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the DNA damage induced by the 
Cytosine Deaminase APOBEC3A 
Leads to the production of Ros
Mathilde Niocel, Romain Appourchaux, Xuan-Nhi Nguyen, Mathilde Delpeuch & 
Andrea Cimarelli

Human apolipoprotein B mRNA-editing catalytic polypeptide-like 3 proteins (APOBEC3s or A3s) are 
cytosine deaminases that protect cells by introducing promutagenic uraciles in invading retro-elements. 
However as a drawback of this protective activity, A3s can also target cellular DNA, leading to DNA 
damage and to the accumulation of somatic mutations that may contribute to tumorigenesis. Among 
A3s, A3A has been shown to be particularly proficient at mutagenizing cellular DNA, but whether this 
enzyme exerts additional effects on the cellular physiology remains unclear. Here, we show that A3A 
editing of cellular DNA leads to reactive oxygen species (ROS) production through Nox-enzymes. ROS 
production occurs in two distinct model cell lines and it is contingent upon DNA replication and intact 
enzymatic properties of A3A. For the first time, our results indicate that the editing activity of A3A 
results in the induction of a pro-inflammatory state that may possibly contribute to the constitution of a 
tumorigenic-prone environment.

Apolipoprotein B mRNA editing catalytic polypeptide-like 3 proteins (APOBEC3s, or A3s) are a family of 
cytosine deaminases composed of seven distinct members in humans (named A to H)1. A3s use preferentially 
single-stranded DNA as substrate of their enzymatic activity and catalyze the deamination of cytosines into 
uracils2–6. Cytosine deamination does occur spontaneously in cellular DNA, but in this case uracils accumu-
late at a much lower rate and are quickly disposed of by dedicated cellular enzymes7,8. In the case of invading 
retro-elements, A3s introduce a large number of mutations on the negative strand DNA that is then used as a 
template for the synthesis of the positive strand one during reverse transcription2–5. As a result, mutations become 
fixed on the viral genome as G to A transitions, ultimately leading to the element inactivation by mutagene-
sis2–5,9–14. In addition to this mechanism of inhibition, A3s has been also described to act through alterna-
tive mechanisms. Indeed, A3G is able to directly interfere with the process of reverse transcription through a 
cytosine-independent mechanism in the case of HIV-115–17 and appears to inhibit indirectly Measles virus repli-
cation by modulating the activity of the mammalian target of rapamycin complex-1 (mTORC1)18.

A growing number of studies are revealing that as a drawback of what is a protective role of the cellular 
genome from invasion of non-self genetic elements, A3s expression may lead to the accumulation of somatic 
mutations19–27. These observations are of importance given that cancer genomic studies are unveiling the presence 
of an higher than expected accumulation of G to A transitions in nucleotide contexts evocative of A3s in cancer 
cells19,28–37. While these observations leave open the question of causality between editing and tumorigenesis, 
they clearly raise the possibility that cytosine deaminase enzymes may be involved either directly or indirectly in 
this process.

Among the members of the A3 family, A3A has received an increasing attention as a nuclear enzyme endowed 
with a proficient ability to deaminate not only foreign DNA introduced within the cell by transient transfection38, 
but also cellular DNA21,25,26,39. Expression of A3A induces a strong activation of several key mediators of the 
DNA damage response pathway, as the phosphorylation on Ser139 of the histone variant H2AX, the recruitment 
of 53BP1 and of the Replication Protein A (RPA) proteins and ectopic expression of A3A leads to cell cycle 
arrest and cell death21,25,26,39. Several studies have firmly linked these effects to the direct deamination of the 
cellular genome by A3A through its transient access to single-stranded DNA intermediates during cellular DNA 
replication22,26, followed by the action of Uracil-DNA glycosylases (UNG) and the recruitment of the apurinic/
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apyrimidinic (AP) endonuclease that create a site of lesion on the host genome. To add to the complexity of its 
action in cells, A3A appears regulated through multiple layers of control among which its nucleocytoplasmic 
distribution, or its interaction with cellular cofactors that influence its stability and enzymatic activity40–42.

