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Local-Field Corrections as a 
Regularization Method for the  
spin-Boson Model
J. A. Crosse1,2

The decoherence rate of a ‘central spin’ in a bosonic bath of magnetic fluctuations is computed using 
the spin-boson model. The magnetic fluctuations are treated in a fully quantum mechanical way by 
using the macroscopic quantum electrodynamics formalism and are expressed in terms of the classical 
electromagnetic Green’s function of the system. The resulting frequency integral formally diverges 
but it can be regularized by applying real-cavity, local-field corrections to the location of the ‘central 
spin’. This results in a cut-off function in terms of the magnetic permeability of the background material 
that leads to convergence at both high and low frequencies. This cut-off function appears naturally 
from the formalism and thus removes the need to rely on ad-hoc arguments to justify the form of the 
cut-off function. Furthermore, the magnetic permeability and the nature of interactions in quantum 
electrodynamics illuminate the connection between the two main models of ‘central spin’ decoherence, 
the spin-boson model and the spin-bath model, demonstrating how the two very different models are 
able to correctly model the same underlying physics.

Two-level quantum systems have been extensively studied owing to their potential application as qubits for quan-
tum computing and quantum information processing1,2. The main property that facilitates these applications is 
the ability to generate and maintain a coherent superposition of the two eigenstates, a property that underpins 
many quantum information processing protocols. If the system is isolated the quantum coherence between the 
states can be maintained indefinitely. However, real quantum systems are inextricably linked to the environment. 
This coupling leads to ‘decoherence’ - the reduction of the pure superposition state to a mixed state of the two 
eigenstates. This is a major limiting factor in the realization of quantum information technology3,4.

Consider a spin-boson model where a two-level, ‘central spin’ is placed in a magnetic field, orientated in the 
z-direction, and coupled to an ‘environment’ consisting of longitudinal magnetic fluctuations described a bath of 
bosonic operators, ωb̂ r( , )z . In the interaction picture, the ‘central spin’ evolves under the Hamiltonian

∫ ω λ ω ω ω= +
∞ˆ ˆ ˆ ˆ†

H t S d b t b tr r( ) ( ) [ ( , , ) ( , , )], (1)I z z s z s
0

where Ŝi is the spin operator in the i-direction for the ‘central spin’ located at rs and λ ω( ) is the strength of the 
spin-bath coupling at frequency ω. Under such an evolution the ‘central spin’ undergoes pure dephasing. The loss 
of coherence owing to the interaction with the environment is given by the expectation value of the coherence 
operator, = ++̂

ˆ ˆS S iSx y,

= 〈 〉 = φ
+
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Here, ωtsinc ( /2)2  is the free induction decay noise filter function and ω k Tcoth( /2 )b  is the thermal boson 
occupation number. ω λ ω=J( ) ( )2  is the spectral density, which completely describes the properties of the bos-
onic bath4,5.

The exact form of this spectral function is often introduced phenomenologically using physical arguments. A 
common choice is to assume a power law behaviour, ω ω=J A( ) s3. =s 1 is referred to as an ‘ohmic’ bath whereas 

< <s0 1 and >s 1 are referred to as ‘sub-ohmic’ and ‘super-ohmic’, respectively. Loosely speaking, a 
‘super-ohmic’ spectral function corresponds to the case where the ‘central spin’ is under-damped by the environ-
ment whereas a ‘sub-ohmic’ spectral function corresponds to over-damping by the environment. The ‘ohmic’ 
spectral function corresponds to the critical transition between the two cases with the exact behaviour dependent 
on the bath-spin coupling3. For a power law spectrum it is clear that the frequency integral in Eq. (3) diverges. 
Hence, one needs to impose a frequency cutoff3,5, which is usually chosen to coincide with some physical param-
eter of the environment (e.g. the Debye frequency or the inverse of the Drude relaxation time). There have been a 
number of attempts to go beyond the phenomenological spectral densities that are often used to describe environ-
mental fluctuations. For example, one area which has seen significant research in this direction is studies of 
photo-active biomolecules6–9 where the molecules and environments are usually too complex to be described 
accurately by a simple phenomenological model. In such cases sophisticated simulations or experimental data is 
required to find the form of the spectral density empirically. For simpler spin systems it would be advantageous to 
find a description that goes beyond the phenomenological but does not resort to highly complex first principle 
computer simulations or a require detailed experimental data.

