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enzymatic origin and various 
curvatures of metabolic scaling in 
microbes
Liyan Li & Genxuan Wang

the famous and controversial power law is a basal metabolic scaling model mainly derived from 
the “surface rule” or a fractal transport network. However, this law neglects biological mechanisms 
in the important active state. Here, we hypothesized that the relative metabolic rate and growth 
rate of actively growing microbes are driven by the changeable rate of their rate-limiting enzymes 
and concluded that natural logarithmic microbial metabolism (lnλ) and growth (or biomass) (lnM) 
are both dependent on limiting resources, and then developed novel models with interdependence 
between lnλ and lnM. We tested the models using the data obtained from the literature. We explain 
how and why the scaling is usually curved with the difference between microbial metabolic and growth 
(or biomass’s) half-saturation constants (KM, Kλ) in the active state and agree that the linear relationship 
of the power law is a particular case under the given condition: KM = Kλ, which means that the enzyme 
dynamics may drive active and basal metabolic scaling relationships. our interdependent model is more 
general than the power law, which is important for integrating the ecology and biochemical processes.

Since Louis Pasteur first performed quantitative studies of microbial growth at the dawn of microbiology in 
18571,2, microbes have been subjected to more complete and accurate studies on their growth kinetics, physiol-
ogy and metabolism3–5 over a century. Within this historical context, microbial growth dynamics models, which 
simulate the behaviors of microbial growth dynamics and the development of system architecture6, have been 
applied to the various large-scale processes7–9. Among these models, the farthest-reaching coarse-grained model 
is Monod’s equation, an unstructured model, describing functional relationships between the specific growth 
rate (μ) in a culture and a single essential growth-limiting substrate concentration (Cs). The model may take the 
following forms10:
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in which Cx is the concentration of microbial cells, M is the biomass of microbial cells, dCx/dt and dM/dt are 
the microbial growth rate, μmax is the maximum specific growth rate, and Ks is the Monod constant, i. e., the 
half-saturation constant for the substrate.

Many people regarded the Monod equation as a theoretical one describing the relationship between the 
microbial specific growth rate (or biomass) and limiting resources, as the Monod equation is in the same form 
as the Michaelis-Menten equation, which is one of the most famous models of enzyme kinetics and includes 
constants with mechanistic meaning11,12. However, the Michaelis-Menten equation was derived from the mecha-
nism of enzymatic reaction, while the Monod equation was developed from a curve-fitting exercise. The Monod 
equation is purely empirical and lacks a theoretical basis13, so none of the Michaelis-Menten constants, which 
are appropriate for an enzyme-substrate system, can be applied to a substrate-cell system14. Over the last few 
decades, numerous researchers have devoted great efforts to proposing many powerful theoretical interpretations 
to support the Monod equation, such as the thermodynamics of a microbial growth process13, and mass transfer 
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concentrations14. A new mechanical model of the relationship between microbial growth and limiting resources 
may be helpful for deepening the understanding of the microbial growth kinetics.

Metabolism, a collection of chemical transformations for maintaining life in a living cell, includes the biolog-
ical processes that enable the exchange of material and energy between the body and the outside world and the 
self-renewal process of matter and energy in the body3. A long time ago, researchers discovered a certain relation-
ship between metabolic rate and body size (or biomass), in which small-bodied organisms generally have higher 
mass-specific metabolic rates than larger-bodied organisms. The same is true at the unicellular level for free-living 
single-celled microbes15,16. Much progress has been made in understanding metabolism via allometric studies of 
many small organisms17–19. Furthermore, the relationship between body size and metabolism known as the power 
law20, is one of the most fundamental features of life, with scaling as presented in Eq. (3):

λ λ= M (3)a
0

where λ is the whole-organism basal metabolic rate (in watts or another unit of power), λ0 is a normalization 
constant that is independent of body size or temperature, M is organismal volume (often expressed in biomass, in 
kg), and α is a scaling exponent.

