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A New Network Feature Affects the 
Intervention Performance on Public 
Opinion Dynamic Networks
Caiyun Wang1,2, Huawei Han1 & Jing Han1,2

The neighborhood network structure plays an important role in the collective opinion of an opinion 
dynamic system. Does it also affect the intervention performance? To answer this question, we apply 
three intervention methods on an opinion dynamic model, the weighted DeGroot model, to change the 
convergent opinion value x . And we define a new network feature Ω, called ‘network differential 
degree’, to measure how node degrees couple with influential values in the network, i.e., large Ω 
indicates nodes with high degree is more likely to couple with large influential value. We investigate the 
relationship between the intervention performance and the network differential degree Ω in the 
following three intervention cases: (1) add one special agent (shill) to connect to one normal agent; (2) 
add one edge between two normal agents; (3) add a number of edges among agents. Through 
simulations we find significant correlation between the intervention performance, i.e., ⁎x  (the 
maximum value of the change of convergent opinion value x ) and Ω in all three cases: the intervention 
performance ⁎x  is higher when Ω is smaller. So Ω could be used to predict how difficult it is to intervene 
and change the convergent opinion value of the weighted DeGroot model. Meanwhile, a theorem of 
adding one edge and an algorithm for adding optimal edges are given.

In recent years, the study of collective behaviors of multi-agent systems is a hot topic. In multi-agent systems, 
each agent interacts with its neighbors. But at the macroscopic level, the system will spontaneous form new phe-
nomenon which can not be found in a single agent, e.g., opinion consensus1, crowd panic2, flocking of birds3,4, 
schooling of fishes3, synchronization5,6, swarm intelligence7, pattern formation8,9.

When the self-organized collective behavior is not what people expected, researchers proposed several inter-
vention methods to intervene multi-agent systems10,11. Soft control12,13 is a novel non-destructive method which 
does not change the update rule of already-existing agents, but adds several special agents, called shills, into the 
system. Shills have their intervention purpose and they can be redesigned and controlled by us. However, normal 
agents do not distinguish shills from normal ones, i.e., normal agents regard shills as normal ones. Therefore, 
shills can only affect their neighboring agents with the similar strength as normal ones. The soft control inter-
vention method has successfully changed the convergent opinion value of opinion dynamic system14–17, pro-
moted cooperation of multi-person prisoner’s dilemma game models18,19 and guided consensus of the Vicsek 
model12,13,20–22.

In many multi-agent systems, agents interact with others following local rules, i.e., each agent only interacts 
with its neighbors. Neighbors are usually defined in two ways: one is based on a given neighborhood network, i.e., 
the neighborhood network is static with time, such as the DeGroot model1; the other one is based on a dynamic 
neighborhood network, i.e., the neighborhood network evolves with time according to positions of agents, such 
as the Vicsek model23. Obviously, the structure of the neighborhood graph affects the collective behaviors of 
multi-agent systems.

As we know, the neighborhood network has impact on the dynamic of the opinion dynamics systems. 
Yu-Song et al.24 found that it is easier to reach consensus in the Sznajd model if the clustering coefficient of 
small-world and scale-free networks is larger. Fortunato et al.25 found that the consensus threshold of the HK 
model is closely related to the average degree of the neighborhood network. Amblard et al.26 found that when 
the connectivity level of the small-world network is beyond a critical value, the whole population drifts to one 
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extreme opinion. Based on an Ising-like system, Kuperman et al.27 found that with the change of the underlying 
small-world network, both the amplitude threshold for the detection of the external modulation and the width 
of the stochastic-resonance peak show considerable variation. Castellano et al.28 found that the voter model on 
small-world networks does not display the emergence of complete order in the thermodynamic limit which can 
be found in the regular topologies.