In the following we revisit the spin-boson model but, instead of using a generic bosonic operator to describe 
the bosonic bath, we will use the macroscopic quantum electrodynamics formalism10,11 to exactly describe the 
magnetic fluctuations of the environment. This formalism allows one to express the bosonic bath in terms of the 
electromagnetic Green’s function of the system and results in a spectral function that can include the geometry 
of the surrounding material. Furthermore, by using the method of local-field corrections, one can regularize the 
divergent frequency integral in a more natural way.

Returning to Eq. (1), we wish to find a bosonic operator that correctly describes the magnetic fluctuations of 
the environment. To do this we start with Maxwell’s equations with a Langevin noise source that drives the clas-
sical electric and magnetic fields

ω∇ ⋅ =B r( , ) 0, (4)

ω ω ω∇ × − =iE r B r 0( , ) ( , ) , (5)

ω ρ ω∇ ⋅ =D r r( , ) ( , ), (6)N

ω ω ω ω∇ × + =iH r D r J r( , ) ( , ) ( , ), (7)N

with the noise charge density and noise current density defined by ρ ω ∇= ⋅r P( , )N N and ω ω ω= − +iJ r P r( , ) ( , )N N
ω∇ × M r( , )N  respectively. Here, ωP r( , )N  and ωM r( , )N  are the noise polarization and noise magnetization fields that 

describe the electric and magnetic fluctuations within the material. To move to the quantum regime one needs to find 
the quantum bosonic operators which describe these noise fields. It is possible to canonically quantize these fields from 
first principles starting with the classical electromagnetic Lagrangian12,13. As a result one can write the noise fields in 
terms of two sets of canonical bosonic operators ωf̂ r( , )e  and ωf̂ r( , )m , which are associated with the electric and mag-
netic fluctuations respectively,


ω

ε
π

ε ω ω=ˆ ˆiP r r f r( , ) Im ( , ) ( , ),
(8)eN

0

ω
μ π

μ ω
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ω=
| |

.ˆ ˆiM r r
r

f r( , ) Im ( , )
( , )

( , )
(9)

mN
0

2


Here, ε ωr( , ) and μ ωr( , ) are the electric permittivity and magnetic permeability of the background medium, 
respectively, and ωλ̂f r( , ) and ωλ

ˆ†
f r( , ) obey the usual bosonic commutation relation

δω ω δ δ ω ω′ ′ = − ′ − ′ .λ λ λλ′ ′
ˆ ˆ†
f r f r r r[ ( , ), ( , )] ( ) ( ) (10)

Resubstituting Eqs (8) and (9) in Maxwell’s equations, one can show that the magnetic field operator, which 
describes the magnetic fluctuations within the medium, is given by10,11

∫∑ω
ω

ω ω∇ ′= ′ ⋅ × ⋅ ′ .
ω

λ
λ λ

=

ˆˆ ˆ GB t e
i

d r zr r r f r( , , ) ( , , ) ( , )
(11)

z

i t

e m,

3

Here, the coefficients ω′λG r r( , , ) are defined as
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with the backward arrow referring to the fact that the operator acts on the right hand variable (here r′). The func-
tion, ω′G r r( , , ), is the electromagnetic Green’s function, which is the solution to the Helmholtz equation for a 
point source

μ ω
ω ω ε ω ω δ∇ ∇ ′ ′ ′× × − = − .G G

cr
r r r r r r r1

( , )
( , , ) ( , ) ( , , ) ( )

(14)

2

2

Returning to Eq. (1), we can use Eq. (11) as the operator that describes the bosonic bath [i.e. ω =B̂ tr( , , )z
ωb̂ tr( , , )z ]. Now, instead of coupling our ‘central spin’ to a generic bosonic field we are able to couple it to a bos-

onic field that explicitly describes magnetic fluctuations within the material. However, this leads to a fundamental 
change in the structure of the Hamiltonian. Substituting Eq. (11) in to Eq. (1) leads to

∫ ∫∑ω λ ω
ω

ω ω∇ ′=






′ ⋅ × ⋅ ′ + . .





.