In 1932, based on animal data, Kleiber concluded that the exponent α is a constant equal to 3/420. Then, to 
explain why α is equal to 3/4, the metabolic theory of ecology (MTE) was put forward by Brown, West, Enquist 
and colleagues21–23. The power law is predominant in much empirical literature, but the MTE is not applicable to 
microbes5,16, mainly because of the value of α24–26, which increasing lines of evidence suggest that α is not equal 
to 3/4, for example, in some small unicellular organisms, the value of α is greater than 3/419,27. The scaling expo-
nent varies not only between taxa but also between cells of an individual species and between species of the same 
taxonomic group28,29. It is clear that α is variable and inconsistent with an assumption underlying the MTE28, 
and λ0 also exhibit a very large range of variation30,31. Both λ0 and α, which shift dynamically in plants, animals 
and microbes, are convincingly influenced by limiting resources, including water, food, and oxygen etc32–34, as 
are metabolism and body mass. Many researchers have used the concept of the Michaelis-Menten equation12 
to describe the relationship between metabolism and limiting resources35–37, which like the form of the Monod 
equation, lacks theoretical support and an underlying biological mechanism. Is there a mechanical and theoretical 
model for the relationship between microbial metabolism and limiting resources?

Scientists have long sought to establishing a universal quantitative theory explaining the correlation between 
metabolism and growth in organisms. Since the allometric growth relationship was put forward38, increasing 
numbers of researchers have become interested in this pursuit. In microbiology, microbial growth and metab-
olism have been extensively and separately investigated3–5. Generally, researchers investigated the relations of 
microbial growth (or biomass) to metabolic rate usually using the power equation (Eq. 1), so a linear relation-
ship between metabolic rate and biomass in microbes has been detected in many studies16,39. Nevertheless, there 
has been disagreement about the cause versus effect relationship between these variables over time, leading to 
the conclusion of four not necessarily mutually exclusive possibilities: metabolism drives growth; growth drives 
metabolism; growth and metabolism affect each other by reciprocal feedback; and (or) growth and metabolism 
are similarly, but independently related to a third factor or set of factors40. Every possibility has its own supporters 
who provide many experimental and theoretical lines of evidence in plants, animals and microbes to support 
their hypotheses41–45, so it is difficult to disentangle cause vs. effect. Therefore, the questions of whether there is a 
certain relationship between microbial metabolism and growth and which is the dominant force between them 
both remain unanswered. Given these unanswered questions and the variation in λ0 and α, will the relationship 
between microbial metabolism and growth still be linear or follow the power equation?

In fact, the traditional power law is a model that is specifically used for the basal (or inactive) metabolic rate; 
thus, the log-log relationship between metabolic rate and body size (or biomass) is linear. If the metabolic rate is 
active, what is the result? Previously, Delong et al.29 showed that active and inactive metabolic rates scale linearly 
with body mass based on data collected at the interspecies level. Therefore, to obtain a more general understand-
ing of microbial growth and metabolism, we aimed to synthesize data from published studies. In the present 
study, at the interspecific level, we developed resource-dependent equations of natural logarithmic microbial 
metabolism (lnλ) and growth (or biomass) (lnM) and then obtained equations interdependent between lnλ and 
lnM based on the hypothesis that the relative metabolic rate and the relative growth rate in microbes are driven by 
their own rate-limiting enzymes, which is generally supported by data compiled from many articles on microbes. 
We found that active metabolic scaling is generally nonlinear, its curvature is derived from the difference between 
microbial metabolic and growth (or biomass’s) half-saturation constants (KM, Kλ) in the active state, and par-
ticularly, for the same values of KM and Kλ, there is a linear scaling relationship. Therefore, we argue that a power 
law based on the basal metabolism may be the particular dynamics in our new interdependent model, which 
means that, at least in microbes, enzyme dynamics rather than the surface rule or a fractal resource transport 
network21,46,47 is a main driver of the active and basal metabolic scaling curvatures.

the enzyme-Driven Metabolic scaling Model
the resource-dependent active metabolism model. Metabolism is a collection of chemical transfor-
mations and enzyme-catalyzed reactions that perform a variety of functions, ranging from nutrient breakdown to 
the polymerization of macromolecules. It is reasonable to hypothesize that the relative metabolic rate of microbes 
(dλ/λ) is constrained by the key enzymatic rate of their metabolism48, under the conditions that other factors are 
constant over time:

λ
λ

= λ
d dv

(4)
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where λ is the active metabolic rate, vλ is the key enzymatic rate of the metabolism, dλ is the differential of λ and 
dvλ is the differential of vλ.