And the neighborhood network might also affect the intervention performance. In this paper, we focus on the 
question of “whether and how the network feature affects the performance of intervention”. We study this question 
based on the weighted DeGroot model14,15. Among opinion dynamics models1,29–36, the DeGroot model1 is the basic 
and classic one. It has been widely studied over several decades37. The update rule of the DeGroot model is relatively 
simple which leads this model to be understood mathematically with strict theoretical results. With such simple 
update rule, the DeGroot model can still capture basic aspects of social learning38,39. And it is a powerful tool for 
studying various issues of information and learning40. When the update matrix is an aperiodic, irreducible and sto-
chastic matrix, the DeGroot model defined system can reach consensus1. The soft control method has been success-
fully used to change the convergent opinion value of the weighted DeGroot model14,15. In this paper, three 
intervention methods are used to change the convergent opinion value of the weighted DeGroot model. (i) Using the 
soft control method by adding one shill connected with one normal agent. (ii) Adding one edge between two uncon-
nected agents. A theorem is proposed to help decide add which edge can increase (or decrease) the convergent 
opinion value. (iii) Adding several edges. We propose an algorithm for adding edges which can be proved to maxi-
mize the change of convergent opinion value. And then, as the main part of this paper, we study how does the net-
work feature affect the intervention performance. We use |∆ |⁎x  to measure the intervention performance, where 
|∆ |⁎x  is the maximum value of the difference between the new convergent value ′x  and the original convergent 
opinion value x  by each intervention methods. Larger |∆ |⁎x  means the system is easier to be intervened.

Is there a network feature correlated with the intervention performance |∆ |⁎x ? We find that most of the known 
network features (including average degree, maximum degree, minimum degree, average path length, diameter, 
degree centrality and clustering coefficient) do not have significant correlation with |∆ |⁎x . In our weighted 
Degroot model, each node has an influential value to indicate its influence weights, which is based on the fact that 
the influence of one node is an intrinsic characteristic14,15,41 and it is not entirely determined by its degree41–43. 
Therefore, in this paper we propose a new network feature Ω, called ‘network differential degree’, to measure how 
node degrees couple with influential values in the network. Large Ω indicates the node with high degree is more 
likely to couple with large influential value. Through simulations for all three intervention methods we find sig-
nificant correlation between |∆ |⁎x  and Ω: smaller Ω leads to larger |∆ |⁎x  is. This means the weighted DeGroot 
model (system) can be intervened easier if Ω of the network is smaller. So Ω reflects how difficult it is to intervene 
and change the convergent opinion value of the weighted DeGroot model.

Method
Weighted DeGroot model.  In 1995, DeGroot et al. proposed the DeGroot model1. In this model, each agent 
updates its opinion value by taking the weighted average opinion value of its neighbors. The weight matrix is a right 
stochastic matrix and there is no other constrains. However, the influence value of one agent should be a constant in 
some cases14,15,41. Then we proposed a modified DeGroot model called the weighted DeGroot model14,15, in which 
every agent has a constant intrinsic influential value which indicates its influential strength on its neighbors.

Suppose there are n agents, a a a, , , n1 2 , in the system. Let xi(t) represent the opinion of agent ai at time t, 
where = i n1, 2, , . So all agents’ opinion can be represented by vector X(t) = (x1(t), x2(t), …, xn(t))T. The 
neighborhood network of the system is represented as an undirected graph G = (V, E), where V is the set of nodes 
which represent agents and E is the set of edges which represent neighborhood relations among agents, i.e., edge 
eij ∈ E means agent ai and aj are neighbors of each other.

In the weighted DeGroot model, at each time step, each agent updates its opinion by taking the weighted aver-
age opinion of its neighbors. Let ui denotes the constant intrinsic influential value of agent ai. So vector 

= U u u u( , , , )n1 2
T represents all agents’ influential values. At each time step t, agent ai updates its opinion by 

the following formula:
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where bij = 1 if edge eij ∈ E and bij = 0 if edge eij ∉ E, i.e., B = (bij) is the adjacent matrix of the undirected neighbor-
hood network G. As long as G is connected and each node has its loop, the system can reach consensus14,15, i.e., 

=
→∞

A X x x xlim (0) ( , , , )
t

t T where x  is the convergent opinion of the group. And the convergent opinion value 
=x YX(0), where Y is the unit left eigenvector of A with eigenvalue 1 and Y has the following form:
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Without special instruction, we suppose G is connected and each node has its loop in the following.
If the self-organized convergent opinion, x , is not desirable, we intervene the weighted DeGroot model 

defined system by three intervention methods.