In this work, we have used the controlled expression of A3A in two model cell lines (HeLa and U937, a cell line 
of myeloid origins) to explore the possible consequences of the expression of A3A in different cellular contexts. 
For the first time, we show here that the DNA damage induced by A3A leads to the production of reactive oxy-
gen species (ROS) produced by NAD(P)H oxidases (or Noxes)43,44. We further determine that ROS production 
depends on the catalytic activity of A3A and that it is observed upon expression of both described A3A isoforms. 
These findings strongly support a previously proposed model45 in which contrarily to the well-described property 
of ROS to induce DNA damage, DNA damage may also initiate ROS production.

Given that ROS are well described inducers of DNA damage, we explored the possibility that they could exac-
erbate the extent of DNA damage already induced by A3A. Through the use of Nox inhibitors, we show that this 
is not the case, indicating either that the levels of ROS produced in this context is not sufficient to induce DNA 
damage, or that their effects is masked by the massive action of A3A. Contrarily to what observed in replicating 
cells, DNA damage as well as ROS production are not observed upon A3A induction in differentiated U937 cells, 
nor in dendritic cells (DCs) differentiated from primary monocytes and further stimulated with interferon alpha 
(IFNα), a strong inducer of A3A expression. Thus, these findings are in agreement with previous studies suggest-
ing a strong requirement for cell cycle progression for the effects of A3A22,26,27 and suggest that both DNA damage 
and ROS production are unlikely to play a role in the antiviral properties of A3A, at least as it can be appreciated 
in non-dividing DCs. Rather, these findings suggest that these effects are a deleterious consequence of the mode 
of action of A3A in proliferating cells in which A3A not only directly mutagenizes the cellular genome, but also 
indirectly contributes to promote a proinflammatory, potentially pro-tumorigenic environment via ROS.

Overall, our study contributes to the understanding of the properties of A3A by highlighting for the first time 
that through a DNA damage response, A3A is likely to specify a more complex cellular program than previously 
anticipated.

Results
A working model to explore the functional consequences of A3A expression on the physiology 
of the cell. A3A induces massive editing of cellular DNA, resulting in the induction of a strong DNA damage 
response that leads to cell death. While solid experimental evidence supports these effects, the physiological 
consequences of the expression of A3A beyond DNA damage and cell death remain unclear. As schematically 
presented in Fig. 1A, we hypothesized here that the DNA damage response initiated by A3A could converge in the 
production of reactive oxygen species (ROS). While ROS are well known DNA damage inducers, a reciprocal link 
in which DNA damage leads to the production of ROS is less evident, although this possibility was clearly evoked 
in a past study in which ROS production was observed following the use of several DNA-damaging compounds 
(such as neocarzinostatin, doxorubicin, hydroxyurea45). ROS play numerous roles in the cell physiology beyond 
the induction of cell death, under both normal and pathological conditions46 and their production in the context 
of the A3A-induced DNA damage would offer a different perspective on A3A.

Retroviral-mediated gene transduction was used to engineer stable cell lines in which A3A expression 
was under the control of a doxycycline (dox)-dependent promoter. We selected in particular two model cell 
lines: HeLa cells that have been widely used in the past to explore the functional consequences of A3A expres-
sion21,25,26,38,39, and U937 cells, cells of myeloid origins that can be induced to differentiate into a non-dividing 
macrophage-like status upon PMA treatment47. To compare the expression levels of A3A in our dox-inducible cell 
lines with the ones observed in primary cells we used monocyte-derived dendritic cells (DCs, known to robustly 
express A3A upon IFNα stimulation) and the antibody ApoC1748. This antibody is a particularly useful tool as 
despite the fact that it was originally raised against A3G, it also recognizes A3A but not the other members of the 
A3 family (as we have extensively validated before49). Given that A3A and A3G bear distinct molecular weights 
(approximatively 21 and 42 kDa, respectively), this antibody allows an easy discrimination between these two 
proteins upon SDS-PAGE gel migration and WB. In our hands, U937 do not express detectable levels of A3A 
even after concomitant PHA and IFNα stimulation, (Supplementary Fig. 1). Upon dox-induction in our stable 
cell lines, the expression levels of A3A were comparable to those observed in primary DCs derived from different 
donors and stimulated with IFNα (Fig. 1B).