Equation (5) on the relationship between the metabolic rate and the key enzymatic rate of metabolism was 
obtained by integrating Eq. (4):

λ = λae (5)bv

where a is the coefficient of transformation, and b is the efficiency of vλ.
Eq. (6) on the relationship between the metabolic rate and the concentration of a limiting resource was 

obtained by taking the logarithm and substituting the Michaelis-Menten equation12 into Eq. (5):

λ
λ

=
⋅

+
+λ

λ λ

C
K C

aln ln ln
(6)

s

s

max

where Csλ is the concentration of a limiting substrate, ln λmax = bVλ is the maximum metabolic rate when Csλ 
approaches saturation and other resources remain constant, Vλ is the maximum rate of the key enzymatic reac-
tion of the metabolism in the Michaelis-Menten equation, and Kλ is the half-saturation constant.

the resource-dependent growth model. Most of the reactions that occur during microbial growth are 
enzymatic reactions. It is reasonable to hypothesize that the relative rate of microbial biomass (the specific growth 
rate) is constrained by the key enzymatic rate of microbial growth in each growth stage under the conditions that 
other factors are constant over time:

μ = = μ
dM
M

dv (7)

where μ is the specific growth rate, vμ is the key enzymatic rate in the growth process, M is the biomass, dM /M is 
the relative rate of change in microbial biomass, and dvμ is the partial differential of vμ.

Equation (8) on the relationship between the specific growth rate and the key enzymatic rate in the growth 
process was obtained by integrating Eq. (7):

μ = μh v (8A)1

= μM ce (8B)h v2

where c is the coefficient of transformation, and h1, h2 is the efficiency of the key enzymatic rate in the growth 
process.

Equation (9) on the relationship between the specific growth rate and the concentration of a growth-limiting 
resource was obtained by taking the logarithm and substituting the Michaelis-Menten equation12 into Eqs (8A) 
and (8B):
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where Csμ, CsM is the concentration of a growth-limiting substrate, μmax = h1Vμ is the maximum rate in the growth 
process when Csμ approaches saturation and other resources remain constant, ln Mmax = h2VM is the maximum 
biomass of microbial cells in the growth process when CsM approaches saturation and other resources remain 
constant, Vμ, VM is the maximum rate of the key enzymatic reaction of growth in the Michaelis-Menten equation, 
and Kμ, KM is the half-saturation constant.

the natural logarithmic model with interdependence between microbial growth and metabo-
lism. Eqs (10A), (10B), (11A) and (11B) were obtained by substituting Eqs (9A) and (9B) into Eq. (6) or vice 
versa under the conditions of the same types of limiting substrates for both microbial metabolism and growth 
and Kλ ≠ KM.
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Eqs (12A) and (12B) were obtained when Kλ = KM, and describe the relationship between metabolism and 
biomass, i.e., the specific growth rate in microbes.

λ = +d M eln ln ln (12A)

λ= +M f gln ln ln (12B)
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Eq. (12) is obtained by taking the logarithm of equation (13):

λ = eM (13A)d

λ=M g (13B)f

The form of Equation (13) is similar to that of Eq. (3) and, expressly, the power law is a particular form of the 
interdependent law for both key enzymatic dynamics with the same half-saturation constant.

