 
approaches like region growing22–25, energy minimization26 and machine learning11,27–29.

In the first category, R. Bise et al.14, Arteta et al.15, Liao et al.16 and Gul-Mohammed et al.17 applied a 
thresholding-based approach to segment cell nuclei. This approach assumes that the cell is usually brighter than 
its surrounding areas and there often exists an optimal threshold where individual cells can be segmented as 
separate objects. This assumption is not applicable in the challenging regions, because it is impossible to find a 
suitable threshold to separate all touching cells. Wählby et al.18 suggested to use an edge detection approach, in 
which an edge filter is applied to the image and therefore pixels are classified as edge or non-edge. These edges 
are usually detected by the first or the second order derivative method. Nevertheless, this method fails to detect 
the non-obvious cell’s boundary. Cicconet et al.19 and Türetken et al.20 proposed to use a shape matching-based 
approach. This approach depends on the assumption that cells, particularly nuclei, have round shapes. Hence, 
multi-scale blob detection30 can be employed to detect and segment cells.

In the second category, Cliffe et al.22, Liu et al.23, Tonti et al.24 and Gul-Mohammed and Boudier25 employed 
region-based segmentation techniques in which the basic idea of these approaches is to combine the neighbour-
ing pixels of initial seed points which have similar properties to form individual cells.

On the other hand, machine learning-based approaches can be implemented for cell segmentation. To give some 
examples, Ronneberger et al.27 proposed U-Net convolutional networks to segment cells by assigning class labels 
to every pixel in the image. A two-stage convolutional neural network method was presented by Akram et al.28  
to precisely segment the cells. On the first stage, CNN is used to predict a regression on the cell bounding box. 
On the second stage, another CNN is employed to segment cells within the regressed bounding box. Liu et al.11  
reported the use of a convolutional encoder-decoder network to segment the cell nuclei by learning stochastic 
characteristics of noise and shape of nuclei. Thus, segmented cell nuclei images can be generated. Moreover, 
Sadanandan et al.29 advised to use the Deep Convolutional Neural Networks (DCNNs) to segment cells in fluo-
rescence microscopy images. The aforementioned filtering and segmentation methods have achieved good results 
in microscopy images. However, most of these methods require tuning a set of parameters. Moreover, they may 
be used effectively only for specific applications. As a result, identifying a proper and robust approach for various 
datasets regarding high variation in cell nuclei volume, shape, and stain distribution as well as high cell density 
has become a major challenge in image analysis.

The contribution of this paper is to design a generic method for denoising of 3D cell nuclei images based on a 
sparse representation model. Consequently, a classical segmentation method can be used to segment cell nuclei 
without the need for more complicated segmentation approaches. The concept of dictionary learning, and sparse 
representation is already well established by M. Elad and M. Aharon31 as well as it is implemented in different 
application such as image denoising32–34, and image classification35,36. However, the added value of the proposed 
approach is employing the advantage of the sparse representation to find the potential locations of nuclei in 
microscopy image. The novelty here is to obtain a denoised image and a detection map simultaneously. We believe 
that no similar studies have been reported in existing literature for denoising and simultaneously predicting 
objects location in images.
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Results
Datasets description. Since the main motivation of our work is to automate the detection and segmenta-
tion of cell nuclei in time-lapse fluorescence microscopy images, we focused on applying our algorithm to devel-
opment biology datasets, where only a limited number of existing methods had provided satisfactory results. The 
proposed framework is extensively tested on three real datasets for embryonic cells and one dataset of synthetic 
images with different values for the signal to noise ratio (SNR) and the object size. SNR is a performance measure 
for the sensitivity of imaging systems which is defined as the ratio of the average signal level (μsignal) to the stand-
ard deviation (σnoise) of the background noise level: SNR = μsignal/σnoise and expressed in logarithmic function as 
SNR(dB) = 20 × log10(μsignal/σnoise)37.

Synthetic dataset. In order to measure the robustness of the proposed method, we generated synthetic images of 
size (XYZ) equal (100 × 100 × 20) voxels containing spheres of two radii: 7 and 9 voxels. As it is common in flu-
orescence microscopy images to have low contrast and low signal to noise ratio (SNR), as a consequence of weak 
fluorescent staining or microscope properties, the images are distorted with different levels of Poisson-Gaussian 
noise, resulting in SNRs of 2 dB, −1 dB, −5 dB and −7 dB, respectively. Furthermore, the images include touch-
ing spheres where these conditions simulate the same characteristics existing in the real datasets as shown in 
Supplementary Fig. 1.

