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Quality and bias of protein disorder 
predictors
Jakob t. Nielsen  1,2 & Frans A. A. Mulder  1,2

Disorder in proteins is vital for biological function, yet it is challenging to characterize. Therefore, 
methods for predicting protein disorder from sequence are fundamental. Currently, predictors are 
trained and evaluated using data from X-ray structures or from various biochemical or spectroscopic 
data. However, the prediction accuracy of disordered predictors is not calibrated, nor is it established 
whether predictors are intrinsically biased towards one of the extremes of the order-disorder axis. We 
therefore generated and validated a comprehensive experimental benchmarking set of site-specific and 
continuous disorder, using deposited NMR chemical shift data. This novel experimental data collection 
is fully appropriate and represents the full spectrum of disorder. We subsequently analyzed the 
performance of 26 widely-used disorder prediction methods and found that these vary noticeably. At 
the same time, a distinct bias for over-predicting order was identified for some algorithms. Our analysis 
has important implications for the validity and the interpretation of protein disorder, as utilized, for 
example, in assessing the content of disorder in proteomes.

Interest in intrinsically disordered proteins (IDPs) has grown immensely over the past decades. IDPs can serve a 
large range of functions due to their enhanced sampling of conformational space compared to structured proteins 
and their involvement in many important biological processes and diseases have been discovered recently1–7. 
Although experimental characterization of IDPs is very challenging, protein sequence composition has distinct 
biases and this has inspired the development of a large number of computational methods for predicting disorder 
from sequence8,9. Recently, predictions of disorder by various methods have been compiled into databases10–12 
enabling consensus predictions, and meta-methods have emerged that predict disorder based on output from 
other predictors13–15. Protein disordered region (DR) prediction has been assessed periodically through the 
critical assessment of structure prediction (CASP) initiative16. DR predictions did not improve from CASP8 to 
CASP917, and only slightly for CASP1018. This apparent stagnation in accuracy of disorder predictors would sug-
gest that development of new more sophisticated predictors would not have sufficient merit, and DR predictions 
were not evaluated anymore in subsequent CASP assessments.

We argue that this stagnation can be attributed to the vague authority of the evaluation, caused by insufficient 
quality of the data used to evaluate (and train) the predictors: In CASP, DR predictors were evaluated using 
missing density in X-ray structures as the disorder criterion. However, regions in X-ray structures might falsely 
appear ordered due to biases in non-native conditions required for X-ray crystallography characterization. In 
addition, since only proteins amenable to X-ray diffraction are included, such data sets are imbalanced in the 
sense that missing residues are relatively rare (only 2.4% in the set analyzed here) causing balance problems 
in the model building. As a complement, disorder analysis can be done for proteins in solution, as done in the 
DisProt database19,20, and this data collection has frequently been used to train and evaluate disorder predictors21. 
Unfortunately, DisProt suffers from a heterogeneous compilation of data from diverse experimental sources, such 
as CD and sensitivity to proteolytic degradation, which lack position-specific information. Several false positive 
IDPs were indeed found in DisProt in a previous analysis22. A more serious issue arises from the fact that all 
currently applied evaluation criteria are binary classifiers, which ignore meaningful, intermediate order or a con-
tinuous range of structure1,23,24, and therewith limit disorder prediction to a low-precision binary-classification 
problem. A more balanced dataset with a higher precision and accuracy would renew the potential in the devel-
opment of bioinformatics methods for predicting disorder from sequence. For this purpose, we resorted to exper-
imental data from NMR spectroscopy.
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It is well-established that proteins can be studied with high accuracy in solution under near-native conditions 
by NMR spectroscopy. First, the structure-determination process provides an ensemble of structures where each 
model is consistent with the experimental data25–29. Second, and more quantitatively, nuclear spin relaxation rates 
provide information about the time-scale and amplitude of dynamics in proteins30–32, capturing and validating 
the variability in the NMR structures. Unfortunately, spin relaxation experiments and data analysis are relatively 
complicated to pursue, are not applicable for all time scales or for IDPs, and therefore there is very little data 
available for highly dynamic sites in proteins33. Thirdly, chemical shifts are very sensitive to the local structure, 
are measured routinely and with very high precision for both structured proteins and IDPs34,35, and have been 
used extensively to report on protein structure and dynamics36,37. In particular, chemical shifts and their deviation 
from random coil values have been used to determine and quantify order/disorder and conformational propen-
sities in IDPs38–43. Modern molecular dynamics (MD) simulations reproduce experimental dynamical data with 
increasing accuracy44 and, in particular, spin relaxation data has been used as an exquisite standard to benchmark 
MD force fields45. IDPs can be simulated with high accuracy in the description of local conformational equilibria, 
and a very close agreement has been established between the degree of order/disorder in IDPs and secondary 
chemical shifts46–48.