Intervention methods.  To intervene the collective opinion of the weighted DeGroot model, we apply three 
intervention methods: (1) adding one shill, (2) adding one edge and (3) adding several edges.

Adding one shill connected to one normal agent.  We only consider adding one shill as into the system in this 
paper because we know that the effect of adding several unconnected shills is a linear sum of each shill’s effect14,15. 
The shill evolves by the same update rule as normal agents. We can set the initial opinion value and the influential 
value of the shill based on the intervention purpose. Usually, the initial opinion value of the shill xs(0) is set to be 
large (or small) value for the purpose of increasing (or decreasing) the convergent opinion value of the system.

Suppose the convergent opinion value of the original system is x . Now adding one shill as into the system to 
increase or decrease x . as can be connected to any normal agent ai of the system, = i n1, 2, , . The corre-
sponding convergent opinion of the new system is denoted as ′xi . So the change of convergent opinion value is 
∆ = −′x x xi i . To measure the intervention performance in the case of adding one shill, we define the maximum 
change of the convergent opinion value as |∆ | = |∆ |⁎

⁎x xi , where = |∆ |⁎i arg xmax
i

i . Therefore, the key point for 

intervention is to find the normal agent which can maximize the change of the convergent opinion value.
As we see, different weighted DeGroot model systems have different value of |∆ |⁎x . Larger |∆ |⁎x  means the 

system is easier to be intervened by adding one shill.

Adding one edge between two agents.  Adding one edge between two agents can also change the convergent 
opinion value. The second intervention method we consider in this paper is adding one edge between two agents.

For convenience, we first construct the opinion value and the influential value of an edge: the opinion value of 
edge eij at time step t, denoted as x_eij(t), is defined as the average of initial opinions of two end nodes of eij, i.e., 

=−
+

x e t( )ij
x t x t( ) ( )

2
i j ; the influential value of edge eij, denoted as u_eij, is denoted as the product of influential value 

of two end nodes of eij, i.e., u_eij = uiuj.
And then we have the following theorem:

Theorem 1.Suppose the neighborhood network of the original system (defined by equation (1)) is connected and 
each node has its loop. Further suppose the convergent opinion value of the system is x . For a pair of unconnected 
nodes (agents) aP and aq, if x_epq(0) > x , then the convergent opinion value will increase after adding edge epq; if 
x_epq(0) < x , then the convergent opinion value will decrease after adding edge epq; if x_epq(0) = x , then the con-
vergent opinion value will not change after adding edge epq.
Proof.For the convenience of writing, we do the following replacement: in the original system (defined by equa-
tion (1)), let
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And the change of the convergent opinion value by adding edge epq is

∆ = − = −
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Notice that the convergent value of the original system is
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So when x_epq(0) > x , we have ∆ >−x e 0pq ; when x_epq(0) < x , we have ∆ <x e_ 0pq ; when x_epq(0) = x , we have 
∆ =x e_ 0pq .

Suppose the convergent opinion of the system is x . Now adding one edge epq to connect any pair of two uncon-
nected agents ap and aq, i.e., ∀ ∉e Epq . The convergent opinion value of the new system after adding epq is denoted 
as −

′x epq. And the corresponding change of convergent opinion value is ∆ = ′ −− −x e x e xpq pq . Similarly, we define 
the maximum change of the convergent opinion value by adding one edge is |∆ | = |∆ |−

⁎ ⁎x x epq , where 
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Therefore, different DeGroot model systems have different value of |∆ |⁎x . Larger |∆ |⁎x  means the system is 
easier to be intervened by adding one edge.

Adding several edges.  From Theorem 1, we can see that adding one edge between two unconnected agents can 
actually change the convergent opinion value of the original system (defined by equation (1)). But when there 
is no number limitation for adding edges, what is the best way to add edges that can maximize the change of the 
convergent opinion value by adding edges?