Real dataset. The first dataset comes from the work of Gul-Mohammed17 and it is named as CE-UPMC. The 
other two datasets come from the cell tracking challenge38,39, namely Fluo-N3DH-CE and Fluo-N3DL-DRO. The 
last two datasets are proven to be the hardest to be fully segmented automatically38. Each dataset from the cell 
tracking challenge contains 2 sequences. For the cell tracking challenge datasets, all pixels belonging to objects 
including the centroid are labelled as object by the ground truth. However, for the other dataset (i.e. CE-UPMC), 
only the centroid of each object is labelled. The datasets are described as follows:

CE-UPMC dataset: It involves the C. elegans embryonic cells. The size (XYZT) of dataset is 
512 × 512 ×31 × 160. The cells were acquired every 1 minute using a spinning-disk confocal microscope. This 
dataset is very challenging, as the intensity of the images is decaying over time due to the labelling technique 
and acquisition system. Thus, the quality of the acquired images is low.
Fluo-N3DH-CE dataset: It includes the C. elegans embryonic cells. The size (XYZT) of the first sequence is 
708 × 512 × 35 × 250 and of the second sequence is 712 × 512 × 31 × 250. Both sequences are 8–bit images 
with cells imaged every 1.5 minutes. The cells are acquired using a Zeiss LSM 510 Meta Confocal Microscope. 
This dataset is challenging as well, since it has a low signal to noise ratio (SNR = 6.74 dB), in addition, the 
fluorescence can fade when the cells divide. Furthermore, the cells become smaller over time.
Fluo-N3DL-DRO dataset: It contains the Drosophila melanogaster embryonic cells. The size (XYZT) of each 
sequence is 1272 × 603 × 125 × 49. Both sequences are 8–bit images with cells imaged every 30 second. The 
cells are acquired using a SIMView light-sheet microscope. This dataset is very challenging as it has a large 
number of densely packed cells. In addition, it has a low signal to noise (SNR = 2.46 dB).

Experimental setup and suitable parameters selection. Synthetic datasets are generated to study the 
effect of parameters (described in Table 1) on cell nuclei detection and segmentation, as well as to understand the 
overall mechanism for selecting and tuning the significant parameters of various datasets (summarised in Table 2).

Our approach is based on the building of a dictionary (small patches of the image) that will be eventually 
used for denoising and detection of cell nuclei. We investigated the optimal size of the patches and the number 
of patches (called atoms) in the dictionary. Then, the randomly created dictionary is updated, and so we investi-
gated the number of iteration for the update. Finally, we investigated the sparsity level (i.e., the number of used 
atoms) for the reconstruction of the denoised image and the detection map. To start with, we tested several 
values for patch size (p = 5 × 5 × 5, 10 × 10 × 5, 15 × 15 × 5 and 20 × 20 × 5), dictionary size (K = 64, 128, 256 
and 512), sparsity level (L = 3, 6 and 9) and number of iterations (N = 5, 10, 15, 20, 25 and 30) at different noise 
levels (SNR = 2, −1, −5 and −7 dB). Since the coefficient of variation (CV) is a useful statistical descriptor for 

Parameters Description

Denoising

Patch size [N N M] The patch is a small region of an image with size ([N N M]). Patches are extracted 
by moving a window with a step size of one pixel over the raw image.

Dictionary size (K) The dictionary is constructed by concatenating the patches to vectors (called 
atoms). Dictionary size (K) is the total number of atoms.

Number of iterations (N) A specified number of times to update the dictionary.

Sparsity level (L) The number of nonzero elements (used atoms from the dictionary) for the sparse 
representation coefficient

Segmentation

Sensitivity Factor A scalar value within a range from zero to one. It controls sensitivity towards 
thresholding more voxels as foreground.

Nuclei Seed Dilation Radius of the structuring element for morphological dilation.

Min Nuclei Volume The approximate volume of the smallest cell nucleus in the image.

Table 1. Description of denoising and segmentation parameters.
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comparing the degree of variation from one data series to another one. The CV is defined as the ratio of the stand-
ard deviation to the mean40. Thus, we employed the CV to measure the effect of changing the parameters on the 
result. The average CV from the patch size, dictionary size, sparsity level and the number of iterations over the 
four noise levels are approximately 15, 2, 2 and 2% respectively.

In all aforementioned parameters, we observed that the patch size is considered as a critical parameter where 
the change in this value has a major impact on the subsequent segmentation results as shown in Supplementary 
Fig. 2(a). On the contrary, changes in the other parameters i.e. dictionary size, sparsity level and the number of 
iterations often achieve very close results as shown in Supplementary Fig. 2(b–d). Therefore, we fixed all parame-
ters while tuned the patch size according to the object’s size present in the images.