Recently, we introduced the Chemical shift Z-score for assessing Order/Disorder (the CheZOD score)22, 
which is based on deviations from random coil chemical shifts (RCCSs) using our refined formulation of RCCS 
reference values49. In contrast to other methods for describing order/disorder, this CheZOD Z-score provides 
a position-specific and continuous measure of order/disorder in proteins. Furthermore, the corresponding 
CheZOD database of such Z-scores for 117 proteins studied at near-native conditions is diverse and balanced, 
containing equal amounts of disordered and ordered residues22. Here, we rigorously benchmark the performance 
of 26 disorder prediction methods by assessing the agreement between the estimated probabilities of disorder 
and the experimental Z-scores for each predictor, and use this result to rank the accuracy of the predictors. 
We observed that the accuracy of the predictors depends on the type of features applied, the method of opti-
mization, and that the newest predictors are generally the most accurate. Some predictors are biased towards 
over-predicting order. Our analysis suggests that current DR predictions are limited by the quality of the training 
data rather than by the capacity of the data mining approaches. Improved predictors can therefore be anticipated.

Results
Measures of disorder and flexibility in protein structures: p53 as an example. To illustrate the 
process of disorder assignment, we consider the human oncogene protein p53, which contains ordered as well 
as disordered domains and is often used for illustrating predictions of disorder and interactions in IDPs50,51. p53 
is interesting because of its involvement in more than 50% of human cancers and many diverse biological pro-
cesses due to its multitude of conformations46–48. Estimated disorder probabilities for a large number of prediction 
methods (Fig. 1a, obtained from the genesilico server13) show agreement for some regions, but also substantial 
differences between the individual predictors. It is not possible to identify the most appropriate predictor a priori 
although that choice would have a dramatic impact for the prediction of disordered regions (see Supplementary 
Fig. S1 for prediction examples for 5 additional proteins). Consensus predictions from MobiDB-lite11 (Fig. 1b) 
and D2P2 10 (Fig. 1c) suggest disorder outside of the structured domains and higher probability of disorder for the 
loops in the core domain (e.g. res. 181–191). However, disorder is also predicted for part of a rigid internal beta-
strand in the core domain (res. 156–162) and for the entire folded tetramerization domain. When the DisProt 
database20 (Fig. 1d) is used to assign disorder, two loop regions are assigned as confident disorder (res. 114–120 
and 182–187), whereas the linker between the core domain and tetramerization domain (res. 293–312) shows 
ambiguous disorder. The remaining residues are classified as context-dependent, meaning that these regions can-
not be assigned unequivocally to a disordered/ordered state. X-ray structures for the p53 core domain have miss-
ing densities for the ends of some of the sequence constructs. In contrast, internal residues with missing densities 
were only observed for two of the 12 chains for the loop comprising residues Lys120 and Ser121, which were also 
classified confidently as disordered in the DisProt database (Fig. 1e). A continuous measure for local disorder/
order, for which data is more abundant and balanced, is the local structural variation in an NMR ensemble. Here 
we introduce two types of structural order parameters, S and T, based on NMR ensemble variation in dihedral 
angles and the Cα internal distances, respectively, (see Online Methods). These order parameters span from zero 
to unity, ranging from complete disorder to order, and are in qualitative agreement with disorder predictions 
(e.g. for the two confident DisProt disorder regions) and show dips in order/increase in flexibility in all the loop 
regions of the core domain (Fig. 1h). Finally, we provide experimental disorder through the introduction of 
a continuous site-specific descriptor derived from assigned chemical shifts22 for p5352 (see Fig. 1i). According 
to these Z-scores, the core domain and tetramerization domain are ordered, whereas several loops in the core 
domain are disordered to varying degree (Fig. 1i). For example, the loop comprising residues Lys120 and Ser121. 
There is a very close agreement between disorder from Z-scores and structural flexibility in the NMR ensemble 
(Fig. 1f,g). A more comprehensive systematic comparison, for a large set of proteins, reveals good agreement 
between CheZOD Z-scores and other measures of disorder, including structural variability in MD simulations53,54 
(see Supplementary Results 1 and Supplementary Figs S2–S5).