Result
the enzyme-driven relationship between a limiting resource and active metabolism. The basic 
hypothesis that the relative rate of microbial metabolism is constrained by the key enzymatic rate of the metabolism 
and the predictions (Eq. 5) were supported by the data compiled from several publications. The relationship between 
enzyme activity and metabolic rate is exponential (Fig. 1). In a soil bacterium, the soil respiration rate increased 
exponentially with acid phosphatase activity (Fig. 1A); the acid phosphatase activity was measured on day 7, with 
glucose amendment producing the highest bacterial concentrations (data from Anderson et al.49). The respiratory 
electron transport system (ETS) activity, which reflects the sum of the activities of nicotinamide adenine dinucle-
otide (NADH) oxidoreductase and succinate dehydrogenase increased exponentially with the respiratory oxygen 
consumption in anaerobic (tryptone-yeast extract-sea salt medium containing nitrogen, TYSN) cultures of a marine 
bacterium (Pseudomonas perfectomarinus) (Fig. 1B) (data from Packard et al.50). The dehydrogenase activity in two 
Gray Luvisolic soils had a positive effect on microbial respiration (Fig. 1C); the respiratory activity was determined by 
incubating the soil samples with a CO2 trap for 10 days (data from Vvsr et al.51). The soil bacterial respiration increased 
with alkaline phosphatase activity and phosphodiesterase activity (Fig. 1D) (data from Frankenberger and Dick48).

The resources dependence of metabolic rate (Eq. 6) was tested by data on limiting resources and metabolic rate 
from several publications (Fig. 2). Natural logarithmic bacterial production increased with chlorophyll a in eastern 
waters of Hong Kong (Fig. 2A) (data from Yuan et al.52). In sea water, the trajectory of the natural logarithmic bacte-
ria’s uptake by bacteria of 14C-glycine with different substrate (glycine) concentrations is curved (Fig. 2B); bacterial 
samples were incubated for 1 h (data from Manahan and Richardson53). Rhododendron leaves and wood veneers 
were sampled on days 28, 44, 77, 111, and 144 (data from Burns54). The changes in natural logarithmic microbial res-
piration rates formed a curve and were associated with decaying plant litter (rhododendron and wood veneer) with 
increasing dissolved inorganic nitrogen concentrations (Fig. 2C). Natural logarithmic fungal respiration increased 
with the ergosterol content (Fig. 2D) in soil samples from vegetation zones (data from Imberger and Chiu55).
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The enzyme-driven relationship between limiting resources and specific growth rate. The 
microbial mass-specific growth rate is the relative growth rate of microbial biomass. Equation (8) shows that the 
microbial specific growth rate or biomass increases linearly or exponentially with enzyme activity respectively 
(Fig. 3). Figure 3A shows that microbial biomass increased exponentially with dehydrogenase activity in surface 
samples (0–15 cm) of loam (organic C, 0.72% ; pH, 7.7) soil (data from Dar56). ETS activity increased exponen-
tially with bacterial biomass in anaerobic (TYSN) cultures of a marine bacterium (P. perfectomarinus) (Fig. 3B). 
Biomass was monitored by measuring absorbance (A1cm 600) at 600 nm in a 1 cm cell. TYSN- −NO3  and TYSN- −NO2  
represented two phases of respiration in anaerobic cultures of P. perfectomarinus (data from Packard et al.50). The 
relationship between alkaline phosphatase activity and soil microbial biomass is exponential (Fig. 3C) 
(Frankenberger and Dick48). The relative growth rate increased linearly with urease activity in the marine 
microalgae species Prorocentrum minimum (Fig. 3D). Urease activities of P. minimum cultures grown with urea 
and NH4+ sources at the exponential growth phase were used to obtain this relationship (data from Fan et al.57).

The limiting resource-dependent equations of natural logarithmic biomass (Eq. 9A) and specific growth rate 
(Eq. 9B) were supported by data compiled from many papers. There is a curvilinear relationship between limiting 
resources and specific growth rate or natural logarithmic biomass (Fig. 4). The specific growth rate increased with 
nutritional capacity following the dynamics described by Eq. (9B) (Fig. 4A). RNA and protein extracted from the 
medium of strains derived from the Escherichia coli K12 strain MG1655 were used to calculate the nutritional 
capacity and mass-specific growth rate, respectively (data from Scott et al.58). The relationship between the rela-
tive exponential-state growth rate of a marine bacterium (Pseudomonas doudoroffii 70) and Na+ concentration 
is curvilinear (Fig. 4B). The P. doudoroffii 70 was cultured in minimal medium with succinate was added as a 
carbon source (data from Wisse and Macleod59). The specific growth rate of a Baltic Sea filamentous cyano-
bacterial species (Nodularia spumigena) in the exponential period increased only with salinity varying from 0 
to 10 PSU following the dynamics described by Eq. (9B) (Fig. 4C) (data from Rakko and Seppälä60). The spe-
cific growth rates of two marine microalgae (Dunaliella tertiolecta and Phaeodactylum tricornutum) exhibited a 
curvilinear response to photon flux for growth (Fig. 4D) (data from Quigg and Beardall661). Maple leaves were 
sampled on days 14, 28, 44, 77, and 111 (data from Burns54). The natural logarithmic fungal biomass associated 