Suppose the neighborhood network of original system (defined by equation (1)) is connected, each node has 
its loop and the convergent opinion value of the system is x . An algorithm for adding optimal set of edges 
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 is the clustering coefficient of node ai and Ei is the 
number of edge among ai’s neighbors

closeness centrality61,62 Cclo = ∑ =C clo i
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n
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1  is the closeness centrality of node ai and lij is the 

shortest path length between node ai and aj
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 is the betweenness centrality of node ai, | |l{ }jk  is 

the total number of shortest paths from node aj to ak and l{ }jk
i  is the number of those paths 

that pass through ai

core64 Ccore =C core Ci
core

n
, where Ci

core is the core of agent ai

Table 1.  Known popular global network features.
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(Algorithm 1) is proposed. This algorithm can be described as follows according to different intervention 
purposes:

•	 Increase x : Find one of the edges which have the largest initial opinion value of any current unconnected 
edges and label it as e* = <i*, j*>. Then compare x  with =−

+⁎ ⁎ ⁎
x e (0)

x x

2
i j : if x_e*(0) > x , then add edge e* 

into the system and then update x . Repeat above processes until ≤⁎x e x_ (0) . The current collection of e* is 
the set of optimal edges.

•	 Decrease x : Find one of the edges which have the smallest initial opinion value of any current unconnected 
edges and then label it as e*. Then compare x  with the initial opinion of edge e*: if <−

⁎x e x(0) , then add edge 
e* into the system and update x . Repeat above processes until ≥−

⁎x e x(0) . The current collection of e* is the 
set of optimal edges.

Proof.The proof of decreasing the convergent opinion value of the system by Algorithm 1 is similar to that of 
increasing the convergent opinion value by Algorithm 1. So we just give the proof of increasing the convergent 
opinion value by Algorithm 1.

Suppose E1 is the set of edges obtained by Algorithm 1. Further suppose that E2 is the optimal adding edges set 
which can maximize increase the convergent value of the system. We will prove E1 = E2 in the following.

Suppose ′x 1 and ′x 2 are respectively the new convergent opinion value after adding E1 and E2. If E1 = E2, then 
Algorithm 1 establish. If E1 ≠ E2, ′ ≥ ′x x2 1, otherwise it contradicts with the suppose that E2 the optimal adding 
edges set. Then, there are two cases: (i) there exist an edge ∈ˆ⁎e E2 but ∉ˆ⁎e E1; (ii) there exist an edge e* ∈ E1 but 
e* ∉ E2.

	 (i)	 For the first case: From the construction of E1, we have <−
′ˆ⁎x e x(0) 1. Furthermore, with the assumption 

<′ ′x x1 2 we have <−
′ˆ⁎x e x(0) 2. Then, remove ˆ⁎e  can increase the convergent opinion value of the system. 

This is contradict with the fact that E2 is the optimal adding edges set.
	(ii)	 For the second case: Suppose ⁎E2  is the subset of E2 and it is set of edges whose initial opinion value is less 

than x_e*(0). If ≠ ∅⁎E2 , initial opinion values of edges in ⁎E2  are not less than ′x2 because E2 is the optimal 
adding edges set. Then, we have >−

′⁎x e x(0) 2. According to Theorem 1, the convergent opinion value of the 
system after adding edges E2 can be increased by adding e*. This is contradict with the fact that E2 is the 
optimal adding edges set. If = ∅⁎E2 , by the proof of the first case we have ⊃E E1 2. Then by the construc-
tion of E1, we have the convergent opinion value of the system after adding edges E2 can be increased by 

Algorithm 1.  Algorithm for adding optimal edges.
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adding e*. This is also contradict with the fact that E2 is the optimal adding edges set.

Therefore, the first case and the second case can not occur, then E1 = E2.
Similarly, suppose the maximum change of convergent opinion value by adding several edges is defined as 

|∆ | = | − |⁎ ⁎x x x , where ⁎x  is the optimal convergent opinion value by algorithm 1. |∆ |⁎x  represents the interven-
tion performance by adding a number of edges. Larger |∆ |⁎x  means the system is easier to be intervened by add-
ing a number of edges.

Now we want to know how does the network feature correlate to the intervention performance |∆ |⁎x ? For 
those easily intervened system, do they share common characteristics of some network feature? To answer this 
questions, we check many known network features and find no significant correlation, and then we discover a 
new network feature, named network differential degree Ω, and we find significant correlation between Ω and the 
intervention performance |∆ |⁎x .