Benchmarking the performance of disorder predictors. Above, a qualitative agreement was observed 
between Z-scores and estimated disorder probabilities for p53 with some noteworthy differences between indi-
vidual predictors. To analyze the agreement systematically, disorder predictions were obtained for the 117 pro-
teins in the CheZOD database as described in Online Methods. The calculated Z-scores were compared to the 
estimated disorder probabilities for a large set of different disorder predictors (see Table 1 and Online Methods) 
with the aim of identifying the best methods as those having the best agreement between estimated disorder 
probabilities and Z-scores. Figure 2 shows scatter plots of the Z-scores vs. the estimated probabilities (Z vs. p) 

https://doi.org/10.1038/s41598-019-41644-w


3Scientific RepoRts |          (2019) 9:5137  | https://doi.org/10.1038/s41598-019-41644-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

for each predictor. It is seen that most predictors provide relatively high estimated probabilities of disorder for 
residues with low Z-scores and correspondingly lower probabilities for residues with high Z-scores. Qualitative 
agreement is observed, but the predictions are clearly different, with different qualities and biases in the correla-
tion with Z-scores. To assess this agreement quantitively, we take full advantage of the continuous descriptor of 
disorder by determining the Pearson correlation coefficient, RP, of agreement (see Fig. 3). This number is ideal for 
ranking the predictors from the best (largest absolute value) to the worst. As Z-scores increase with order while p 
is a measure of disorder, –1 indicates a perfect correlation and 0 expresses a complete lack of correlation. It is seen 
that binary predictors show poor correlation, while the newer, continuous methods SPOT-disorder55, MFDp214 
and AUCpreD56 predict best (Table 1 and Fig. 3). Furthermore, the genesilico metapredictors13 perform slightly 
better than all the methods used by the metapredictors but slightly inferior to the newer methods mentioned 
above (Table 1 and Fig. 3). The ESpritz57 methods perform increasingly well, when trained on DisProt data, X-ray 
data, and NMR data, respectively (Table 1 and Fig. 3). Two methods that use NMR data for training – s2D58 and 
DynaMine59 – were also included. These methods were trained on continuous-valued target data; i.e. chemical 
shift derived secondary structure populations for s2D and local fast dynamics, as defined by the order parameter, 

