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Research on the Hong-ou-Mandel 
interference with two independent 
sources
si Wang1,2,3, Chen-Xi Liu1,2,3, Jian Li1,2,3 & Qin Wang1,2,3

In this paper, we carry out investigation on the HOM interference between two independent photons 
by using interference filters with different bandwidth both in theory and experiment. Our experimental 
results are consistent with the theoretical predictions. From the experimental and theoretical results, 
we find that interference filters with a narrower bandwidth can help to give a larger coherence length, 
due to the broadening of photon wave-packet in the spatial domain, resulting in an higher interference 
visibility. Furthermore, a combination of interference filters with different bandwidths may help to 
achieve a nice balance between coincidence counting rate and interference visibility. Our present 
work might provide valuable reference for further implementation of HOM interference in the field of 
quantum information.

Quantum interference plays an important role in quantum information processing, such as quantum cryptogra-
phy1, quantum teleportation2, quantum repeater3, and linear optical quantum computation4–6. The Mach-Zehnder 
interferometer is usually used to detect the relative phase-shift between the two beams split from a single light 
source. In 1987, Hong, Ou and Mandel experimentally verified the interference with a beam splitter for two 
photons from a spontaneous parametric down conversion (SPDC) source, which is known as Hong-Ou-Mandel 
(HOM) interference. The HOM interference were performed in many experiments, such as the verification of 
Bell nonlocality7,8, quantum key distribution9. Furthermore, with the help of polarization beam splitter (PBS), 
the HOM interferometer can also be performed for quantum logic operation10, and multi-photon entangled state 
generation, such as Greenberger-Horne-Zeilinger (GHZ) state11,12, W state13, and cluster state14. Recently, inter-
ference with more photons is used for Boson sampling15 and quantum metrology16.

For two-photon cases, HOM interference is a second-order coherent effect in quantum optics that is caused 
by the combination of the indistinguishability and the probability amplitude that both photons are reflected 
and transmitted by the beam splitter17. Both the visibility and the width of HOM dip depend on the degree of 
indistinguishability of the two photons for temporal, spatial, or spectral character. Up to date, there have been 
plenty of interesting work studying on HOM interference. For example, Ou and Legero gave early discussions 
on time-resolved HOM interference between two independent heralded single-photon sources18,19; Mosley et al.  
theoretically modelled photon-pairs in factorable states, and then experimentally realized HOM interference 
without spectral filters20,21; Jin et al. studied HOM interference between different states, e.g., an pure heralded 
single-photon state and a weak coherent state22, two heralded single-photon sources or two thermal sources23; 
Brańczyk displayed theoretical investigations on spectrally-resolved HOM interferences24. Based on previous 
work, we made further investigation on HOM interference between two heralded photons from two independent 
SPDC processes, exploring the influence of spectral filtering. On one hand, we theoretically derived the coinci-
dence probability of four-fold HOM interference considering the transmission functions in spectrum of interfer-
ence filters and simulated it. On the other hand, we experimentally demonstrated the four-fold HOM interference 
and obtained a number of interference curves with different interference filters. At the bandwidth of 2 nm, both 
signal and idler from two SPDC sources, the visibility of HOM interference can reach 94.9% ± 2.2% and the full 
width at half maximum (FWHM) is 254.4 ± 12.4 μm.

This paper is organized as follows. In our paper, we firstly introduce the theory of HOM interference, includ-
ing a basic model of two-photon interference and four-fold HOM interference with two independent SPDC 
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sources. Secondly, we introduce the basic apparatuses and the experimental process in detail. Finally, the experi-
mental results are discussed and a conclusion is summarized.

Results
Theory of HOM Interference. Considering a beam splitter which performs a unitary transformation from 
two input modes, a1 and b1 to two output ones a2 and b2,
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For each input mode, a single photon incidents on the splitter. There are four different input-output relations 
as shown in Fig. 1.