Network features.  In this section, we first check the relationship between the intervention performance 
|∆ |⁎x  and known popular global network features, no significant correlation is found, and then we show the sig-
nificant correlation between |∆ |⁎x  and the new proposed network feature–network differential degree Ω.

Known network features.  The known popular global network features are given in Table 1. Some other popular 
features, such as Katz centrality44, PageRank measurement45 and Eigenvector centrality46,47, are for single node. 
They are not global features, so they are not included in the Table 1.

Network differential degree.  As we know the influence of a node is an important feature. Moreover, the node 
influence is not entirely determined by its degree. Through the analysis of twitter data, Cha et al. found that most 
influential users can hold significant influence over a variety of topics41. It means the influence is an intrinsic 
parameter of a node. At the same time, they found that the degree reveals little about the influence of a user while 
the number of retweets and mentions can better reflect the influence of the user. Furthermore, they analyzed 6 
million users data and found that only 10 users both belong to the top 100 retweet users and the top 100 indegree 
users. Kwak et al.42 and Weng et al.43 both found that the highest indegree users do not score highest by use of the 
other measures. These results mean that the degree can not completely determine the influence of one node. In 
other words, the influence of one node is an intrinsic parameter and it is different from the degree of the node.

Furthermore, from equation (2), we can see that if an agent with large degree also has large influential value, 
the proportion of its opinion value in the vector Y is relatively large so the agent is a relatively important agent in 
the system; if an agent has both small degree and small influential value, the proportion of its opinion value in the 
vector Y is relatively small, so the agent is a relatively unimportant agent in the system, and it has little impact on 
the convergent value of the system.

The way how the influential value couples with the node degree in the system might be an important network 
feature of the weighted DeGroot model. So we propose a new network parameter, called the network differential 
degree, to measure this feature. The network differential degree is defined as follows:
Definition 1The network differential degree Ω of the weighted DeGroot model which is defined by equation (1) is:

Ω = ∑
∑ ∑

=

= =

n u d
u d

,
(10)

i
n

i i

j
n

j k
n

k

1

1 1

where n is the number of agents, ui is the influential value of agent ai and dk is the degree of agent ak.
Large Ω indicates nodes with large degree are more likely coupled with large influential value. (i) When large 

degree agents are associated with large influential value, Ω reaches the maximum and Ω > 1. (ii) When large 
degree agents are associated with small influential value, Ω reaches the minimum and Ω < 1. (iii) When influen-
tial values of all agents are same, we have Ω = 1. In this case, the network heterogeneity is mainly reflected in the 
degree distribution, i.e., agent with larger degree is more important. (iv) When degrees of all agents are the same, 
such as the two-dimensional periodic lattice, we have Ω = 1. Then the network heterogeneity is mainly reflected 
in the influential value distribution.

Results
In this section, simulations are done to study the relationship between network features and |∆ |⁎x  in three inter-
vention cases both on computer-generated networks and empirical networks.

The simulations run on instances based on three types of networks: 3000 random networks, 3000 scale-free 
networks and 3000 small-world networks. Each network has 100 nodes. Random networks are created by using 
the Erdös–Rényi method48: each network is initialised as a 100 isolated nodes and then edges are added with 
probability 0.3 between each pair of nodes. The scale-free networks are created by using the Barabási–Albert 
method49: each network is initialised as a complete graph of five nodes and then each new node is connected to 
five existing nodes with a probability which is proportional to already-existing node’s degree until all 100 nodes 
are added. The small-world networks are created by using the Watts–Strogatz method50: each network is initial-
ised as a 20-nearest-neighbor coupled network and then each edge is rewired with probability 0.3. The initial 
opinion of all agents are random values which follow an independent uniformed distribution over [0,100]. The 
influential values of all agents of each network are random values which follow an independent uniformed dis-
tribution over [1,100]. In the case of adding one shill, we let xs(0) = 100 and us = 100. Shill as is connected to the 
agent who can maximize the increase of the convergent opinion value. In the case of adding one edge, the edge 
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is added between two unconnected nodes which can maximize the increase of the convergent opinion value. In 
the case of adding a number of edges, we use Algorithm 1 to find edges which can maximize the increase of the 
convergent opinion value. Results for increasing and decreasing the convergent opinion of the system are sym-
metrical with the above settings, so we only show results for the case of increasing the convergent opinion in the 
following.