ω

λ
λ λ

∞

=

ˆˆ ˆ ˆ GH t S d e
i

d r z r r f r( ) ( ) ( , , ) ( , ) h c
(15)

I z

i t

e m
s

0 ,

3

Previously, one had the coupling constant, λ ω( ), multiplied by the bosonic operator, ωb̂ tr( , , )z s , with the phe-
nomenological spectral density hidden in λ ω( ). Now we have λ ω( ) multiplied by the Green’s function 

ω∇ ′× λG r r( , , )s  multiplied by the the bosonic operator ω′λ̂f r( , ). Since the imaginary part of the Green’s func-
tion is related local density of states, the Green’s function is the equivalent of the spectral density, J ω( ), but appears 
naturally out of the formalism rather than being introduced at a later stage. Now the coupling constant, λ ω( ), is 
no longer related to the spectral density and merely represents the strength of the coupling of the ‘central spin’ to 
the magnetic fluctuations described by ω∇ ′× λG r r( , , )s  and hence can be treated as a constant, λ ω λ=( ) .

One can evaluate the expectation value of the coherence operator in the usual way (see Supplementary 
Information for more details). Expanding the magnetic field operators using Eq. (11), evalutating the time inte-
grals, applying the thermal expectation values of the bosonic excitation operators

ω ω⊗ ′ ′ =λ λ′
ˆ ˆf r f r 0( , ) ( , ) , (16)

ω ω⊗ ′ ′ =λ λ′
ˆ ˆ† †
f r f r 0( , ) ( , ) ,

(17)

ω ω ω δ δ δ ω ω⊗ ′ ′ = − ′ − ′λ λ λλ′ ′
ˆ ˆ†

nf r f r r r( , ) ( , ) ( ) ( ) ( ) ,
(18)th

ω ω ω δ δ δ ω ω⊗ ′ ′ = + − ′ − ′λ λ λλ′ ′
ˆ ˆ†

nf r f r r r( , ) ( , ) [ ( ) 1] ( ) ( ) ,
(19)th

where nth ω( ) is the thermal photon number at temperature, T,


ω =

−ω
n

e
( ) 1

1
,

(20)th k T/ B

and using the integral relation for the Green’s function


∫∑ ω ω

μ

π
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λ
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3 0 2

one finds that φ t( ) reduces to
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s s

2

0

2 2 0∫φ ω ω ω λ
µ

π

ω∇ ∇
←

=

× ⋅ × × ⋅ .

∞

ˆ ˆ

One can see that Eq. (22) is identical to Eq. (3) except that the spectral function, J ω( ), has been replaced by the 
double curl of the imaginary part of the Green’s function. The imaginary part of the Green’s function gives the 
local density of states, hence, in this formalism, the spectral function is given by the density of magnetic fluctua-
tions at the location of the ‘central spin’. The usual approach to evaluating integrals of this type is to convert the 
frequency integral to a sum over the Matsubara frequencies14. However, in this case, this transformation is not 
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possible because the ‘sinc’ function diverges at complex infinity and, as a result, it is not possible to close the con-
tour integral in either half plane. Therefore, alternative methods for evaluating this integral must be found.

The effect of the quantum vacuum on the ‘central spin’ can be found by substituting the free space Green’s 
function in to Eq. (22). The free space Green’s function reads10,11,15

ω ω ω
πω ω

∇ ∇′ =


 ⊗ +



 | − ′|

ω ω | − ′|
G

c
n e

n c
r r

r r
( , , ) ( )

4 ( ) /
,

(23)

i n cr r
2

( ) /

2 2 2

with refractive index ω =n( ) 1. In the following, we will also take the coupling of the ‘central spin’ to the magnetic 
field fluctuations to be equal to the gyromagnetic ratio, γ, given by λ γ μ= = g /B , where g is the landé g-factor 
and μB is the bohr magnaton. This leads to

∫φ
μ γ

π
ω ω ω ω= .

∞
t

t
c

d t k T( )
6

sinc ( /2)coth( /2 )
(24)b

0
2 2

2 3 0

3 2


This integral is formally divergent and, in a similar way to other divergent couplings to the vacuum (such as 
the Lamb shift16), requires more sophisticated relativistic field theory methods to regularize. However, one should 
note that the coupling of a ‘central spin’ to the vacuum fluctuations is ‘super-ohmic’ and hence the ‘central spin’ is 
only weakly damped by the quantum vacuum.