Figure 1. p53 experimental and inferred disorder. (a) Predicted disorder for PrDOS (green), IUPred_short 
(black), MetaDisorderMD2 (blue), RONN (pink), DISPROT_(VSL2b) (purple) and DISOPRED2 (light red). 
(b) Disorder probabilities from MobiDB-lite. (c) Agreement between disorder predictions from the D2P2 
database shown as color intensity in a gradient bar. The green bars encode predicted disorder in segments 
outside predicted SCOP domains. The blue segments are where the disorder predictions intersect the SCOP 
domain prediction. (d) Inferred disorder/order from DisProt showing” disorder” and “context-dependent” 
regions with light brown and purple, respectively. (e) Assigned secondary structures for aligned chains with at 
least 95% sequence identity to 2FEJ analyzed and displayed using the PDBFlex server75. (f,g) NMR ensemble 
structure for the core domain (g) and N-terminal (f) as above colored according to CheZOD Z-scores as in 
(i). (h) NMR ensemble variation for p53 core domain (pdb id 2FEJ)76 and N-terminal residues 14–60 bound 
to HMGB177 (pdb id 2lya, chain B) using red and blue lines for coordinate and angle order parameters, 
respectively, (see Online Methods). See also Supplementary Fig. S5 for more Z-score/flexibility protein profiles. 
(i) Experimental CheZOD Z-scores for p53 using previously assigned chemical shifts for res. 82–36052, data 
for N-term res. 1–92 from Fersht et al.78 and res. 14–60 bound to HMGB1 (in the background) as in (g) are 
shown superimposed. Z-scores are displayed with bars colored from blue through green through yellow to red 
indicating the highest scores corresponding to ordered residues.
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for DynaMine. Here we interpret the predicted populations of non-alpha-helix/beta-sheet as the probability of 
disorder and use a bijective transformation of the predicted order parameters to convert it to a pseudo-probability 
(see Online Methods). Judged by the Pearson correlation coefficient, these two methods are ranked in the middle 
for predicting Z-scores. The Spearman rank correlation coefficient, RS, describing the agreement with a mono-
tonic relationship between p and Z (not necessarily linear) was also calculated, and showed the same trend for the 
predictors (see Table 1 and Supplementary Fig. S6).

It is evident from Fig. 2 that predictions and Z-scores cluster in four quadrants due to the underlying bimodal 
distribution of Z-scores22 and the binary nature of the classification used for training the methods. A very slight 
over-representation of “medium-range” Z-scores (close to 8.0) for average probabilities (close to 0.5) is seen only 
for the best ranked methods and IUPred60. To enable comparison with previous benchmarks, we also performed 
analysis for a binary classification of disorder using the definition Z < 8 for disorder. This Z-score threshold pro-
vides the optimal agreement for a binary classification of order/disorder for all prediction methods on average 
(see Supplementary Fig. S10). A good predictor should optimize the fraction of correctly identified disordered 
residues (true positives, TP) while simultaneously minimizing the fraction of false positives (FP). ROC curves 
display TP vs. FP as a function of the probability threshold and the corresponding area under this curve (AUC) 
is an aggregate measure of the quality of a predictor that is not affected by any skew/bias of the estimated proba-
bilities. A perfect classifier would yield AUC = 1, whereas random guessing gives AUC = 0.5. ROC curves for all 
predictors are shown in Fig. 3 and the AUC values are listed in Table 1. The non-binary methods display AUCs 
ranging from 0.733 (MetaDisorder3D) to 0.890 (SPOT-disorder) and reiterate the trends described above for the 
ranking of the predictors (see Table S1 and Supplementary Fig. S7).

It is apparent from Fig. 2 that some predictors are continuous, while other are more bimodal. In addi-
tion, for some methods predictions cluster on one side, suggesting a prediction bias. To quantify this bias of 
over-predicting order or disorder, the average probability of predicting low Z-scores (pZL for Z-scores < 8.0) 
and high Z-scores (pZH, Z-scores > 8.0) was calculated for each method. An unbiased method would have 
an average probability pZA = (pZL + pZH)/2 close to 0.5. At the same time, methods with good discrimina-
tion between order and disorder will display a large probability difference, pZD = pZL − pZH. Figure 4 plots 
the average probability (pZA, bias) against the probability difference. It is seen that DISOPRED24, DisEMBL 