In order to confirm the importance of patch size tuning, we conducted more analysis in the term of cell nuclei 
detection as shown in Supplementary Fig. 3. For example, at the first three noise levels 2, −1 and −5 dB all cell 
nuclei are correctly detected for different patch size values. However, at noise level equal −7 dB, many objects are 
falsely detected with the patch size equivalent to p = 5 × 5 × 5 and one nucleus is not detected at patch size equal 
20 × 20 × 5. Though, for patch size equal 10 × 10 × 5 and 15 × 15 × 5, all cell nuclei are correctly detected.

For all previously mentioned patch size values, the average of recall, precision, F-measure, and Jaccard index 
with different noise levels are presented in Supplementary Fig. 3(b), where these measures are high when the 
patch size values equal p = 10 × 10 × 5 and 15 × 15 × 5 compared to the measures of the other two values.

Following the above experiment, we observed that, for robust detection and segmentation results, the patch 
size should not be less than 25% and not more than 100% of the average cell nuclei volume in images.

Denoising of 3D cell nuclei images. In this work, a sparse representation model31,41 is employed to obtain 
the denoised images. Our method is compared with PURE-LET10, which is one of the most efficient, fast and 
automatic methods for denoising of multi-dimensional fluorescence microscopy images. The main motivation 
behind the need for cell nuclei denoising is assisting better segmentation of cell nuclei images. Therefore, the 
comparison between the denoising methods is performed in the context of improving segmentation results. For 
instance, the results in Supplementary Fig. 4 (first row), Supplementary Figs 6(a,c) and 7(a,c) show that our 
method is able to reduce, and almost remove the noise as well as enhance the contrast of cell nuclei. We have also 
noticed a better contrast than PURE-LET results as shown in Supplementary Fig. 4 (third row), Supplementary 
Figs 6(b,d) and 7(b,d).

For further assessment, thresholding-based approach is applied to the denoised images to obtain the seg-
mentation mask. It can be noted from Supplementary Fig. 4 (second row), Supplementary Figs 6(e) and 7(e) that 
our method succeeded to segment all nuclei in comparison with the other method which failed to detect some 
nuclei as demonstrated in Supplementary Fig. 7(f). Even though, when the PURE-LET method is able to detect 
all cell nuclei shown in Supplementary Fig. 6(f), the size of segmented nuclei are smaller than their original size. 
Unfortunately, this method can not detect any cell nuclei at very low signal to noise ratios (−5 dB and −7 dB,) as 
presented in Supplementary Fig. 4 (fourth row).

Segmentation of 3D cell nuclei images. Following the denoising step, a local adaptive thresholding42 is 
applied to the denoised image to get the segmentation mask of candidates regions. In order to obtain the candi-
dates locations of cell nuclei centres, we used a novel representation called the detection map. Each voxel in this 
map is computed as the summation of the patch coefficients that are used to reconstruct the denoised image. We 
then define a maximum response image by multiplying the denoised image with the detection map. This maxi-
mum response image is used to detect the local maxima (Fig. 1). Afterwards, the obtained local maxima are used 
as an input for a 3D marker-controlled watershed segmentation of the cell nuclei (Fig. 2).

For the synthetic dataset, great performance is observed on very low signal to noise ratios (2 dB, −1 dB, −5 
dB and −7 dB), in which our method is capable of correctly identifying and segmenting all cell nuclei at the var-
ious noise levels as presented in Supplementary Fig. 8. Furthermore, our method has similar performance as the 
top-ranked KTH algorithm from the cell tracking challenge38,39, as shown in Supplementary Fig. 5.

Regarding the CE-UPMC dataset, there is an intensity decay over time owing to the labelling technique and 
acquisition system. As a result, the acquired image quality is low. Table 3 and Supplementary Fig. 9, illustrate the 
results obtained at certain time points. For instance, at early time points (40, 60, 80 and 100) all cell nuclei are cor-
rectly detected. In addition, few false positives are also detected (2 objects out of 119 cell nuclei). Even though the 
image quality at advanced time points (120, 140 and 160) is low, only 11 cell nuclei out of 247 are not detected, also 
there exists a small number of false positives (3 objects out of 247 cell nuclei which is displayed as yellow arrows in 

Parameters

Datasets

Synthetic CE-UPMC
Fluo-N3DH-CE 
(seq1)

Fluo-N3DH-CE 
(seq2)

Fluo-N3DL-DRO 
(seq1 & seq2)

Patch size (voxels) [15 15 5] [20 20 5] [25 25 5] [25 25 5] [10 10 5]

Threshold global Otsu’s46 local adaptive42 local adaptive42 local adaptive42 local adaptive42

Sensitivity Factor — 0.56 (0.58) 0.5 0.5 0.5

Min Nuclei Volume (voxels) 20 5000 (1000) 10,000 (3000) 10,000 (3000) —

Nuclei Seed Dilation (voxels) 3 5 10 (5) 20 (5) 5

Table 2. Denoising and segmentation parameters. When the values of parameters differ between the first and 
the advanced time points, the value for the advanced time points is given in round brackets.
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Supplementary Fig. 9(f)). Typically, the reason for missing cell nuclei is the detection of clustered cell nuclei (indi-
cated by red arrows in Supplementary Fig. 9(f)) rather than detecting them separately. Supplementary Fig. 10 shows 
the segmentation results of our method and the results from the original paper17 for the CE-UPMC dataset.