In most cases of practical interest the ‘central spin’ will be embedded inside a medium. The Green’s function 
for homogeneous media is given by (23) with ω ≠n( ) 1. Unfortunately, the ˆ ˆzz component of the double curl of the 
Green’s function diverges when → ′r r  unless the imaginary part of n ω( ) vanishes, i.e. when there is no absorption 
within the material. As a non-zero imaginary part of the refractive index is necessary for the material response 
function to obey the Kramers-Krönig relations17, which are themselves a result of causality, it is not possible for a 
real material to be absorption free over the whole frequency range. Hence, the Green’s function for homogeneous 
media leads to divergent results and a further regularization step is needed.

The diverging Green’s function and frequency integral can both be regularized by performing local-field cor-
rections on the magnetic field fluctuations at the location of the ‘central spin’. Local-field corrections aim to pro-
vide more accurate expressions for the macroscopic polarization and magnetization fields within a medium by 
including shielding or local enhancement effects from the matter itself. The standard approach to performing 
these corrections is to use a real-cavity model18 where we assume that the ‘central spin’ lies at the centre ( =r 0) of 
a spherical cavity [c.f. Fig. 1a(i)]. This model is the quantum mechanical equivalent of the Onsager model19,20 that 
is often used in physical chemistry to describe the a polarizable molecule in a dielectric background21,22 and 
results in a correction to the polarizability that is a function of the permittivity of the background medium. The 

Figure 1. The interaction of a ‘central spin’ with magnetic fluctuations created by a nuclear spin bath. (a) 
Schematic of the local-field correction method (i) the local field correction is computed by considering 
electromagnetic waves reflected from the wall of a spherical cavity. The Green’s function method also allows one 
to compute the contribution from (ii) inhomogeneities and (iii) specific spins by considering the appropriate 
reflection terms from the Green’s function. (b) The coherence of a ‘central spin’ with time for the parameters 
given in the main text. The grey dashed lines show the coherence time of tcoh ≈ 245 μs which is taken to be the 
time when the coherence has dropped to L = e−1 = 36.8%. The quantum field description (c) of an interaction 
between two spins is described in terms of the exchange of a force boson. The spin-boson model (d) only 
considers the part in the red dashed box whereas the spin-bath model (e) only considers the part in the blue 
dashed box.
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technique has been used to study an number of quantum optical processes in media such as spontaneous decay 
rates inside dielectric media23,24 and to compute corrections to the Van der Waals25, Casimir-Polder26 and nonlin-
ear χ(2)27 interactions. The technique can be applied, not only to dielectric backgrounds, but to magneto-dielectric 
backgrounds as well with one finding a correction to the polarizability that is both a function of the permittivity 
and permeability of the background medium25.

The correction to the local field by the surrounding matter is found by computing the reflection of the electro-
magnetic field at the cavity wall24,25. The Green’s function for a spherical cavity reads

∑ ∑ ∑ω
π

δ

ω
ω

′ = −
+
+

−
+

× ⊗ ′
+ ⊗ ′

∈ =

∞

=
G

M M
N N

ik l
l l

l m
l m

R k k
R k k

r r

r r
r r

( , , )
4

(2 ) 2 1
( 1)

( )!
( )!

[ ( ) ( , ) ( , )
( ) ( , ) ( , )], (25)

n e o l m

l
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, 1 0
0

where RTE and RTM are the reflection coefficients for the TE and TM polarized waves respectively and the 
M k r( , )mln  and N k r( , )m ln  dyads are given by
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where jl(x) are spherical Bessel functions of the first kind and P x( )l
m  are the associated Legendre polynomi-

als10,11,15. By computing the curl of the individual dyads and then taking ′ →r r, 0 one finds that the only contri-
bution is from =l 1 and =m 0. Hence, the TM mode vanishes and only the TE mode contributes. Thus, the 
Green’s function reduces to

ω ω
π

ω∇ ∇
←

⋅ × ′ × ⋅ = .
′→

ˆ ˆGz z i
c

Rr r( , , )
6

( )
(28)

TE
r r, 0

3

3

The reflection of the TE modes at the cavity interface can be described in terms of the Mie scattering coefficient