Method RP RS AUC pZA pZD Inputa Classb

MFDp2 −0.631 −0.592 0.853 0.582 0.490 Pdis Meta

MetaDisorderMD2 −0.614 −0.579 0.852 0.513 0.325 Pdis Meta

MetaDisorderMD −0.616 −0.580 0.853 0.479 0.308 Pdis Meta

MetaDisorder −0.617 −0.575 0.865 0.590 0.399 Pdis Meta

MetaDisorder3D −0.361 −0.352 0.727 0.261 0.126 ST ML

SPOT-dis −0.657 −0.638 0.881 0.426 0.475 Evo ML

AUCpreD −0.598 −0.588 0.865 0.441 0.552 Evo ML

PrDOS −0.541 −0.543 0.836 0.403 0.277 Evo/ST ML

RONN −0.500 −0.495 0.804 0.525 0.172 Evo ML

DISpro −0.437 −0.498 0.805 0.221 0.269 Evo ML

DISOPRED2 −0.330 −0.404 0.738 0.120 0.109 Evo ML

DISOPRED3 −0.551 −0.553 0.833 0.332 0.388 Evo ML

s2Dc −0.528 −0.501 0.797 0.610 0.241 Evo ML

Dynaminec −0.505 −0.489 0.806 0.502 0.124 AA ML

ESpritz_NMR −0.478 −0.483 0.797 0.335 0.300 AA ML

ESpritz_Xray −0.438 −0.474 0.791 0.208 0.230 AA ML

ESpritz_DisProt −0.419 −0.374 0.748 0.575 0.209 AA ML

AUCpreD_noEvo −0.512 −0.552 0.841 0.386 0.460 AA ML

DISPROT (VSL2b) −0.536 −0.497 0.808 0.609 0.286 AA ML

IUPred_long −0.566 −0.541 0.834 0.493 0.302 AA SF

IUPred_short −0.532 −0.505 0.822 0.424 0.275 AA SF

Pdisorderd −0.480 n.a. n.a. 0.523 0.430 AA ML

DisEMBL_coils −0.404 −0.364 0.735 0.523 0.150 AA ML

DisEMBL_remark465 −0.386 −0.389 0.737 0.405 0.140 AA ML

DisEMBL_hotloops −0.286 −0.334 0.702 0.109 0.049 AA ML

GlobPlotd −0.014 n.a. n.a. 0.064 0.008 AA SF

Table 1. Performance of disorder predictors. aInput: AA (AA type/property and composition); Evo 
(evolutionary information based on multiple sequence alignment profiles); ST (Structural templates); Pdis 
(estimated disorder probabilities from other predictors). bClass: Meta (meta-predictor); ML (machine learning); 
SF (scoring function). cPredicts continuous-valued NMR parameters (see Methods). Since the prediction output 
is not an actual disorder probability, the derivation of pZA and pZH do not strictly apply (see text and Online 
Methods). dBinary prediction methods. Derivation of Spearman correlation and AUC do not apply.
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hotloops61 and GlobPlot62 are biased towards under-predicting disorder (e.g. using pZA < 0.3). On the other 
hand, no methods over-predict disorder (no method has pZA > 0.7). Along the other axis, SPOT-disorder has 
the highest probability difference suggesting the best (formal) discrimination between order and disorder. The 
above findings are mirrored in a classical confusion-based analysis (see Supplementary Table S2) except that 
for DISOPRED2 and DisEMBL hotloops a probability cut-off different from p = 0.5 was used, and therefore no 
significant over-prediction of order was found by this analysis. GlobPlot and ESpritz-Xray57 methods have False 
Negative Rates (FNRs) as high as 0.98 and 0.718, respectively, but at the other end of the extreme, the methods 
with the highest False Positive Rates (FPRs), ESpritz_DisProt and DISPROT63 (VSL2b), have FPRs of 0.415 and 
0.401, respectively, and do not over-predict disorder to a similar extent.