In the Fluo-N3DH-CE dataset, the proposed approach is able to identify and segment correctly more than 96% 
of total cell nuclei. Furthermore, it detects a small number of false positives (9 objects out of 876 cell nuclei) as 
well as a small number of false negative (29 cell nuclei). The achieved F-measure of approximately 97.8%, which is 
comparable to the competing algorithm, i.e. KTH38,39 (Table 4, Supplementary Figs 11 and 12).

For the Fluo-N3DL-DRO dataset, despite our method succeeds to detect more cell nuclei (99% recall), it has 
low precision (3%) due to the annotated ground truth, which considered only the cell nuclei located in the early 
nervous system and all other nuclei are deemed as false positives. As a result, the obtained F-measure is low with 
an approximate value of 6.4% Table 4. Furthermore, our method has a comparable segmentation accuracy with 
KTH competing approach38,39 (Table 4, Supplementary Figs 13 and 14).

The results achieved by our method for the two datasets obtained from cell tracking challenge are compared 
with the top-ranked KTH algorithm38,39. KTH algorithm is chosen for the reason that, it presented the best over-
all performance in the challenge. This algorithm is mainly based on adopting the band-pass filter to detect and 
segment cell nuclei.

Figure 1. Denoising and nuclei detection with the sparse representation model. (a) A single plane (Z = 15) 
of time point (T = 100) from the CE-UPMC dataset. (b) The denoised image obtained by applying the sparse 
representation model to the image in (a). (c) The detection map obtained from the sparse representation model 
for image in (a). (d) Marker points detected by applying the local maxima search on the maximum response 
image, obtained from multiplying image (b) with image (c). Marker points displayed as yellow squares are 
overlaid on the raw image. (e) Segmentation mask obtained by applying the initial segmentation to the image in 
(b). (f) Objects detected in the background are discarded by multiplying the detected marker points image (d) 
with the segmentation mask (e). Note that, the marker point detection here is performed in two dimensions for 
the purpose of explanation and visualisation, however, in the framework it is applied in three dimensions.
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Regarding the KTH algorithm, some detected objects are actually noise and some cell nuclei are not detected. 
This is because the algorithm detected clustered cell nuclei instead of detecting them separately. For example, at 
time point 28 from Fluo-N3DH-CE (seq1) and at time point 106 from Fluo-N3DH-CE (seq2), KTH algorithm 
failed to resolve the fusion of two nuclei (as presented by the red arrows in Supplementary Fig. 12(b). In contrast, 
our method succeeds to identify and segment each nucleus individually as shown in Supplementary Fig. 12(a,c). 
For the Fluo-N3DL-DRO dataset, although our method succeeds to detect more cell nuclei than KTH approach 
(Table:4 and Supplementary Fig. 14), the evaluation method considered those cell nuclei as false positives, due to 
the annotation method which considered only the cell nuclei located in the early nervous system.

We have found that, the proposed method is less sensitive to some parameters such as dictionary size (K), 
sparsity level (L) and number of iterations (N). All these parameters are being fixed for different datasets and 

Figure 2. An overview of cell nuclei segmentation steps. First column: shows a single plane (Z = 15) of time 
point (T = 100) from the CE-UPMC dataset. Second column: shows a three-dimensional view of the same 
time point. (a,b) The raw images. (c,d) The segmentation mask, which identifies the cell nuclei (presented as 
coloured) in the image, but fails to separate apparently touching cell nuclei (shown as red arrows). (e,f) Marker 
points (indicated by yellow squares) are obtained from the sparse representation model. (g,h) Marker-controller 
watershed segmentation that succeeds to separate apparently touching cell nuclei (orange arrows). Note that, 
different colours represent individual components. The marker points detection at (e) is performed in two 
dimensions for the illustration process. However, in the framework it is applied in three dimensions.
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experiments with the subsequent values K = 64, L = 3 and N = 15. However, the proposed method is more sen-
sitive to fundamental parameters, i.e., such as patch-size, and in a less critical manner to Sensitivity Factor and 
Nuclei Seed Dilation. As these parameters are easy to understand, this makes them easier to tune-up if needed. We 
need to stress that all parameters, except patch size, are quite robust, as we only need to use three sets of param-
eters for all datasets. The set of empirically determined parameter values being applied to the datasets are listed 
in the Table 2.