The input state of two photons before arriving at the beam splitter is

ψ = † †a b 0 , (2)in
1 1

where †a1  and †b2  represent creation operators in beam splitter modes, a and b, respectively. The other properties 
of photons are labelled by 1 and 2. When some additional properties of two photons are identical, such as polari-
zation, spectral mode25,26, temporal mode27, arrival time and transverse spatial mode, photons are indistinguish-
able. As a result, the two photons will always come out from the same output port due the destructive interference 
between the cases that both photons are transmitting and that both are reflected (see Fig. 1(b,c)). The process of 
two-photon interference can be modeled with a unitary U as
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Figure 1. Four different ways for two photons to incident on a beam splitter.
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The original HOM interference was performed with two photons from a SPDC source. Here, let’s consider 
the HOM interference with a polarization beam splitter for two independent photons heralded from two SPDC 
source. As shown in Fig. 2, the signal and idle photons from a non-collinear type-II beam-like SPDC source are 
respectively labeled as A and B. Photon A is detected by a single photon detector 1 as a trigger, and the heralded 
photon B is coupled into a single mode fiber and then collimated in horizontal polarization as an input mode 
of polarization beam splitter (PBS), which is transmittive for horizontally-polarized photon and reflective for 
vertically-polarized one. In the same way, the photon D, generated by the second SPDC source and heralded by 
detector 2, is collimated in the vertical polarization and sent to the other input of the PBS. The spatial modes of 
both photons are aligned carefully to ensure that they come out from the same output port mode, but in orthogo-
nal polarization. An half-wavelength plate is inserted into the mode with the fast axis rotated 22.5 degrees relative 
to the horizontal direction, which transform the horizontal/vertical polarization into the diagonal/anti-diagonal 
one. A second PBS separate the horizontal polarization and the vertical one into two different spatial modes, 
which are coupled by two single-mode fibers, followed by two single-photon detectors 3 and 4. And four interfer-
ometric filters are inserted by the detectors to modulate the spectrum of the photons detected.

The joint spectral amplitude function of the signal and idler photon-pair for each SPDC are defined as f1(ωA, 
ωB) and f2(ωC, ωD) respectively, where the joint spectral amplitude is well approximated by f(ωs, ωi)∝α(ωs, ωi)ϕ(Δ
k⋅L)28,29. Here, α(ωs, ωi) is the pump spectral envelope function that assumed to be well described by a Gaussian 
function:

α ω ω
ω ω

πσ

ω ω ω

πσ

=







−





− 











=







−






+ − 












( , ) exp
2

exp
2

,
(4)

s i
p p

s i p

2

2

0

0

where ωp and ω p0
 are the frequency and central frequency of the pump light respectively and σ denotes the pump 

spectral bandwidth. The phase-matching function ϕ(Δk⋅L) in a nonlinear crystal is given by
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where L is the thickness of type-II BBO crystal. Δk can be calculated from the refractive index equation of light 
and the cutting angle of the crystal. The initial four-photon input state is given by

∫ ∫ ∫ ∫ψ ω ω ω ω

ω ω ω ω
ω ω ω ω
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where ω is the angular frequency. Similar to Eq. (3), the state after the second PBS is then given by

Figure 2. Experimental setup of HOM interference. There are two consecutive spontaneous parametric down-
conversion (SPDC) sources and an interferometer. BBO: a β-barium borate (BBO) crystal cut for collinear 
type-I phase-matching; BBO-II: type-II BBO; HWP: half-wave plate; 2 nm IF: interference filter with a full 
width at half maximum (FWHM) of 2 nm; APD: single-photon detector (The silicon avalanche photodiodes, 
SPCM-AQRH-13-FC by Excelitas Technologies, are used as single photon detectors, with the typical photon 
detection efficiency about 63% at 780 nm).
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where, τ is the time delay between path B and path D. The operator describing a click for detector 1 is written as