Figure 1.  The correlation between known popular global network features and intervention performance 
(|∆ |⁎x ) in the case of adding one shill to increase convergent opinion value. In each figure, the x-axis is the 
corresponding known network feature and the y-axis is the intervention performance |∆ |⁎x .
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Based on three type networks (random networks, scale-free networks and small-world networks), Fig. 1 shows 
the relationship between the known network features and the intervention performance |∆ |⁎x  by adding one shill. 
The data is evenly divided into several intervals according to the value of the corresponding known network fea-
ture. And a box-plot is plotted to represent the distribution of |∆ |⁎x . We can see that there is no significant corre-
lation between known network features and the intervention performance |∆ |⁎x . This means that the known 
network features can not be used to predict whether the system can be intervened easily.

Figure 2 shows simulation results of the correlation between the network differential degree (Ω) and the inter-
vention performance (|∆ |⁎x ) by adding one shill for each instance. The data is evenly divided into several intervals 
according to the value of Ω. In each interval, a box-plot is plotted to represent the distribution of |∆ |⁎x . Patterns 
which are found in random network and the scale-free network instances (Fig. 2a and b) both show that it is eas-
ier to change the convergent opinion value by adding one shill when Ω is small. This pattern is significant which 
can not be seen in Fig. 1 for these known network features.

Similarly, we show box-plot patterns for the case of adding one edge and the case of adding several edges 
respectively in Figs 3 and 4. Patterns for random networks and scale-free networks show that larger Ω leads to 
smaller |∆ |⁎x . That means the system is easier to be intervened when Ω is small by adding one or several edges.

Figure 2.  The correlation between the network differential degree (Ω) and the intervention performance 
(|∆ |⁎x ) by adding one shill to increase the convergent opinion value. (a) is for random networks; (b) is for scale-
free networks; (c) is for small-world networks; (d) is for networks of three types in one scale.

Figure 3.  The correlation between the network differential degree (Ω) and the intervention performance 
(|∆ |⁎x ) in the case of adding one edge to increase the convergent opinion value. (a) is for random networks; (b) is 
for scale-free networks; (c) is for small-world networks; (d) is for networks of three types in one scale.
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Results for the small-world networks (Figs 2(c), 3(c) and 4(c)) have the similar pattern in general although 
they do not look as significant as the random networks and scale-free networks. This is because the range of Ω of 
the small-world networks is much smaller than that of the random networks and scale-free networks which can 
be seen in Figs 2(d), 3(d) and 4(d).

We also investigate the network differential degree of seven empirical networks: (1) Bitcoin OTC trust 
weighted signed network51 (which is abbreviate to BOTN in the following) is a who-trusts-whom network of 
people who trade using Bitcoin on a platform called Bitcoin OTC. It has 6005 nodes and 35592 edges. Members 
of Bitcoin OTC rate other members in a scale of −10 (total distrust) to +10 (total trust) in steps of 1. (2) Bitcoin 
Alpha web of trust network51 (which is abbreviate to BATN in the following). It is similar to BOTN, but graded 
from Bitcoin Alpha instead of Bitcoin OTC. And it has 7604 nodes and 24186 edges. (3) Wikipedia adminship 
election data52,53 (which is abbreviate to WPAS in the following) has nearly 2,800 elections with around 100,000 
total votes and about 7,000 users participating in the elections (either casting a vote or being voted on). It has 8297 
nodes and 110087 edges. In this network, each edge eij has a weight (1 for support, 0 for neutral, −1 for oppose), 
which means the attitude of agent ai to agent aj. (4) The collaboration network of scientists posting preprints on 
the condensed matter54–56 (which is abbreviate to SPPC in the following) has 16725 nodes and 47594 edges. This 
network is weighted, with weights assigned as described in the original papers. (5) The collaboration network 
of scientists posting preprints on the high-energy theory54–56 (which is abbreviate to SPPH in the following) 
has 8361 nodes and 15751 edges. The network is weighted, with weights assigned as described in the original 
papers. (6) A coauthorship network of scientists working on network theory and experiment57 (which is abbrevi-
ate to SPPN in the following) has 1586 nodes and 2742 edges. The network is weighted, with weights assigned as 
described in the original papers. (7) The weighted network of coappearances of characters in Victor Hugo’s novel 
“Les Miserables”58 (which is abbreviate to CCLM in the following) has 77 nodes and 254 edges. Nodes represent 
characters as indicated by the labels and edges connect any pair of characters that appear in the same chapter of 
the book. The values on the edges are the number of such coappearances.