Concerning the Fluo-N3DH-CE dataset, although the average cell nuclei size in sequence (2) is slightly greater 
than the average size in sequence (1), we have decided to use the same parameter (i.e., patch size) for denoising 
of both sequences. As a result, we tuned Nuclei Seed Dilation to avoid detection of multiple local maxima for the 
same object as explained in section Marker points detection.

We have also presented a Supplementary Table 1 to show the detection and segmentation results among vari-
ous datasets considering the patch size percentage (related to average cell nuclei volume).

In order to test the genericity of the algorithm, we have conducted additional experiments on real datasets 
coming from various tissues such as thymus tissue (provided by J. Sheridan, Walter and Eliza Hall Institute of 
Medical Research (WEHI)), lymphoid tissue (provided by JR. Groom, WEHI), and islets of Langerhans tissue  
(from Tran et al.43), where robust cell segmentation is still challenging. Despite the noisy and crowded environ-
ment, the obtained results from our method are quite encouraging as presented in Supplementary Fig. 15.

Methods
This section introduces a novel method for denoising and detection of cell nuclei in 3D TLFM images based on a 
sparse representation approach31,41. The use of sparse signal representation is becoming popular in several fields 
such as face recognition44, image denoising32–34 and inpainting45, and image classification35,36. Indeed, natural 
images represent very sparse data, especially in biology where numerous instances of the same structure, i.e. cell 
or nucleus, are present in the image. Moreover, a dictionary-based approach is usually linked to unsupervised 
learning since the data itself can be used to learn the basis vectors to build a sparse representation matrix.

The sparse representation method (shown in Fig. 3) is implemented as described by M. Elad and M. Aharon31, 
we have only changed the construction of the initial dictionary as depicted in the following steps. Firstly, the 
patches are extracted by moving a window with a step size of one pixel over the raw image. For each extracted 
patch, pixels’ intensities are summed up. Then, the average intensity over all patches is calculated. Secondly, an 
initial dictionary is constructed by selecting random patches from extracted patches among those having intensi-
ties greater than the obtained average intensity. By doing that, we are ensuring the presence of cell nuclei patches 
in the initial dictionary. Thirdly, a technique based on K-clustering with singular value decomposition (K-SVD)41 

Time GT SN TP FN FP Recall (%) Precision (%) F-measure (%)

40 14 14 14 0 0 100 100 100

60 24 24 24 0 0 100 100 100

80 28 29 28 0 1 100 96.55 98.2447

100 51 52 51 0 1 100 98.08 99.03

120 57 53 53 4 0 92.98 100 96.3623

140 91 93 88 3 2 96.70 97.78 97.2370

160 104 101 100 4 1 96.15 99.01 97.5590

Table 3. Segmentation performance of our method (SRS) for CE-UPMC dataset.

Dataset Algorithm GT SN TP FN FP Recall51 (%) Precision51 (%) F-measure51 (%) Jaccard52 (%)

Fluo-N3DH-CE_01

SRS

478 464 459 19 5 96.03 98.9 97.44 66

Fluo-N3DH-CE_02 398 392 388 10 4 97.49 98.98 98.23 70

Total 876 856 847 29 9 96.69 98.94 97.84 68

Fluo-N3DH-CE_01

KTH

478 463 459 19 4 96.03 99.1 97.54 64

Fluo-N3DH-CE_02 398 394 386 12 8 96.98 97.97 97.47 59

Total 876 857 845 31 12 96.5 98.6 97.55 61.5

Fluo-N3DL-DRO_01

SRS

3792 122193 3757 35 118436 99.08 3.07 6 60

Fluo-N3DL-DRO_02 4097 120494 4082 15 116412 99.63 3.39 6.56 73

Total 7889 242687 7839 50 234848 99.37 3.32 6.43 66.5

Fluo-N3DL-DRO_01

KTH

3792 112535 3733 59 108802 98.44 3.32 6.4 62

Fluo-N3DL-DRO_02 4097 104655 4037 60 100618 98.54 3.86 7.4 78

Total 7889 217190 7770 119 209420 98.49 3.58 6.9 70

Table 4. Segmentation performance of our method (SRS) and the KTH algorithm38,39, for datasets from cell 
tracking challenge. The values shown in bold represent the highest performance. GT, number of cell nuclei in 
ground truth; SN, number of cell nuclei determined by the segmentation; TP, true positives; FN, false negatives; 
FP, false positives.
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is implemented to update and obtain the final dictionary. Fourthly, the updated dictionary is used to reconstruct 
the denoised image as well as the detection map that will be used for detection of cell nuclei.