∫ ω ω ω φ ω= 〈 |

†P a ad ( ) 0 0 ( ) ( ), (8)A 1 1 1 1 1

and similar to other detectors 2, 3, and 4 can be similarly given by

∫ ω ω ω φ ω= 〈 |

†P b bd ( ) 0 0 ( ) ( ), (9)B 2 2 2 2 2

∫ ω ω ω φ ω= 〈 |

†P c cd ( ) 0 0 ( ) ( ), (10)C 3 3 3 3 3

∫ ω ω ω φ ω= 〈 |

†P d dd ( ) 0 0 ( ) ( ), (11)D 4 4 4 4 4

where φ1(ω1), φ2(ω2), φ3(ω3) and φ4(ω4) are the transmission functions in spectrum of the four interference 
filters. This transmission function approximate a Gaussian function which can be written as φ(ω) = exp{−
[(ω − ω0)/2πσs]2}, where ω0 is the center frequency of single photon and σs is a parameter related to the half width 
of the filter. Then we can calculate the four-fold coincidence probability P4 between two independent sources by 
the following formula:
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Inserting Eqs (7–11) into Eq. (12) and using some operations, e.g. ω ω δ ω ω| | = −′ ′⟨ ⟩†a a0 ( ) ( ) 0 ( ), we can write 
the coincidence probability as
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To simplify the Eq. (13), two new functions ω ω ′g ( , )B B1  and ω ω ′g ( , )D D2  were defined as
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Using the nature of delta functions, therefore the expression of p4 can be simplified as
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Figure 3. Experimental result of HOM interference curve. The coincidence probability (normalized) for 
photons from two independent SPDC sources pumped by pulsed lasers. These points represent experimentally 
measured data, and these full lines represent the results of Gaussian fitting based on these points. In all the 
interference curves, all interference filters are spectrally centered at 780 nm. The two heralding photons (A&C) 
pass through a 2 nm wide (at full width at half maximum) spectral filter. The two heralded photons (B&D) pass 
through three different sets of spectral filters: both with a 2 nm filter (square points, V = 94.9% ± 2.2%); B with 
a 2 nm and D with a 3 nm filter (circular points, V = 93.0% ± 2.3%); both with a 3 nm filter (Triangle points, 
V = 90.8% ± 1.8%).

Figure 4. Simulation of HOM interference. The red curve in the figure is the theoretical curve of four-fold 
coincidence probability in port 1, 2, 3 & 4, and the black point is the actual measured data in the experiment. 
The error bars show the statistical fluctuation caused by finite data size.

VI TF (μm) EF (μm)

(A) 90.8% ± 1.8% 226.7 ± 0.9 198.9 ± 7.7

(B) 93.0% ± 2.3% 237.5 ± 0.6 226.8 ± 11.5

(C) 94.9% ± 2.2% 248.2 ± 0.2 254.4 ± 12.4

Table 1. The interference filters at output port 3 & 4 are set with: (A) 3 & 3 nm, (B) 2 & 3 nm, (C) 2 & 2 nm; and 
the interference filters at output port 1 & 2 are all set at 2 nm.
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Then we calculated the visibility of the HOM interference by

=
−

V
p p

p
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(17)
max min

max

where pmax is the four-fold coincidence probability of no interference, and pmin is the four-fold coincidence 
probability of HOM dip. Based on the derivation above, we known that the coincidence probability which 
effect the interference visibility is related to the choice of interference filters. In general, pmax = p4(τ = ∞), and 
pmin = p4(τ = 0).

Experimental setup. In the experiment, a mode-locked Ti:Sapphire pulsed laser with it’s center wave-
length at 780 nm and the pulse length of less than 100 fs, is frequency-doubled into ultraviolet pulses at 390 nm 
by a β-barium borate (BBO) crystal cut for collinear type-I phase-matching. Then the 390 nm laser pumps 
two β-BBOs in sequence. Both of the crystals are 1 mm thick, and cut at angles θ0 = 42.62° and φ = 30°, for 
non-collinear type-II beam-like phase-matching. We get the two photon-pairs in mode A&B and C&D respec-
tively. Finally, the photons in mode A and mode C enter into the single-photon detector respectively through two 
narrow-band filters with 2 nm FWHM. Two photons in mode B&D were coupled into a single mode fiber with an 
aspherical lens (ModelF280FC−780). What is more, the photons in mode B and mode D would pass through the 
interferometer via two optical fibers.