ω
μ ω

μ ω
=

′ − ′

′ − ′
R h z zh z h z z h z

h z z j z j z zh z
( ) ( )[ ( )] ( ) ( )[ ( )]
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where ω=z R c/c0  and ω ω=z n R c( ) /c , with Rc the radius of the cavity, and j1(z) and h1(z), respectively, the spher-
ical Bessel and Hankel functions of the first kind for =l 1,

= −j z z
z

z
z

( ) sin( ) cos( ) ,
(30)1 2

=




+


 .h z

z
i

z
e( ) 1

(31)
iz

1 2

We will assume that Rc is small compared to the main wavelengths associated with the decoherence process (in 
fact the free induction decay filter is strongly peaked around ω = 0 so the main wavelength → ∞) and we expand 

ωR ( )TE  in powers of ωR c/c
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By taking the reflection coefficient to leading order, computing the imaginary part of Eq. (28) and substituting 
the result into Eq. (22), one finds that

∫φ
μ γ

π
ω ω ω

μ ω
μ ω μ ω

=

×
−

+ +

∞
t

t
R

d t k T( )
3

2
sinc ( /2)coth( /2 )

Im ( )
4[Im ( )] [1 2Re ( )]

,
(33)

c
b

0
2 2

2 3 0

2

2 2




where again we have taken λ to be equal to the gyromagnetic ratio γ. If the permeability, μ ω( ), follows a functional 
behaviour similar to the Drude or Drude-Lorenz models then as ω → 0, the imaginary part vanishes whereas the 
real part tends to some finite value. Furthermore, high frequency transparency means that as ω → ∞, the imag-
inary part vanishes whereas the real part tends to unity. Hence, the integrand is regularized in both the high and 
low frequency limits and the integral can be evaluated.

As an example, one can use the common frequency dependent paramagnetic permeability model28

μ ω μ μ
ωτ

μ=
− ∞

+
+ ∞

i
( ) (0) ( )

1
( ),

(34)

where μ(0) and μ ∞( ) are the constant permeabilities at ω → 0 and ω → ∞, respectively, and τ is the magnetiza-
tion relaxation time (i.e. the time it takes the background spins to de-align when the magnetic field is switched 
off). With this permeability model we find the material factor in Eq. (33) becomes

μ ω
μ ω μ ω

μ μ ωτ
μ μ ω τ

−
+ +

=
− ∞

+ + + ∞
.

Im ( )
4[Im ( )] [1 2Re ( )]

[ (0) ( )]
[1 2 (0)] [1 2 ( )] (35)2 2 2 2 2 2

This expression clearly does not have the simple power law functionality that is usually assumed for spectral 
functions. However, it is approximately ‘ohmic’ at low frequencies and vanishes as ω → 0 and ω → ∞. 
Furthermore, it is functionally similar to the phenomenological ‘soft cutoff ’ functions that have previously been 
used to regularize this type of integral3,5. Thus, we can see that the precise nature of the phenomenological soft 
cutoff required to regularize the integral can be derived directly from the form of the permeability function.

It is worth noting that the frequency dependence of Green’s function is significantly different before and after 
regularization. This is due to the nature of the fluctuations that the ‘central spin’ is interacting with in each case. In 
the vacuum, the ‘central spin’ couples to the vacuum fluctuations and the spectral density displays a ω3 depend-
ence. In a homogeneous media before regularization and (necessarily) in the absence of absorption the spectral 
density displays a ω ωnRe[ ( )]3 3 dependence. Essentially, one is still coupling to ‘vacuum fluctuations’, however, 
these fluctuations are now scaled by the response of the medium - the refractive index merely adds a multiplica-
tive factor to the vacuum result. By performing the regularization step one changes the coupling of the ‘central 
spin’ from a coupling to the fluctuations of the vacuum to a coupling to the fluctuations of the medium. In an 
absorbing medium the fluctuation dissipation theorem29,30 states that any process that dissipates energy will lead 
to background fluctuations. In this case, absorption in the material leads to fluctuations in the magnetic response 
of the medium. It is to these fluctuations that the ‘central spin’ couples to after regularization. This can be seen 
from Eq. (35), which is a function of the the magnetization relaxation time τ , which itself is a measure of the 
absorption properties of the surrounding material.