Discussion
Residues with missing X-ray densities are relatively rare, with only 2.4% of the residues being non-observed in 
the dataset tested here (see Methods) and 8.6% in a set used for training SPOT-disorder55 (See Supplementary 
Discussion and Supplementary Table S2) and the disordered regions identified in X-ray data are relatively short 
(Supp.Table S2). Conversely, long regions of disordered residues as well as completely disordered proteins are 
abundant in the DisProt database19,20 (see Supplementary Discussion). This pronounced difference between the 
two data sources has long been realized, and complementary methods dedicated to predicting either short or long 
regions of disorder have been developed by training on X-ray or DisProt data, respectively57,64,65. Interestingly, 
yet maybe not surprising, dedicated subversions of predictors show the best performance when evaluated on the 
same type of data as were used for training21,66. To elaborate on this, the CheZOD database was divided into dif-
ferent subsets chosen as to represent data sets with different characteristics as e.g. content of disorder and size of 
disordered regions (see Supplementary Discussion). It was found that the ranking of the prediction methods was 
generally preserved and that the performance on the different subsets reflect the data used for training the meth-
ods (see Supplementary Discussion and Supplementary Figs S8 and S9). Since the CheZOD database is diverse 
and balanced, containing both structured proteins with short and long disordered loops as well as completely 
disordered proteins22, it is ideal for assessing the performance of predictors of general disorder of no particular 
flavor.

NMR-derived Z-scores for proteins in the CheZOD database have been applied here in an attempt to rig-
orously benchmark the performance of a large number of disorder predictors (see Table 1). Contrary to CASP 
chronological extrapolations outlined above, it was found that the most recent predictors feature improved per-
formance. Notably, the newer implementation of DISOPRED, DISOPRED367, performs significantly better than 
the older version, DISOPRED24. Several trends in the performance of the predictors related to the type of inputs 
and optimization procedure were observed. Older methods and methods that focus on speed use only amino acid 
(AA) sequence-based features, such as AA composition, physiochemical properties, interaction energies and 
sequence complexity, and display comparatively less good performance. Inclusion of evolutionary information 
derived from multiple sequence alignment profiles expands the repertoire with complementary features. The 
group of predictors here that use evolutionary (Evo) information generally perform better than the predictors 

Figure 2. Z-score vs. estimated probability of disorder (p) for 24 continuous-valued prediction methods.
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without it (Table 1). Finally, the metapredictors that use estimated disorder probabilities from other predictors 
display very good performance.

To compare the authority of different data-sources to judge disorder, we perform a comparison across data 
for the same methods by deriving traditional binary classifier metrics; the AUC and the Mathews correlation 
coefficient (MCC) (see e.g.18). MCC is a balanced measure of correlation that considers false and true positives as 
well as their negatives. The AUC and MCCs were calculated and compared to values reported in the literature for 
testing against DisProt21 and X-ray data, as summarized previously9 (see Table S1 and Fig. 5). We find that values 
for both AUC and MCC are significantly higher for the same predictors when compared to the DisProt and X-ray 
evaluation sets, respectively (Fig. 5 and Table S1). This strongly suggests that the CheZOD Z-score classifier is 
more predictable and more accurate, in the sense that it contains fewer miss-classifications.

The analysis presented here provides a guideline for selecting the most appropriate predictor for assessing dis-
order and to avoid intrinsic bias. As a point in case, DISOPRED2 was used to estimate the content of disordered 

Figure 3. (a) Ranking of disorder prediction methods according to the absolute Pearson linear correlation 
coefficient between estimated disorder probability and Z-score shown as a histogram. The order of the 
methods is as in Table 1 (see Supplementary Fig. S6 for Spearman correlation). Annotation with colored 
curly brackets highlight meta-methods (meta), methods that apply information from evolutionary profiles 
of aligned sequences (evolution), and methods that use NMR data for training (NMR). Asterisks mark the 
binary prediction methods. (b) Receiver-Operating Characteristics (ROC) curves for all non-binary predictors 
for using estimated disorder probability to predict Z-score under/above the threshold Z = 8. Colors as in the 
histogram. The corresponding area under the curve (AUCs) are provided in Table 1 and shown as histograms 
in Supplementary Fig. S7. Note that the edgy appearance of some of the ROC curves are due to fewer decimal 
points on the estimated probabilities of disorder.
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residues in various proteomes revealing a content of ca. 33% in Eukaryotes4. Importantly, our analysis now shows 
that DISOPRED2 markedly under-predicts disorder, suggesting that protein disorder in eukaryotes is even more 
prevalent than previously assumed.