Figure 1. Metabolic rate increases exponentially with enzymatic activity in microbes, following Eq. (5). (A) Acid 
phosphatase activity vs soil respiration rate (circle) in a soil bacterium (data from Anderson et al.49). (B) ETS 
activity vs respiratory oxygen consumption (triangle) in the marine bacterium Pseudomonas perfectomarinus 
(data from Packard et al.50). (C) Dehydrogenase activity vs microbial respiration (square) in two Gray Luvisolic 
soil zones (data from Vvsr et al.51). (D) Enzyme activity vs soil bacterial respiration (hollow diamond: alkaline 
phosphatase, solid diamond: phosphodiesterase) (data from Frankenberger and Dick48). All parameter values are 
given in SI Appendix Table S2.
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with decaying plant litter changed with increasing dissolved inorganic nitrogen concentrations (Fig. 4E). The 
steady-state growth rate of a marine diatom (Thalassiosira pseudonana) increased with irradiance following the 
dynamics described by Eq. (9B) (Fig. 4F) (data from Berges and Harrison62).

the natural logarithmic model with interdependence between microbial growth and metabolism.  
The interdependent relationship between microbial metabolism and biomass or specific growth rate in natu-
ral logarithmic space (Eqs 10A and 10B) was tested by data compiled from Vvsr et al.51 (Fig. 5). In two Gray 
Luvisolic soil zones of Saskatchewan, microbial biomass and respiration rate exhibited a curvilinear relationship 
(Fig. 5A,B). At the same locations, the relationship between the fungal biomass and respiration rate also showed 
a curve similar to that in Fig. 5A–D).

Three statistical parameters, namely, the goodness of fit (R2), residual sum of squares (RSS), and Akaike’s 
information criterion (AIC)63,64, are regarded as the criterion with which to determine which model is the best 
representation of a curve. The lnλ values were regressed with respect to M or lnM using exponential, power 
and mass-dependent equations using the data shown in Fig. 5A,C. The power equation yielded slightly lower 
AIC values than mass-dependent functions we proposed here (Eq. 10A) (9.0983 < 10.9416; 1.0294 < 1.1482), 
but our model produced lower RSS values (1.342 < 1.665; 0.504 < 0.743) and higher R2 values (0.7552 > 0.6963; 
0.9081 > 0.8644) (Table 1). Therefore, we argue that our model (Eq. 10A) is better than the traditional power 
equation (Eq. 3) based on the values of R2, AIC, and RSS.

Discussion
Our Eqs (5), (6), (8), (9), and (10) satisfactorily characterized microbial data. The analytical results support our 
hypothesis and predictions (Table 1 and SI Appendix). The relative rates of microbial growth and metabolism are 
interdependent. The driver of metabolic scaling may be enzymatic dynamics rather than the ratio of surface area 
to volume or a fractal resource transport network21,46,47.