Before our method is applied, these seven networks are converted to node-weighted undirected graphs by the 
following four steps: (1) for each network (N, E), the influence value of each node ai is obtained by = ∑u wi j ji; (2) 
all edges are simply converted to undirected links; (3) each node is added a self-loop edge; (4) the maximal con-
nected subgraph of the network is extracted, because our method is only applied to connected graph. Now we get 
seven new networks denoted as BOTN*, BATN*, WPAS*, SPPC*, SPPH*, SPPN* and CCLM* from the original 
networks of BOTN, BATN, WPAS, SPPC, SPPH, SPPN and CCLM.

The network differential degree and the size of these seven networks are given in Table 2. The network differ-
ential degree Ω of WPAS* (which relates to Wikipedia adminship) is the largest, which means this network might 
be relatively harder to intervene. Ω of BOTN* (which relates to Bitcoin OTC trust network) is the smallest which 

Figure 4.  The correlation between the network differential degree (Ω) and the intervention performance 
(|∆ |⁎x ) in the case of adding several edges to increase the convergent opinion value. (a) is for random networks; 
(b) is for scale-free networks; (c) is for small-world networks; (d) is for networks of three types in one scale.

Name of Networks BOTN* BATN* WPAS* SPPC* SPPH* SPPN* CCLM*
number of nodes 5875 3775 7136 13861 5835 379 77

number of edges 27364 17895 11394 12085 19670 1293 331

Ω 1.0012 1.0017 4.9085 2.2827 2.1971 2.1802 1.5795

Table 2.  The network differential degree Ω of seven networks (converted from empirical data).

https://doi.org/10.1038/s41598-019-41555-w


1 0Scientific Reports |          (2019) 9:5089  | https://doi.org/10.1038/s41598-019-41555-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

means this network might be relatively easier to intervene. Furthermore, we can see that the network differential 
degrees of networks of the same type (two Bitcoin networks, i.e., BOTN* and BATN*, and three collaboration 
networks, i.e., SPPC*, SPPH* and SPPN*) are similar. This is because the underneath mechanism to construct 
the network actually plays an important role on the difficulty of being intervened.

Discussion
This paper focuses on a new question of the relationship between the network feature and the intervention per-
formance. We study this question based on the weighted DeGroot model. To measure how node degrees couple 
with influential values in the network, we propose a new network feature Ω, named network differential degree. 
Large Ω indicates node with large degree is more likely to couple with large influential value.

We study how Ω affects the performance of intervention by three intervention methods: (1) adding one spe-
cial agent (shill) to connect to one normal agent; (2) adding one edge between two normal agents; (3) adding a 
number of edges among agents.

The intervention purpose is to change the convergent opinion value x  of the system. We use |∆ |⁎x  to measure 
the intervention performance, where |∆ |⁎x  is the maximum value of the difference between the new convergent 
value ′x  and the original convergent opinion value x  by each intervention methods. Larger |∆ |⁎x  means better 
intervention performance. Through simulations on random networks, scale-free networks and small-world net-
works, we find significant correlation between |∆ |⁎x  and Ω: smaller Ω leads to larger |∆ |⁎x . That means the system 
is easier to be intervened when Ω is small. In addition, we propose and proof a theorem about adding which edge 
can increase or decrease the convergent opinion value in the case of adding one edge intervention method. And 
we propose and proof an algorithm which can maximum the change of convergent opinion value in the case of 
adding several edges.

In conclusion, the new proposed network feature, network differential degree Ω, has significant correlation 
with the intervention performance: we can get better intervention performance when Ω is smaller. Our approach 
suggests a way to predict with which kind of network the opinion dynamics system would be easily intervened. 
The results may shed lights on the intervention of other multi-agent systems.
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