Conclusions
We have demonstrated that validated, balanced NMR chemical shift data of proteins can be used to benchmark 
widely-used disorder predictors. Cross-data comparison of the performance for the same predictors demon-
strated that the CheZOD dataset is more appropriate than previously utilized sources. A detailed analysis 
revealed that the most recent and most advanced prediction methods display the best performance, and bias 
for under-predicting disorder was evaluated quantitatively. We provided several performance measures to help 
researchers make an informed decision for selection of the most appropriate disorder prediction method.

Figure 4. Probability bias vs. probability discrimination showing pZA as a function of pZD (see text and 
Online Methods). Each predictor is shown with a circle using the same colors as in Fig. 3 above. A black broken 
line corresponding to a completely unbiased predictor with pZA = 0.5 is shown for reference. Predictors below 
the red dashed line (pZA = 0.3) considerably under-estimate disorder. Methods that noticeably over-predict 
disorder (i.e. pZA > 0.7) were not observed.

Figure 5. Performance of predictors on different data sets. MCC vs. AUC is shown for each method tested here 
with a circle using same colors as in Fig. 3 and compared to values reported in the literature for methods also 
tested here depicted as squares when tested against DisProt data and triangles when tested against X-ray data. 
See Supplementary Table S1 for all numbers and details related to DisProt and X-ray source data (Note that 
some of the prediction methods analyzed here were not included in the corresponding studies tested against 
DisProt or X-ray data, and hence, there are fewer labels of triangles and squares).
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Methods
Production of disorder probabilities for the proteins in the benchmarking set. The genesilico 
metaserver (http://iimcb.genesilico.pl/metadisorder/) was used to obtain estimated probabilities of disorder for a 
range of different disorder prediction methods (see Table 1 in main text) including their own meta-predictors. 
Furthermore, we added predictions from several other methods where parallel batch job submission was possible 
using their servers: SPOT-disorder55, MFDp214, AUCpreD56, three versions of ESpritz57 based on different train-
ing data, viz. X-ray missing density, NMR ensemble structural disorder classification and DisProt disorder. 
Classic DisEMBL binary predictions were replaced by continuous predictions using the automatic job submission 
system at http://dis.embl.de. DynaMine59 and s2D58, which predict continuous NMR data, were also included. 
Predictions of populations of secondary structure types from s2D were interpreted using the sum of the estimated 
populations of alpha-helix and beta-sheet as a probability of order, as before24. Predictions of the order parameter 
S2 from Dynamine were converted to a probability of disorder using the bijective transformation = −p S1 2 . 
To summarize, the prediction methods tested were: MetaDisorder including MD/MD2/3D variants13, SPOT-
disorder55, AUCpreD (with/without evolution)56, MFDp214, PrDOS68, RONN69, DISpro70, DISOPRED24, 
DISOPRED367, s2D58, DynaMine59, ESpritz NMR/Xray/DisProt variants57, DISPROT63 (VSL2b) (also referred to 
as PONDR), IUPred long/short variants60, Pdisorder (http://www.softberry.com/), DisEMBL coils/remark465/
hotloops variants61 and GlobPlot62.