In the cell nuclei segmentation stage, the maximum response image, which is obtained by multiply-
ing the denoised image with the detection map is used to detect the potential location of cell nuclei. Then, a 
thresholding-based approach42,46 is proposed to get the segmentation mask. Finally, a marker-controlled water-
shed approach47 is used to obtain the final cell nuclei segmentation result.

An introduction to sparse representation. The idea of sparse representation is to obtain an efficient 
representation of a signal as a linear combination of few atoms chosen from a dictionary. Given a dictionary 
D ∈ Rn×K that contains K atoms as column vectors ∈ = …d R j K, 1, 2, ,j

n . The sparse representation problem of 
a signal y ∈ Rn can be described as finding the sparsest vector α ∈ RK where αy D . The problem can be formu-
lated as an energy optimization problem as follows:

α α α= − . . ≤
α

ˆ y D s t Largmin
(1)2 0

Sparse 
representation

Dictionary 
learning

N
- I

te
ra

tio
ns

K-SVD

Initial segmentation

Marker points detection

Denoised image

3D Visualisation

y

3D marker-controlled watershed

Detection map

Sparse representation model

3D/4D 
dataset

Raw image
 stacks

Initial 
dictionary

A sample 
patch  Updated 

dictionary

Segmentation 
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Figure 3. General representation of the proposed framework for denoising and segmentation of cell nuclei in 
3D time-lapse fluorescence microscopy images. The proposed pipeline consists of data preprocessing, initial cell 
nuclei segmentation, cell nuclei detection, final segmentation as well as 3D visualization. In the preprocessing 
step, an initial dictionary is constructed by selecting random patches from the raw image as well as a K-SVD 
technique is implemented to update the dictionary and obtain the final one. Then, the maximum response 
image which is obtained by multiplying the denoised image with the detection map is used to detect marker 
points. Furthermore, a thresholding-based approach is proposed to get the segmentation mask. Finally, a 
marker-controlled watershed approach is used to get the final cell nuclei segmentation result and hence cell 
nuclei are displayed in a 3D view.
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Where y is the signal, α denotes the sparse representation coefficients, α 0 is the L0 pseudo-norm that counts the 
number of non-zeros of α and L is a predetermined sparsity threshold.

Solving the previous optimisation problem is NP-hard and numerically intractable, thus several methods 
have been developed to get an approximate solution for this particular problem. The first type of methods uses 
L0–norm minimisation, such as matching pursuit (MP)48 or orthogonal matching pursuit (OMP)49. The second 
type of method uses L1–norm for optimisation. The objective of L1–norm is to make the optimisation problem 
convex, which can be addressed efficiently using basis pursuit (BP)50.

The crucial issue in practical applications is to select the dictionary D. Basically, dictionaries are of two types: 
(1) fixed dictionaries, (2) adaptive dictionaries. The fixed dictionary as is the case for curvelet, discrete cosine, 
wavelet, ridgelet, or bandlet which use pre-defined and fixed atoms. This type of dictionary may not ensure a 
well-defined representation of all given signals. As a result, it is more appealing to use an adaptive dictionary 
approach to learn the dictionary directly from the data itself.

Learning the dictionary requires twosteps, the first step is to compute an initial dictionary. It is usually com-
puted by taking random patches directly from the raw image. These patches are overlapped with a step size of one 
pixel. To ensure the presence of patches containing nuclei in the initial dictionary beside background patches, we 
select patches among those having intensity greater than the average intensity of all patches extracted from the 
image. The second step is to update the initial dictionary by using the K-SVD algorithm41. This algorithm is a 
standard unsupervised adaptive dictionary learning algorithm that generalizes the well-known K-means cluster-
ing approach. It jointly learns a dictionary = …D d d d[ , , , ]K1 2 , dj ∈ Rn, j = 1, 2, …, K and a related sparse rep-
resentation matrix α α α α= …[ , , , ]m1 2 , αi ∈ RK from a set of training signals = …Y y y y[ , , , ]m1 2 , where each 
yi ∈ Rn by solving the following problem:

α α− . . ≤
α

Y D s t Largmin
(2)D,

2 0

This technique solves the optimization problem by alternating between finding the sparse representation coef-
ficients α and the dictionary D using an iterative approach. Assuming that D is known, the best sparse representa-
tion matrix is constructed by solving Eq. 2 using an orthogonal matching pursuit algorithm (OMP). Following 
the sparse representation stage, the representation vectors (α) are assumed to be fixed. Subsequently, the best dic-
tionary is computed. Since finding the whole dictionary at the same time is impractical, the dictionary is updated 
atom by atom. Once the best dictionary and sparse representation coefficients are obtained, the denoised image 
and detection can be constructed.