The most basic indicator of metabolism is the metabolic rate (λ); the metabolism and body size (body mass or 
biomass, M) of organisms scale as λ ∝ Mα20. In the late 1990s, Rubner first described the quantitative relationship 

Figure 2. Metabolic rate increases with the concentration of limiting resources in microbes, following Eq. (6).  
(A) Bacterial production (BP) vs chlorophyll a in eastern waters (data from Yuan et al.52). (B) Substrate 
concentration vs the rate of uptake of 14C-glycine by marine bacteria (data from Manahan and Richardson53). 
(C) Dissolved inorganic nitrogen concentration vs microbial respiration rates associated with decaying 
rhododendron (hollow square) and wood veneer (solid square) leaf litter (data from Burns54). (D) Soil 
ergosterol content vs fungal respiration (diamond) in a vegetation zone (data from Imberger and Chiu55). The 
parameter values are given in SI Appendix Table S2.
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between metabolic rate and body size38; since then, many mathematical scaling models of metabolism have been 
developed to explain this allometric relationship. One of the famous models is a fractal-like distribution network 
(WBE) model21,46,47, in which the physicist West and ecologists Brown and Enquist summarized the circulatory 
system of animals and the vascular bundle system of plants into a resource supply network (WEB model) with 
self-similar structure, explaining Kleiber’s law (α = 3/4), in 1997. Another famous model is the metabolic-level 
boundaries (MLB) model proposed by Glazier which based on physical limits, explains why the exponent α var-
ies from 2/3 to 165,66. In addition, there are many other models to explain the different exponential values, such 
as efficient transportation networks67, cell optimization growth theory (α = 2/3 to 1)68, structural theory (large 
endotherm:α = 3/4; ectotherm:α = 2/3; small endotherm:α = 1/3 to 3/4)69, and energy consumption (small and 
medium animals:α = 3/4; large animals:α = 1)70. First, what these theories have in common is that the relation-
ship between metabolism and body mass is linear in the logarithmic space. Because of the limitation of employing 
linear regression, these methods produce only isolated exponential values (the slopes of the lines). However, we 
can obtain a continuously changing dynamic for the exponent α because we obtained a curvilinear relationship 
between microbial metabolism and biomass. When we used operations of partial derivatives with respect to our 
curve (∂lnλ/∂(lnM-lnc1)), we obtained a continuous exponential data set containing the slopes of all the tangent 
lines tangent to this curve. Second, these theories mentioned above usually borrowed concepts from mathemat-
ical geometry, such as fractal geometry or physical limits21,38,65–70 to explain the allometric relationship and paid 
relatively little attention to the essence of metabolism, namely, that it is a series of enzymatic reactions. However, 
we argue that enzyme activities drive the relationship between microbial metabolism and biomass because 
metabolism and growth are a series of biochemical reactions that furnish the materials and energy necessary for 
biological growth, development, reproduction and evolution. In addition the data fitted by Eqs (5), (6), (8) and (9)  
(Figs 1–4) supported our hypothesis and predictions that enzymes drive the relative rate of both microbial metab-
olism and growth. We do not deny that various theories proposed above, such as the ratio of surface area to 
volume or the fractal resource transport network, may also affect scaling dynamics by regulating the energy 
balance or substrate concentration; we simply note that they do not take into account the importance and driving 
force of the key enzymes. Furthermore, the investigation of Miettinen and Björklund suggested that the meva-
lonate pathway activity which is a metabolic pathway essential for synthesizing isopentenyl pyrophosphate and 
dimethylallyl pyrophosphate in eukaryotes, archaea, and some bacteria71,72, contributes to the nonlinearity of the 
scaling between cell size and mitochondrial function73. Furthermore, fundamental aspects of enzyme activities 

Figure 3. Biomass (growth rate) increases exponentially with enzymatic activity in microbes, following Eqs 
(8A) and (8B). (A) Dehydrogenase activities vs soil microbial biomass (hollow circle) (data from Dar56). (B) ETS 
activity vs marine bacterial biomass (hollow triangle: TYSN- −NO3 , solid triangle: TYSN- −NO2 ) (data from 
Packard et al.50). (C) Alkaline phosphatase activity vs soil microbial biomass (hollow diamond) (data from 
Frankenberger and Dick48). (D) Urease activity vs the relative growth rate of Phaeodactylum tricornutum 
(hollow square) (data from Fan et al.57). The parameter values are given in SI Appendix Table S3.
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could allow deviations from the traditional power law in principle, as we have proposed: the relationship between 
microbial metabolism and biomass is curvilinear and driven by their respective key enzymes.