A3A induces double strand breaks and ROS production in cycling HeLa and U937 cells, but not 
in PMA-differentiated U937 cells. A3A expression was induced for twenty-four hours prior to WB analy-
sis in HeLa as well as in U937 cell lines either cycling or growth-arrested upon incubation with PMA that induces 
their differentiation into macrophage-like cells (Fig. 2A). Given that preliminary experiments revealed an higher 
accumulation of A3A in U937 cells upon PMA-treatment when compared to untreated cells, A3A expression was 
detected at 24 and 8 hours post dox induction. The results obtained in this case indicate that the higher accumula-
tion of A3A in PMA-treated U937 cells as opposed to cycling cells was observable at different time points. At pres-
ent, whether this is due to higher translation rates or to decreased protein degradation’s rates remain unknown.

The extent of DNA damage was then measured by flow cytometry upon staining with an antibody specific for 
the phosphorylated form of the histone variant H2AX, a well described marker of DNA damage (Ser139, γH2AX, 
as described in39,25, Fig. 2B). Under these conditions, substantial levels of γH2AX staining were observed in both 
cycling HeLa and U937 cells. The presence of DNA damage signatures was dependent on the intact enzymatic 
activity of A3A, given that none could be detected upon expression of a catalytically-inactive A3A mutant. On the 
contrary, no detectable levels of γH2AX staining were observed in differentiated U937 cells treated with PMA, 
indicating that cell differentiation prevented the accumulation of detectable levels of DNA damage upon A3A 
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induction. These results essentially confirm previous studies21,22,25,26,39,50 and validate the experimental cellular 
models used in our study.

Next, we sought to determine whether the A3A-induced DNA damage response could converge in the pro-
duction of ROS as measured by flow cytometry through the increase in fluorescence of cells incubated with the 
cell permeable dye 2′,7′–dichlorofluorescin diacetate (DCFDA). The fluorescence of DCFDA relies on oxida-
tion and therefore DCFDA staining is a widely used technique to measure the accumulation of reactive oxygen 
species.

Under these conditions, a significant ROS production was observed in cycling HeLa and U937 cells (Fig. 2C 
for representative panels and 2D for cumulative data obtained in three independent experiments). The percentage 
of ROS-producing cells following the induction of A3A was lower than that obtained upon use of the positive 
control TBHP, yet it was consistent (Fig. 2C,D).

The production of ROS required the cytosine-deaminase activity of A3A, as no ROS were observed in cells 
expressing the catalytically-inactive A3A mutant (E72Q) and similarly, no ROS were produced in the absence of 
DNA damage in PMA-treated growth-arrested U937 cells.

Overall, these results indicate for the first time that A3A leads to ROS production in two distinct model cell lines 
and that this effect relies on the ability of A3A to attack cellular DNA through its cytosine deamination activity.

ROS production occurs at similar levels for both described isoforms of A3A. Translation of 
A3A from its own mRNA leads to the production of two protein isoforms: the full length and a shorter protein 