Images with sparse representation. In this section, we present the reconstruction of the denoised image and 
detection map which will be used later in the detection and segmentation of cell nuclei

•	 Denoised image reconstruction. The denoised image with dictionary learning is formed by solving the fol-
lowing problem:

λ α α= − + − . . ≤
α

E X X Y X D s t L( ) argmin
(3)X D, ,

2
2

2
2

0

Where X is the denoised reconstructed image, Y is the noisy image and λ is the regularisation parameter.
•	 Detection map reconstruction. In point of fact, the denoised image does not have sufficient contrast to 

completely separate touching nuclei. In order to improve cell nuclei detection, a detection map image that 
indicates the potential locations of cell nuclei will be built. The construction of this image is based on the 
computation of the sparse coefficients (αi) of each image patch. It can be obtained by:

∑α= = … .
=

P
C

i m1 1,2,3, ,
(4)

i
k

K

i
k

1

Where, C is a normalisation term, Pi is the probability value corresponding to the i–th patch and αi
k denotes the 

k–th element of αi. Notably, voxels within the centre of the nucleus have very high sparse coefficients values, in 
contrast to voxels far away from the centre having low values. Consequently, the pi value of the patches containing 
nuclei tend to be large compared with the pi value of background patches. As a result, dictionary learning tech-
nique with sparse representation can capture strong structures of biological images as well as restrain the noise.

Cell nuclei segmentation. 

•	 Initial cell nuclei segmentation. A local adaptive thresholding approach42 is applied to the denoised image. 
The general concept of the algorithm is that for every image’s voxel the threshold is determined by the follow-
ing equation:

= −⁎T mean (1 Sensitivity Factor) (5)local local

where, meanlocal is the mean intensity value in the neighbourhood of each voxel and the Sensitivity Factor is 
a scalar value within a range from zero to one which controls sensitivity towards thresholding more voxels 
as foreground. Accordingly, voxels with intensity values larger than Tlocal are set to 1, all others are set to 0. 
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Small regions detected as foreground and smaller than a predefined volume denoted by Min Nuclei Volume 
are discarded. This threshold corresponds to the volume of the smallest cell nucleus and is determined prior 
to the segmentation step. The resulting image is called the segmentation mask.

•	 Marker points detection. For splitting of touching cell nuclei, we employed a marker-controlled watershed 
technique. The marker points are obtained as follow: first, the denoised image is multiplied by the detection 
map to provide a maximum response image. Second, The maximum response image is processed to detect the 
local maxima (Fig. 4). The obtained local maxima image is multiplied by the segmentation mask to discard 
local maxima detected in the background. Third, a morphological dilation operator of certain radius denoted 
by Nuclei Seed Dilation is employed to avoid detection of multiple local maxima for the same object by merg-
ing those maxima that were in close proximity to each other. Finally, the modified image determining the 
marker points is fed to the subsequent watershed algorithm.

•	 3D marker-controlled watershed segmentation. Marker-controlled watershed segmentation is presented 
to separate connected cell nuclei clusters. The basic principle of watershed approach is to flood the denoised 
image, which contains merged objects starting at marker points as sources. Sometimes the flooding process 
is not stopped at the border of a cell nucleus, therefore the denoised image is multiplied by the segmentation 
mask prior to the flood. Eventually, watershed dams are built when different sources meet during the flooding 
process. This approach allows splitting clusters of apparently touching cell nuclei.

SN
R

 =
 2

dB
SN

R
 =

 -1
dB

SN
R

 =
 -5

dB
SN

R
 =

 -7
dB

Denoised image Detection map Maximum response 
image

Raw image

Figure 4. A comparison of marker points detection at various levels of noise. First column: representative 
single plane (Z = 10) of the raw image. Second column: the results of marker points detection from the denoised 
image. Third column: the result of marker points detection from the detection map. Fourth column: the result 
of marker points detection from the maximum response image. For all images the marker points depicted by 
yellow markers. Note that, the marker point detection here is performed in two dimensions for the purpose of 
explanation and visualisation. However, in the framework it is applied in three dimensions.
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Evaluation method and metrics. To assess the performance of the proposed algorithm, three metrics are 
employed. The first two metrics are the recall51 and precision51 of object detection. The recall is the proportion of 
the number of relevant detected cell nuclei to the total number of relevant cell nuclei in ground truth. Precision 
is the proportion of the number of relevant detected cell nuclei to the total number of irrelevant and relevant 
detected cell nuclei. These parameters are defined as follows:

=
+

Recall TP
TP FN (6)

=
+

Precision TP
TP FP (7)

− = ∗
∗
+

F measure 2 Sensitivity Precision
Sensitivity Precision (8)

where, True Positive (TP) represents the total number of correctly detected nuclei, False Negative (FN) repre-
sents the number of undetected nuclei and False Positive (FP) represents the number of falsely detected nuclei. 
To compute these values, we used the following steps: first, we calculated the distance between the centroids of 
ground truth nuclei and centroids of segmented objects. Second, a weight is assigned to each pair of segmented 
and ground truth objects, equal to the distance between them. Third, Hungarian algorithm is used to solve this 
assignment problem. Objects with no match to any other object are considered as FP, objects absent in ground 
truth, but they appear in the segmentation result are deemed FP, and FN were objects absent in the segmentation 
result despite these objects appear in ground truth.