The Monod equation, a microbial growth dynamics models, is an empirical equation and has the same form as 
the Michaelis-Menten equation11. As we validated here, the forms of the Monod equation and empirical growth 
law are actually part of the predictions of our hypothesis, that is, Equations (8) and (9). Unsurprisingly, accumu-
lated evidences in this field5,10 also supports our hypothesis (Fig. 4). We provide a mechanical explanation for 
the relationship between microbial growth (biomass) and limiting resources, while the Monod equation did not.

Figure 4. The limiting resource dependence of growth rate or natural logarithmic biomass in microbes, 
following Eqs (9A) and (9B). (A) The nutritional capacity vs the mass-specific growth rate of Escherichia 
coli K12 strain MG1655 (hollow circle) in medium without antibiotics (data from Scott et al.58). (B) Na+ 
concentration vs the relative growth rate of the marine bacterium Pseudomonas doudoroffii 70 (hollow 
triangle) in minimal medium, with succinate as a carbon source (data from Wisse and Macleod59). (C) Salinity 
vs the relative growth rate of a cyanobacterium, Nodularia. spumigena (hollow square) (data from Rakko 
and Seppälä60). (D) Photon flux vs the specific growth rate of Dunaliella. tertiolecta (hollow diamond) and 
Phaeodactylum. tricornutum (solid diamond) (data from Quigg and Beardall661). (E) Dissolved inorganic 
nitrogen concentration vs fungal biomass associated with maple leaves (solid short line segments) (data from 
Burns54). (F) Irradiance vs growth rate for the marine diatom Thalassiosira pseudonana (plus sign) (data from 
Berges and Harrison62). The parameter values are given in SI Appendix Table S3.
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Semi-logarithmic equations, in which the dependent variable is a natural logarithm, are primarily used in 
empirical economics74, and to describe the dynamics of some microbes, such as the isothermal semi-logarithmic 
survival curves of microorganisms and spores75. Nevertheless, our two resource-dependent semi-logarithmic 
equations, namely, Eqs (6), (9), differ from the research that directly introduced the Michaelis-Menten equation to 
describe the relationship between metabolic rate and limiting resources34–37. For example, the Michaelis-Menten 
equation is generally used to directly depict the gross photosynthetic rates relative to irradiance at the surface 
in aquatic systems35. López-Urrutia et al. extended the MTE to account for the relationship between individual 
gross photosynthesis and photosynthetically active radiation in the oceans using the Michaelis-Menten equa-
tion as well34. Sinsabaugh and Shah36 combined metabolic scaling theory23 and kinetic measures of extracellular 
enzyme activity to relate bacterial productivity to AppVmax, which is a measure of enzyme abundance (catalytic 
capacity), and Aguiar-González et al.37 used the biochemical enzyme kinetic model (EKM) of respiratory oxygen 
consumption based on the substrate control of respiratory electron transfer systems. These are examples in which 
the Michaelis-Menten equation was used directly to consider the relations between metabolic rate (λ) and limiting 
resources. However, we predicted that there is a relationship between lnλ or lnM and limiting resources (Eqs 6 and 
9) based on our hypothesis that both the relative metabolic rate (dλ/λ) and growth rate (dM/M)10 are constrained 
by their own rate-limiting enzymes. Equations (10) and (11) are not completely semi-logarithmic; their correlation 
is strong when the dependent variables are all in the natural logarithm. We proposed the concept of a relative met-
abolic rate or biomass, which is different from the studies mentioned above that directly used the metabolic rate.

Figure 5. The natural logarithmic interdependent relationship between microbial biomass and metabolism, 
following Eq. (10A) and (10B). (A,B) In two Gray Luvisolic soil zones of Saskatchewan: the Equation (10) 
prediction is shown by a solid curved line (hollow diamond) and a dashed curved line (solid diamond) (data 
from Vvsr et al.51). (C,D) In two Grey Luvisolic soil zone of Saskatchewan: Equation (10) prediction is shown by 
solid curved line (hollow short line segments) and dash curved line (solid short line segments) (data from Vvsr 
et al.51). The parameter values that provide this best fit are given in SI Appendix Table S4.