Figure 1. Schematic representation of the model tested in this study. (A) The cytosine deamination activity of 
A3A on genomic DNA leads to the accumulation of uraciles that upon removal by UNG lead to DNA cleavage 
by AP endonucleases and to a DNA damage that results in the recruitment of γH2AX on the DNA lesion. The 
ensuing DNA damage response (DDR) leads to activation of Nox enzymes that produce ROS. ROS can then 
exert multiple effects either intrinsic to the cell that produces them or extrinsic (inflammation, cell defense, cell 
death, DNA damage etc). Diphenyleneiodonium (DPI) is an inhibitor of Nox enzymes, while N-acetylcysteine 
(NAC) is an antioxidant that buffers ROS. (B) Stably-transduced cells expressing a dox-inducible form and 
HA tagged A3A were induced with increasing doses of doxycycline, prior to cell lysis and WB analysis forty-
eight hours after induction. To compare these levels to those of endogenous A3A, primary monocyte-derived 
dendritic cells (MDDCs) stimulated for twenty-four hours with 1.000 U/mL of IFNα were also analyzed (three 
different donors displayed). The antibody used (Apo-C17) recognizes both A3G and the two isoforms of A3A 
which can be easily distinguished by their size49.
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produced by leaky translation from an internal ATG and resulting in an N terminal deletion of twelve amino acids 
in A3A51, MEASPASGPRHL). Whether this shorter A3A isoform exhibits distinct behavior than the full length 
remains unknown and it was therefore important to determine if ROS production could be differentially medi-
ated by one or the other isoform. To address this possibility, we engineered either the shorter A3A isoform (by 
removing the first twelve amino acids before the internal ATG, Δ12, designed here as A3A-S for short isoform) 
and the longer one (in which the internal Methionine was mutated to Isoleucine, preventing internal translation 
initiation, M13I, A3A-L, for long isoform, Fig. 3A, the WB for the WT A3A is provided here for comparison’s 
sake, as this lane is shown already in Fig. 2A). The expression of both short and long A3A isoforms in HeLa cells 
led to the induction of DNA damage (Fig. 3B), as well as to the production of ROS (Fig. 3C,D), indicating that 
under the conditions used here, no differences could be discerned between the two described isoforms of A3A in 
terms of induction of DNA damage and production of ROS.

Figure 2. The expression of the catalytically active A3A enzyme leads to DNA and ROS production in cycling 
HeLa and U937 cells, but not in PMA-differentiated U937. (A) Stable cell lines expressing either wild-type 
(WT) or catalytically-inactive (E72Q) A3A were induced with doxycycline (1 and 0,5 µg/mL, in HeLa and U937, 
respectively) for twenty-four hours (or at an additional earlier time point, as indicated in the case of U937). 
Cells were then lysed for WB analysis using an anti-HA antibody directed against the HA epitope present on 
the C-terminus of A3A. Please note that: (1) translation of A3A results in the production of two isoforms, one 
of which smaller and generated by leaky scanning from an internal ATG start codon; (2) an additional band is 
recognized by the anti-Tubulin antibody in PMA-treated U937 cells, the identity of which is unknown. (B) The 
extent of accumulation of double strand breaks in the cell genome was assessed by intracellular staining and 
flow cytometry analysis of the phosphorylated form of the histone variant H2AX (on Ser 129, γH2AX) thirty-
six hours after A3A induction. When indicated U937 cells were differentiated into a macrophage-like state upon 
incubation with PMA for two days, prior to doxycycline treatment. Etoposide was added as positive control 
(100 μM, 16 hours prior to analysis). (C,D) As in B but the production of ROS was measured by flow cytometry 
after incubation for four hours with DCFDA (20 μM). TBHP was added as a positive control. WB panels and 
histograms in (A–C) display representative results obtained. The graph in D presents mean ± SEM values 
corresponding to the percentage of ROS positive cells obtained from 3 (HeLa) to 10 (U937 cells) independent 
experiments. *p < 0.05 following a Student t test between the indicated conditions (two-tailed, unpaired; 
ns = not significant).

https://doi.org/10.1038/s41598-019-40941-8


5Scientific RepoRts |          (2019) 9:4714  | https://doi.org/10.1038/s41598-019-40941-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