The third metric is the Jaccard index52 that measures the segmentation accuracy of the segmented objects. The 
Jaccard index for each set of segmented (A) and ground truth (B) objects is defined as the intersection between 
them divided by their union.

∩
∪

=J A B A B
A B

( , )
(9)

The final measure is then the average of the Jaccard indices of matched pairs.

Implementation details. The image analysis framework is developed using MATLAB (R2017b) on a 
Windows-based computer (Intel Core i 7, 3.07 GHz, and 16 GB RAM). Furthermore, the 3D ImageJ viewer 
plugin53 along with tools from the 3D ImageJ suite54 are used for three-dimensional visualisation of the final 
segmentation result. The source code, as well as datasets, are available upon request. Data processing using 
the complete framework took 5 mins for the synthetic dataset, 11 mins for the CE-UPMC dataset, 35 mins for 
Fluo-N3DH-CE dataset and 48 mins for Fluo-N3DL-DRO dataset to process only one time point of 3D image from 
the complete dataset. Regarding cell tracking challenge, the web site (http://www.codesolorzano.com/celltrack-
ingchallenge) provides access to the datasets with the ground truth. In addition, it provides access to Windows 
and Linux executable files for the evaluation software as well as an executable program that includes the process 
description for KTH work.

Conclusion
In this paper, we have presented a novel generic method for the denoising and detection of 3D cell nuclei in 
3D time-lapse fluorescence microscopy images, based on a sparse representation model. We showed significant 
improvements over other denoising methods, and consequently, classical methods can be used for segmenta-
tion. We suggested, as to propose a complete workflow for denoising, detection and segmentation, to pair our 
denoising algorithm with a rather classical local thresholding method and showed that we obtained similar or 
better results than state of the art algorithm. We observed than our denoising algorithm is performing extremely 
well for very noisy data and can hence help to detect very faint or previously undetectable nuclei. As the strength 
of our workflow is the denoising part, not so much the segmentation part, we observed (data not shown) little 
improvements for non-noisy data.

Over the last few years, deep learning approaches have achieved promising results in several domains, includ-
ing denoising. However, they have some limits, for example, they are implemented to solve a specific problem, i.e., 
any new dataset will require a new training step. Furthermore, deep learning approaches required ground truth 
labels. Similarly to machine learning approaches, including deep learning, our method is based on a learning 
technique, but in dictionnary-based methods the learning is completely unsupervised and hence can be per-
formed for any new data without any change.

We also showed that our algorithm can also lead to accurate detection of nuclei centroids, we coupled this 
detection to a classical segmentation method and showed very good results on challenging datasets. We believe 
than coupling our algorithm with a more powerful segmentation method may lead to even better results, but this 
was not the purpose of this article. We focused on a robust and powerful denoising method coupled with classical 
segmentation to provide a effective workflow with minimal tuning. The fundamental parameters which have 
a more noticeable impact on the result are patch-size, Sensitivity Factor, and Nuclei Seed Dilation. All of these 
parameters are based on the average of cell nuclei volume present in the image. As these fundamental parameters 
are easy to understand, this makes them easier to tune-up if needed.
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The obtained final segmentation results are quite good and stable. In addition, the training step is unsuper-
vised and the dictionary can be directly learned from the image itself. We believe that no similar studies have 
been reported in existing literature for denoising and simultaneously predicting objects location in images. As a 
future work, we will investigate an online learning method to handle the time issue to reduce the processing time 
needed for dictionary learning.

The proposed method can handle the most challenging cases involving noisy, densely packed and multiple 
touching cell nuclei. In addition, it can produce the denoised image and simultaneously the potential locations 
of cell nuclei. The proposed method is adapted to the segmentation of cell nuclei in 3D time-lapse fluorescence 
microscopy images, nevertheless, it can be employed to detect and segment the nearly interacting intracellular 
organelles, including the endosomes, lysosomes, and lipid droplets. Our method is successfully evaluated on two 
embryo models, the C. elegans, and the Drosophila datasets. The overall detection and segmentation results are 
comparable to the existing methods, which is a good starting point for automated cell nuclei tracking process.
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