Due to the path difference between the two SPDC sources is about 0.81 m, we use two optical fibers with different 
lengths to compensate it within 0.5 m, so that these two photons in mode B&D could enter into the polarization 
beam splitter (PBS) at the same time. The length that the photons in mode B pass through the optical fibers is 2.57 m, 
D pass through the optical fibers is 2.01 m. Due to the fiber refractive index is 1.45, the difference between two opti-
cal fibers could approximately compensate the spatial distance between two BBO crystals. In addition, two photons 
in mode B&D are collimated and injected into the PBS at the same time by adjusting the distance in mode D.

During the experiment, the two-fold coincidence counting rates of both SPDC sources are about 7 kHz. To 
measure the HOM interference curve from the two independent photons, we record the four-fold coincidence 
counts while adjusting the position of collimator in mode D. The photons from port 3 and port 4 enter into the 
single-photon detector respectively by two narrow-band filters with different FWHW. The quadruple coincidence 
counting rate among the single-photon detectors (APDs) 1, 2, 3 & 4 is about 1 Hz when the position is far away 
from the dip. And, by changing the FWHM of narrow-band filter in port 3 & 4, we can gain many different kinds 
of HOM interference curves.

Discussion
It is meaningful to compare a variety of filters that have different kinds of bandwidths. According to the the-
oretical derivation, the interference visibility is related to the entangled light source and the spectrum of the 
interference filters. When keeping the spectrum parameter of the down-conversion light source in constant, the 
interference visibility is only related to the spectra of interference filters. By fixing the narrow-band filters in port 
3&4, the spectrum of two triggered photons could be fixed, so the HOM interference curve could be changed by 
manipulating the interference filters before detectors in port 3 & 4.

In Fig. 3, we do comparison between HOM interference curves by setting interference filters with differ-
ent bandwidths (2 nm or 3 nm), where the points are experimental data and curves correspond to the fitting 
results. Obviously, the interference curve presents a longer coherent length for the sets utilizing interference filters 
with a narrower bandwidth, see the curve marked with 2 & 2 nm. This is due to the broadening of the photon 
wave-packet in the spatial domain caused by a narrower interference filter. Meantime, a set of narrower inter-
ference filters (2 & 2 nm) can result in a lower coincidence counting rate compared with the set using a broader 
bandwidth (3 & 3 nm). On the other hand, we find that the HOM interference visibility between two independent 
sources also varies with the change of filtering. Among the above three sets, the one with two narrower interfer-
ence filters 2 & 2 nm shows a highest visibility, which is due to the eliminating of the frequency distinguishability 
of photons by using narrower filters. The set of filters marked with 2 & 3 nm presents medium coincidence counts 
and a moderate visibility. Therefore, the combination of interference filters with difference bandwidths can give a 
nice balance between coincidence counting rate and interference visibility among the three curves.

In Fig. 4, we compare the experimental data with our theoretical predictions, where the points represent the 
experimental data and the curves refer to theoretical calculations. The experimental visibility of interference 
(VI), theoretical FWHM (TF) and experimental FWHM (EF) are listed out in Table 1, respectively. We find that 
the theoretical curves and experimental data are roughly in consistent with each other. Since light dispersion and 
purity of single photons are not taken into consideration in theoretical derivation, the visibility that we obtained is 
100%. While in practical experiments, the above issues do exist and thus decrease the interference visibility. That 
is why the theoretical curve and the experimental data still have a slight deviation, see Fig. 4(A–C).

Conclusion
In summary, we have theoretically and experimentally investigated the four-fold HOM interference curves of two 
independent SPDC sources by employing different interference filters, getting pretty well consistence between 
experiment and theory. We find that a narrower interference filter can help to increase the interference visibility 
of HOM interference. Furthermore, by properly choosing combination of interference filters with different band-
widths, a nice balance between counting rates and interference visibility can be obtained. This work may provide 
valuable references for the implementation of HOM interferences, and further pave the way towards practical 
applications of quantum technologies.
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