A3A-mediated ROS production occurs via a Nox-dependent mechanism. ROS are produced as 
a consequence of the reduction of oxygen by members of the nicotinamide adenine dinucleotide phosphate oxi-
dases (NADPH oxidases, or Noxes, Nox 1 through 7). Members of this family share the presence of at least six 
trans-membrane helices, of a flavin adenine dinucleotide- and of a NAPDH-binding domain and display an 
heterogeneous pattern of tissular expression and of intracellular distribution52. To determine whether ROS pro-
duction was dependent on Nox enzymes, diphenylene iodonium (DPI), a well-described broad Nox inhibitor was 
used in cycling U937 cells in which A3A expression had been induced. Under these conditions, DPI treatment of 
A3A-expressing cells completely abolished ROS production (Fig. 4A for a representative panel and 4B for a quan-
titative analysis of three independent experiments), indicating that the signals that originate as a. consequence of 
the DNA damage mediated by A3A converge on Nox enzymes leading to the production of ROS.

the Ros produced in this context do not further exacerbate the extent of DNA damage caused 
by A3A. The results presented above support the notion that the activity of A3A is accompanied by the pro-
duction of ROS. In turn, ROS are known to exert pleiotropic effects on the cell, among which the induction of 
DNA damage itself. To determine whether the ROS produced here upon A3A induction could contribute to -and 
perhaps amplify- the DNA damage response commonly attributed to A3A, a time curve analysis was performed 
in cycling U937 cells. To this end, cell aliquots were harvested at different times post A3A induction and the 
extent of DNA damage and ROS production were measured by FACS (Fig. 5). Under these conditions, the DNA 
damage marker used here started to be reliably detected by flow cytometry at 16 hours after A3A induction, 
increasing thereafter. This increase was paralleled by a similar accumulation of ROS-positive cells. Interestingly, a 
consistent proportion of ROS-producing cells became detectable already at 4 hours post A3A induction, at a time 
at which only basal levels of γH2AX-positive cells were present. We believe it likely that this rapid burst of ROS 
production in 3% of cells in which A3A expression has been induced may derive from a cell population in which 
DNA damage is ongoing, below the limits of detection of the flow cytometry-based assay used.

Importantly however, inhibition of Nox enzymes through the use of DPI failed to prevent the accumulation of 
γH2AX-positive cells indicating that, at least under the experimental conditions used here, ROS do not further 
contribute to the DNA damage induced by A3A.

Figure 3. Both short and long A3A isoforms induce double strand breaks and production of ROS. (A) Short 
(A3A-S) and long A3A isoforms (A3A-L) were engineered by standard mutagenesis and stable HeLa cell lines 
were obtained as indicated in the legend to Fig. 2. The WB panels display typical expression profiles obtained 
and the migration of WT A3A is shown here solely for clarity’s sake (the same panel for WT A3A being 
presented in Fig. 2A). (B–D) After doxycycline induction (1 μg/mL), cells were analyzed by flow cytometry 
to measure either the levels of double strand breaks, as well as ROS. The histograms present typical results 
obtained out of 3 independent experiments. The graph presents averages and SEM of three independent 
experiments. Results obtained with WT-A3A are simply reported here for comparison. A Student t test was 
performed between the indicated conditions (two-tailed, unpaired; *p < 0,05).
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ROS production does not exacerbate the negative effects of A3A on cell survival. A3A expres-
sion is commonly associated to cell death in cycling cells and given that ROS are also cytotoxic we set out to 
determine whether the A3A-dependent ROS production could contribute to the cytotoxic effects ascribed to 
A3A. To this end, we incubated cells with or without the ROS buffering agent NAC, that efficiently counters ROS 

Figure 4. The A3A-mediated production of ROS occurs via Nox enzymes. (A,B) Cycling U937 were induced 
with doxycycline in the presence of the Nox inhibitor DPI provided at a concentration of 0,5 μM. ROS 
production was then measured 48 hours after the initial induction of A3A. A typical result is presented in the 
histogram of (A), while the quantification of the percentage of ROS-positive cells (Averages and SEM) obtained 
in four independent experiments is displayed in (B).