Model Calculated equation RSS R2 AIC

Exponential function λ = ′ + ′a b Mln ln
Fig. 5A 122.9 0.0656 52.1137

Fig. 5C 2.859 0.4785 14.5047

Power function λ = ′ + ′a b Mln ln ln
Fig. 5A 1.665 0.6963** 9.0983

Fig. 5C 0.743 0.8644*** 1.0294

Mass-dependent function λ = + ′′ ∗ − ′
′ + − ′

dln a M b
c M b

(ln )
(ln )

Fig. 5A 1.342 0.7552*** 10.9416

Fig. 5C 0.504 0.9081*** 1.1482

Table 1. The comparison of model application results for microbial metabolic rate and biomass. **Present: 
p < 0.01; ***present: p < 0.001.
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The long-standing question of metabolic scaling may be resolved by our logarithmic equation with inter-
dependence between metabolism and biomass. Equation (10) provides a new mechanical model for quan-
titatively analyzing the relationship between microbial metabolism and growth. This equation predicts that 
double-logarithmic dynamic shifts in the metabolism and biomass of most microbes are curvilinear, rather than 
linear, as predicted by the MTE and other models predicted them were under the conditions of the same types of 
limiting substrates in both microbial metabolism and growth and Kλ ≠ KM. Furthermore, the double-logarithmic 
dynamics would be linear under the conditions of the same types of limiting substrates in both microbial metab-
olism and growth and Kλ = KM, scaling as in Equation (11), as occurs in the power law. The smaller the difference 
between Kλ and KM is, the smaller the scaling dynamic curvature is under an active state (Fig. 6). When K = 0, the 
metabolic rate is basal, and with a shift in K values, microbes need energy to sustain not only basal metabolism, 
but also active activities and growth. In reality, numerous datassets of the nonlinear scaling dynamics have been 
analyzed using the linear regression, which may be able to simplify equations, similar to the famous 3/4 power 
equation20,21. In fact, Kleiber’s law was obtained by using a strictly controlled basal metabolic rate20, and we pre-
sume that one of the reasons for the extensive debates about metabolic scaling is the possibility that the data used 
to draw conclusions, were collected imprecisely and were not completely basal. The power law is just a particular 
form of the natural logarithmic interdependent law rather than a general law, and our model may be more general 
when predicting the scaling dynamics between microbial metabolism and biomass.

Conclusions
We hypothesized that the relative metabolic rate and growth rate might be driven by their rate-limiting enzymes 
in actively growing microbes. Active metabolic scaling originates from enzyme-driven processes, and the curva-
ture of the scaling may derive from different dynamics of substrate responses between metabolism and growth. 
There may be a shift in the rate from the enzymatic to individual level because the relative rate of individual 
metabolism and growth is proportional to the rate of their respective rate-limiting-enzyme process. Thus, we 
conclude that natural logarithmic microbial metabolism (lnλ) and growth (or biomass) (lnM) are both dependent 
on limiting resources, thereby developing novel models with interdependence between lnλ and lnM, which can 
described the various metabolic scaling relationships in an active state with the difference between the microbial 
metabolic and growth (or biomass) half-saturation constants (KM, Kλ). Moreover, under a basal state with the 
same values of KM and Kλ, there is a linear scaling relationship. The results indicate that enzymatic dynamics may 
be the origin of active and basal metabolic scaling, and the traditional power law is a particular case of the interde-
pendent models under the condition Kλ = KM. Integrating the scaling law with biochemical processes helps settle 
various debates on the traditional power law, understand how and why the scaling relationship is usually curved, 
and identify what deives the degree of curvature.

Methods
By researching for a large number of publications and by using the software GetData Graph Digitizer 2.22, we 
obtained relevant data for microbes, including the respiration rate, growth rate, enzyme activity, biomass, and 
concentration of limited resources (details provided in the Result section and SI Appendix Table S1), to verify our 
hypotheses and equations; more details are provided in the models and results. The software MATLAB R2017b 
was used to fit the curve and obtain all the coefficients (SI Appendix Tables S2, S3, S4).
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