A specific physical spin system that has been studied extensively is the spin decoherence of phosphorous 
donors in silicon. In this system, the main decoherence process is driven by the nuclear spins of the 29Si isoptope 
(the other two stable isotopes, 28Si and 30Si have no nuclear spin) which is present with an abundance of 4.7% in 
natural silicon. Exact numbers for the permeability contribution of these spins alone (without the diamagnetic 
contribution from the silicon atoms) are hard to find but we can make reasonable order of magnitude estimates 
based on the properties of the spins themselves. The susceptibilities unpaired electrons in paramagnetic atoms is 
on the order of χ ≈ × −1 10 5 to × −2 10 5. However, the coupling of electron spins to magnetic fields is much 
stronger than that of nuclear spins and can be quantified by the square of the gyromagnetic ratio. The gyromag-
netic ratio for an electron is γ = . × − −1 76 10 radss T11 1 1 whereas the gyromagnetic ratio for 29Si nuclear spins is 
three orders of magnitude smaller, γ = . × − −5 32 10 radss TI

7 1 1. Scaling the paramagnetic susceptibility with 
regard to the weaker coupling and lower concentration of nuclear spins leads to an estimate the nuclear suscepti-
bility on the order of χ ≈ × −9 10I

14. The spin relaxation time is estimated to be τ ≈ × −6 10 s5  from the 2nd 
moment (variance) of the observed linewidth31. The last parameter is the characteristic radius, Rc, which we take 
to be half the average separation between nuclear spins (i.e. the average distance from the ‘central’ spin to the 
nearest nuclear spin). The atomic density of silicon is ρ ≈ × −5 10 mN

28 3 of which only 4.7% are 29Si, hence the 
characteristic radius is estimated to be ≈ × −R 7 10 mc

10 . These parameters lead to a coherence time of 
≈t 245coh  μs at 6 K, which is the same order of magnitude as the experimentally measured spin decoherence times 

in this system32. The full curve is shown in Fig. 1(b).
Clearly, for a quantitatively more precise result the permeability function and related parameters needs to 

be computed or measured more accurately. To do this the response of the appropriate spin species to an applied 
magnetic field needs to be found. Hence, one can immediately see the connection between the two main models 
of decoherence; the spin-boson model, as described here, which models the effect of a bosonic environment 
on the ‘central spin’ and the spin-bath model, which models the effect individual spins on the the ‘central spin’. 
From the results presented here, we can see that the bosonic environment is generated by magnetic fluctuations 
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described by a permeability, which itself is a macroscopic description of how the individual spins of the back-
ground spin-bath behave in the presence of an external magnetic field. From a quantum field theory perspective 
such a link is not surprising as any interaction between particles is mediated by a force boson - a photon in the 
case of electromagnetism [c.f. Fig. 1(c)]. The spin-boson model describes the environment in terms of the force 
bosons whilst neglecting their fermionic source [c.f. Fig. 1(d)]. The spin-bath model describes the environment 
in terms of fermionic sources whilst neglecting the force boson [c.f. Fig. 1(e)]. The functional link between the 
two models (in this case) is the macroscopic permeability which describes the force bosons for a given set of 
fermionic sources.

Developing accurate permeability models is itself non-trivial. Traditional semi-classical methods look at the 
response of single quantum particles to a classical field and then obtain a macroscopic result by simply multiply-
ing the single particle result by the particle number density33. However, spin-bath studies of ‘central spin’ decoher-
ence have shown that intra-bath correlations can also contribute34. Thus, fully quantum methods for computing 
the magnetic susceptibilities are potentially required for accurate calculations of the coherence time. However, 
these fully quantum methods in conjunction with the results presented here would constitute a precise analytical 
method for computing decoherence times of two level systems.

We conclude by mentioning in passing that, by using the result of Refs24,25, the Green’s function approach 
allows one to compute the effect of material inhomogeneities (such as surfaces, interfaces and cavities [c.f. 
Fig. 1a(ii)]) on the ‘central spin’ decoherence or the interaction with specific spins [c.f. Fig. 1a(iii)] simply by 
including the appropriate Green’s function. Hence, the formalism presented here allows for a more versatile 
description the interaction of a ‘central spin’ with bosonic or spin-bath environments.
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