Figure 5. A3A-induced ROS production parallels DNA damage, but does not exacerbate it. For the time course 
analysis of the accumulation of γH2AX- and ROS-positive cells, cell aliquots were harvested at different times 
following the induction of A3A and then analyzed by FACS, as depicted in the scheme. When indicated, the 
Nox inhibitor DPI was added throughout the experiment. The graphs present averages and SEM obtained 
with three independent experiments. *p ≤ 0.05 and ns = non significant, following a Student t test between the 
indicated conditions (two-tailed, unpaired).

https://doi.org/10.1038/s41598-019-40941-8


7Scientific RepoRts |          (2019) 9:4714  | https://doi.org/10.1038/s41598-019-40941-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

production in cells (Fig. 6A), and we quantified the extent of cell death by propidium iodide staining and flow 
cytometry at different times post A3A induction (Fig. 6B). Under these conditions, A3A induction resulted in 
a substantial accumulation of PI-positive cells already at two days after induction and this percentage increased 
steadily over time. However, no significant reduction in the accumulation of PI-positive cells was observed in the 
presence of the ROS scavenger NAC. Overall, these results indicate that the ROS produced here do not further 
aggravate the extent of cell death already caused by A3A.

The induction of A3A in primary DCs by IFNα stimulation does not lead to detectable DNA 
damage, nor Ros production. The results presented above as well as data in the literature indicate that 
cell cycling is a determining factor in the susceptibility of a given cell to the DNA damage and ROS production 
mediated by A3A. On the other hand, we have previously determined that A3A contributes to the modulation of 
HIV infection in myeloid cells and more specifically DCs and macrophages. Given that these cells act as central 
players of immune responses and that ROS have been described to be an integral part of antiviral responses, it was 
important to determine whether the expression of A3A in primary DCs could lead to a DNA damage response 
and to ROS that could in turn contribute to the poor susceptibility of these cells to viral infection or that could 
more generally play a role in the antiviral functions of DCs.

As expected, treatment of DCs with IFNα strongly stimulated the expression of A3A (Fig. 7). However, IFNα 
stimulation and the ensuing increase in A3A did not lead to the accumulation of DNA damage signatures, nor to 
the production of ROS.

Overall, these results indicate that cell cycle progression is a general determinant in the susceptibility of target 
cells to both DNA damage and ROS production induced by A3A and suggest that these effects are unrelated to the 
antiviral functions played by A3A, at least in myeloid cells.

Discussion
The major novelty of our study is to present evidence that the DNA damage response orchestrated by A3A cul-
minates in the production of reactive oxygen species (ROS) through Nox enzymes, linking for the first time the 
mutagenic activity of A3A to a functional consequence outside the direct deamination of cellular DNA. This 
activity is observed in the two model cell lines tested and is dependent on active cell cycle progression, in line 
with the higher availability of single-stranded DNA substrates during DNA replication19,22,26,28,39,40,53. The strong 
requirement for cell cycle progression for the effects of A3A was also underlined by the fact that no DNA damage 
nor ROS were produced in either PMA-differentiated U937 cells, nor primary DCs, irrespectively of the manner 
in which A3A was induced (doxycycline or IFN, respectively). These results therefore indicate that the effects of 
A3A are heavily dependent on the cellular context in which this protein is expressed and the fact that myeloid 
cells (DCs, macrophages and monocytes) exhibit a non-cycling status is likely the main reason why these cells are 
protected from the deleterious effects of A3A.

While the presence of reactive oxygen species in the cell is well known to cause DNA damage, the possibility 
that DNA damage itself can drive the production of ROS has been evoked only in few studies45,54. In one of them, 
several DNA-damaging compounds were shown to drive ROS production via a Rac1-dependent mechanism that 