The set of structured proteins with chemical shifts. The database of structured proteins described 
before49 was used. However, in the present study we did not exclude entries homologous to proteins from the 
CheZOD database leading to a final set of 896 proteins with assigned chemical shifts. From this set, 222 pro-
teins structures were determined by X-ray crystallography whereas the remaining 674 were determined by NMR 
spectroscopy. A trimmed unbiased set of X-ray structures was derived from the set of 222 proteins by removing 
entries if (i) the biologically significant oligomerization state was not a monomer, (ii) larger ligands were present, 
(iii) the protein sequence of the X-ray structure and the corresponding sequence of assigned chemical shifts dif-
fered for more than 10% of the residues. These criteria resulted in a reduced database of 90 entries. For both sets 
of X-ray structures, residues in the X-ray sequence (SEQRES record) that were absent in the coordinate section 
(i.e. those mentioned in the REMARK 465) were identified. Following this procedure, we identified 717 missing 
residues in the set of 222 X-ray structures compared to 30495 residues that were observed in the structure - and 
similarly 234/13581 for the reduced 90 entries set. Note that only residues with assigned chemical shifts in the 
corresponding NMR study were included in the above analysis. Within the set of entries corresponding to NMR 
structures, the 100 with the highest fraction of residues with CheZOD Z-scores < 5.0 were selected and used for 
comparison with the parameters (see below) describing structural variation in the corresponding NMR ensemble 
of structures. Furthermore, we identified 23 proteins from the refDB database71 described above having chemical 
shifts assigned for all backbone atom types that had available simulated molecular dynamics trajectories in the 
Dynameomics database53,54. The Z-scores were compared to the rms Cα coordinate fluctuations within the MD 
trajectories for these proteins.

Definition of torsion angle and coordinate variations and order parameters. The dihedral angle 
order parameter SHW of Hyberts, Wagner and co-workers72 is defined as:

∑ ∑θ θ θ=
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for an ensemble of N structures, where θi is the value of a particular dihedral angle θ in the ith member of the 
ensemble. Based on the backbone dihedral angles φ and ψ, the sequence-specific backbone dihedral angle param-
eter, Di, for residue i in a protein sequence is defined as:

∑ φ ψ= +
= − +

D S S1
6

( ( ) ( ))
(2)
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j i i i

HW j HW j
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This order parameter is converted to a torsion angle standard deviation, s(i), using the approximate relation72:

=




+


s i D( ) 2arccos 1 ln( )

2 (3)
i

A parameter describing the variation in Cartesian coordinates for a specific residue is derived from the 
inter-atomic variance matrix (IVM) following a procedure akin to the FindCore algorithm73. Each element, vij in 
the variance matrix is defined as:

∑ ∑= − =
= =
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d d d
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where dijk is the Cα(i)-Cα(j) distance for conformer, k, in the ensemble.
Each row, vi, in the matrix, excluding diagonal and next-to-diagonal elements, vii and vij with |i-j| = 1 is sorted 

numerically and indexed by increasing rank:

λ λ λ< < < (5)i i in1 2
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where λ = vij iq is j’th smallest element of the row vi and n denotes the total number of such variance elements – 
i.e. the number of residues minus 3.

The residue coordinate variation, t(i), is then calculated as the weighted average:

λ
=

∑

∑
=

β=

=

−






t i

w

w
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j
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j
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where β = 10.0 is used here. The parameters, s and t, describing the residue angle and coordinate variation, respec-
tively, are then converted to the corresponding order parameters, S and T, using:

=
+

=
+

S 1
(1 ( ) )

andT 1
(1 ( ) ) (7)

s
s

2 t
t

2
0 0

where s0 = 75° and t0 = 1.5 Å were used here as the reference values.
The Jensen-Shannon divergence, JSD74, describes the similarity between two (discrete) probability distribu-

tions, P and Q.

= || + ||JSD P Q D P M D Q M( , ) 1
2

( ) 1
2

( ) (8)

where M is the average of the distributions

= +M P Q1
2

( ) (9)

and D is the Kullbeck-Leibner divergence:

∑|| =










D P M P i P i
M i

( ) ( )log ( )
( ) (10)i

here we calculate JSD for the distributions of Z-scores corresponding to above/below reference values s0 = 1.5 Å 
and t0 = 75° for the residue angle and coordinate variation, respectively, and for residues corresponding 
to observed residues in X-ray structures vs. missing residues (REMARK 465).

Data Availability
The full database containing protein sequences, BMRB id, and CheZOD Z-scores is available at http://www.
protein-nmr.org./.
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