Figure 6. ROS induction by A3A does not aggravate the extent of cell death. Possible effects of ROS on the 
A3A-induced cell death were assessed by incubating cycling U937 cells treated or not with doxycycline with 
the ROS buffering compound NAC at a single time point to measure the effectiveness of ROS buffering by 
NAC (A) or at different time points after A3A induction (B). Cell death was measured after propidium iodide 
(PI) staining by flow cytometry. The graphs present averages and SEM obtained with three independent 
experiments. (A), *p ≤ 0.05 and ns = non significant, following a Student t test (two-tailed, unpaired). (B) no 
statistically significant differences were observed following the same test comparing plus versus minus NAC 
conditions.
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converged in the activation of Nox enzymes45. In line with this proposed mechanism of reverse control of ROS 
by DNA damage, we also show that a different DNA-damage agent, A3A, leads through cytosine deamination to 
the production of ROS by activation of Nox enzymes. In our hands, the levels of ROS generated via A3A do not 
exacerbate the extent of DNA damage already caused by A3A, nor its ability to cause cell death, implying that the 
direct deamination of the cellular genome by A3A plays a dominant function on these phenotypes and suggesting 
that ROS may act as second messengers, or mediate additional effects of A3A that remain to be discovered.

A number of well-conducted studies firmly established A3A as a potent mutagenic factor whose activity on 
genomic DNA results in extensive DNA damage in model cell lines21–26,39 and could in this manner contribute to 
tumorigenesis in vivo.

In addition to a direct contribution to this process through the introduction of somatic mutations in the cellu-
lar genome, our results indicate that A3A may also contribute to create an environment favorable to tumorigen-
esis through the induction of ROS. Indeed, ROS intervene in numerous cellular processes and clearly participate 
in chronic inflammation and have been clearly involved in the establishment of a pro-inflammatory, tumor-prone 
environment55–65.

To conclude, the results presented in this study indicate that A3A exerts far more complex effects on the cell 
physiology than previously appreciated and indicate that this enzyme bears the potential to favor the process of 
tumorigenesis through both direct and indirect mechanisms.

Methods
plasmids, antibodies and cells. C-terminal HA-His tagged wild-type and mutant A3As were inserted in 
a pRetroXtight plasmid background (Clontech) by standard molecular biology techniques (WT, E72Q, ∆12 and 
M13I designed here as A3A-S and A3A-L). This vector DNA allows the generation of doxycycline-inducible, sta-
bly-transduced target cells upon retroviral-mediated gene delivery (details for the production of retroviral vectors 
are provided in the relevant section below). Antibodies used for WB were as follows: anti-apoC17 (that recog-
nizes both A3A and A3G, easily distinguishable by size after SDS-PAGE gel migration as described in49, AIDS 
Reagents and Reference Program of the NIH, used in Figs 1B and 7 to compare/detect endogenous A3A with the 
A3A levels obtained in dox-inducible cell lines); anti-Tubulin and anti-HA (purchased from Sigma, T5168-2 and 
H3663, respectively; the latter of which used in the remaining figures to detect A3A in stable cell lines); anti-EF1α 
(purchased from Millipore, 05–235).

HeLa cells were maintained in complete DMEM media supplemented with 10% FCS, while the monocytic cell 
line U937 was propagated in complete RPMI 1640 media and 10% FCS.

To induce macrophage-like differentiation, U937 were treated with phorbol-12, myristate-13, acetate (PMA 
at 100 nM, SIGMA) for 2 days. Primary monocyte-derived dendritic cells were differentiated from blood mono-
cytes of healthy donors upon incubation with 100 ng/ml of both granulocyte-macrophage colony-stimulating 
factor and interleukin 4 (GM-CSF and IL4, respectively, as described in49. Briefly, a fraction of enriched mono-
cytes was obtained from peripheral blood mononuclear cells (PBMCs) after a Ficoll and then a Percoll gradi-
ent. The enriched monocyte fraction was then purified to homogeneity by negative depletion with a cocktail 
of antibodies-coated beads that removed contaminant cells (Miltenyi, Monocyte isolation kit II, 130-091-153, 
according to the manufacturer’s instructions). Cytokines were purchased from Eurobio (GM-CSF, 01-AR080; 
IL4, 01-A0050 and IFNα, PCYT-204). GM-CSF and IL4 were used at a final concentration of 100 ng/ml each 
for four days, while IFNα was used at 1.000 U/mL for twenty-four hours prior to analysis. Blood material con-
sisted of discarded “leukopacks” obtained anonymously from the EFS-Lyon. Gender, race, and age of donors 
are unknown to the investigator as is the inclusion of women, minorities or children. This research is exempt 
from approval, although written informed consent was obtained from blood donors to allow use of their cells for 
research purposes.

Retroviral vector production and generation of dox-inducible cell lines expressing A3A. Murine 
leukemia virus (MLV)-based retroviral vectors used here for gene transduction have been described before66. 
Briefly, retroviral vectors are produced by transient DNA transfection of HEK293T cells with 3 plasmids cod-
ing, respectively: the structural viral proteins Gag-Pro-Pol of MLV, the pantropic envelope glycoprotein G of 
the Vesicular Stomatitis Virus (VSVg) along with two miniviral genomes both pRetroX-based (ratio of 8:4:4:4, 
respectively). The first bears the A3A sequences under the control of a doxycycline-inducible promotor, the 

Figure 7. The induction of A3A in DCs via IFNα stimulation does not lead to DNA damage nor ROS 
production. Primary monocyte-derived dendritic cells (DCs) differentiated from monocytes of healthy donors 
upon incubation with GM-CSF and IL4 were stimulated for twenty-four hours with 1.000 U/mL of IFNα to 
induce the expression of A3A. Cells were then analyzed one day after by WB, or FACS to determine the extent of 
DNA damage and ROS production. One representative donor out of two is shown here.
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second codes for the rtTA transactivator (TetOn, Clontech). Virions released in the supernantant of transfected 
HEK293T cells were then purified through a 25% sucrose cushion, resuspended and their infection titers deter-
mined by exogenous-RT activity against standards of known infectivity. Cells were then transduced at a multi-
plicity of infection of 10 and stable cell lines were obtained upon selection with Puromycin and G418 present on 
the two different pRetroX constructs.

Cellular assays. DNA damage was measured by flow cytometry with an Alexa Fluor 488-conjugated mon-
oclonal antibody directed against the Ser139-phosphorylated form of the histone variant H2AX (γH2AX, 2577, 
Cell Signalling Technology). Unless otherwise specified, dox-treated cells were analyzed 36 to 48 hours after A3A 
induction. Cells were washed then fixed and permeabilized (Fix and Perm kit, GAS003, ThermoFisher Scientific, 
according to the manufacturer’s instructions) prior to incubation with the above-mentioned antibody. Etoposide 
was used as a positive control (E1383, used at 100 μM for 16 hours, Sigma). The extent of cell death was measured 
by propidium iodide staining by flow cytometry (PI, P3566, at 20 μg/mL, Invitrogen).

ROS production was performed using a cellular ROS detection assay kit, according to the manufacturer’s spec-
ifications (Abcam, ab 113851). Briefly, A3A expression was induced by incubation with dox and cells were then 
analyzed 36 to 48 hours post induction. Four hours prior to analysis, cells were counted and 105 cells were incu-
bated with 20 μM of the cell permeable fluorogenic dye 2′,7′–dichlorofluorescin diacetate (DCFDA) for 4 hours, 
prior to flow cytometry analysis. DCFDA is cleaved by cellular esterases within the cell, yielding a metabolized 
form that becomes fluorescent upon oxidation. The oxidative stress inducer, tertiary-butyl hydroperoxide (TBHP 
at 110 μM) was used as a positive control and for these analyses it was added 30 minutes after incubation with 
DCFDA for a total of 3.5 hours, prior to analysis. When specified the Nox inhibitor Diphenyleneiodonium (DPI, 
Sigma, 43088, used at 5 μM) and the ROS buffer N-acetylcysteine (NAC, Sigma, A7250, used at 7 mM) were 
added to the culture media at the time of induction of A3A.

In all cases, cells were analyzed on a FACSCalibur (BD Biosciences) using CellQuest Pro (BD Biosciences).

statistics. Student t tests were performed to determine statistically significance between the indicated condi-
tions in the different experiments performed in this study, as specified in each figure legend.

Data Availability
All relevant data are within the paper.
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