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The relationship between 
physiological and mechanical 
properties of Acer platanoides L. 
and Tilia cordata Mill. leaves and 
their seasonal senescence
Anna Ciupak1, Agata Dziwulska-Hunek1, Bożena Gładyszewska1 & Anita Kwaśniewska2

The seasonal senescence of leaves in the phenological cycle coincides with the change of their 
strength properties which determine resistance to environmental conditions and the efficiency of the 
photosynthesis process. That affects the development, growth and condition of the plant. Therefore, 
the aim of this paper was to observe and compare the results of strength tests performed on the leaves 
of two species of trees popular in Poland - lime and maple. As well as chlorophyll fluorescence and 
photosynthetic pigments content in the context of the changes occurring during the entire leaf life 
cycle. Obtained results showed that the strength properties of the tested leaves reached the minimum 
values in spring and the maximum in the summer similarly to the leaf greenness index. Whereas the 
fluorescence increased which the seasonal senescence in opposition to the photosynthesis efficiency 
of the leaves. Collected data revealed that strength parameters and photosynthetic pigment content 
were significantly higher for maple leaves than for lime leaves. Studies showed differences between 
physiological and mechanical properties of the leaves of two trees species, even if they grew under 
the same environmental conditions. It is concluded from the results that phenotype and physical 
parameters of leaves are related to seasonal senescence.

The main factor initiating the appearance of the first leaves on trees is appropriate temperature in spring as well 
as its changes resulting from climate warming1,2. Leaf senescence is not only the final stage of their development 
but also a programmed plan for nutrient relocation within the plant3,4. Quantitatively, it is expressed through a 
number of molecular, morphological and physiological parameters5–8, moreover, chlorophyll fluorescence meas-
urements are becoming increasingly popular9–11. For this reason change of photosynthetic pigment content (chlo-
rophylls and carotenoids), chlorophyll fluorescence, quantum efficiency of photochemical reaction (Y (II)), the 
rate of electron transport through photosystems (ETR) and the leaf greenness index of the maple and lime were 
examined due to their life cycle, which in Poland lasts for three seasons. These phenotype parameters refer to 
whole plant growth traits and its productivity in quantitative and qualitative terms.

However, above- mentioned phenotype parameters are seldom related to the changes of the mechanical prop-
erties that occur throughout leaf life cycle. The importance of knowing the strength properties of these delicate 
biological materials can be recognized by observing the growth of the leaf under controlled external load12, the 
subsequent intended use of the leaves13–17, the load resistance of its anatomical parts18–20, the decomposition rate 
of leaf litter21,22, damage mitigation23,24, pest management24–32 and other abiotic factors23,24 such as wind33,34 and 
drought20,35,36, as well as the adaptation of plants to grow in hot dry climates37–39.

The complex internal structure of plant material sometimes makes it difficult to describe the mechanical 
properties by means of the physical quantities known from materials engineering40–43. As far as plant leaves are 
concerned, the strength properties are determined on the basis of three main groups of mechanical tests - the 
shear test, puncture test, and tensile test13,16,26,28,29,32,34,37,38,44.
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In the part concerning the mechanical properties of the leaves of two species, namely - the maple and lime 
tree45,46, the authors of the paper have focused on defining selected strength parameters on the basis of the 
single-axial tensile test. The Young’s modulus E which indicates the resistance of the leaf tissue to elastic deforma-
tion (stiffness). The critical surface tension σk expresses the stress value at which a sample fractures. Whereas the 
force to tear ft denotes the mechanical resistance to a pulling apart force and Poisson’s ratio v shows the way the 
material tend to deformation. These leaf mechanical traits contribute significantly to defense from insect herbi-
vores31,32 and resistance to habitat factors33 as well as the use of leaves as a source of biomass21,22. The tensile test is 
particularly important in the case of heterogenic14 and different thin-film47–50 plant materials as it provides valu-
able information about their mechanical properties also in the fiber-specific direction15,17. Furthermore, for plant 
materials it is difficult to determine the value of Poisson’s ratio that is the reason for the rare testing the strength 
of biomaterials51–54. Therefore, by setting this important parameter for strength, we used our innovative authorial 
method of random markers47. On the basis of this method, the authors determined the value of the above men-
tioned quotient for the tree leaves under examination. Moreover, we would like to emphasize the usability and 
applicability of our method for testing various thin-film materials.

In spite of numerous reports determining physiological, mechanical or biochemical properties of plant mate-
rials there is still a lack of data investigating correlations between these parameters during the leaf lifespan. In the 
light of our findings, changes in phenotype and physical parameters in the leaf life cycle arise from the seasonal 
senescence. For this reason, in our opinion, future work should focus on leaf structure, as it is the most important 
parameter that affect in macro-scale toughness41,52 which vary seasonally as its chemical components change55.

Results
Statistical analysis of the strength test results was performed by means of the StatSoft Inc. STATISTICA ver. 13.1 
program56. However, due to the fact that in individual cases the assumptions required for the use of parametric 
statistical tests were not fulfilled by the measurable variables, the analysis of the obtained test results was per-
formed on the basis of non-parametric tests. For analyzing the differences in the value of Young’s modulus E, crit-
ical surface tension σk, Poisson’s ratio v and the force to tear ft of the leaves of the examined tree species, and for 
determining the differences between values such as E, σk, v and ft which occurred as a result of the time of the year 
when the measurements were conducted (May-spring, August-summer, October-autumn), the ANOVA signed 
rank Kruskal-Wallis test and the median test were used, followed by multiple comparisons of average ranks for all 
the assays at materiality level α = 0.0557. The results of studies on the photosynthetic pigment content, chlorophyll 
fluorescence, quantum efficiency of photosynthesis Y(II), electron transport rates ETR and the leaf greenness 
index were statistically analyzed by ANOVA, by means of the NIR test and the application of STATISTICA ver. 
13.1 software. The above test parameters were compared between the tree species and the seasons.

Tables 1 and 2 show the average values of Young’s modulus E, critical surface tension σk, Poisson’s ratio v, 
the force to tear ft (Table 1) and the median (Table 2) with a standard deviation, determined for the leaves of 
the examined tree species. Statistical analysis revealed that at materiality level α = 0.05 there occur substantial 

Month

E (MPa) σk (MPa)

Maple (Acer) Lime (Tilia) Maple Lime

V 4.06 ± 0.80a 1.01 ± 0.25a 0.50 ± 0.07a 0.38 ± 0.07a

VIII 24.13 ± 2.53b 16.57 ± 2.37c 1.56 ± 0.20c 1.04 ± 0.13c

X 21.01 ± 4.17b 10.67 ± 0.69b 1.24 ± 0.12b 0.68 ± 0.12b

v (−) ft (N · mm−1)

Maple Lime Maple Lime

V 0.44 ± 0.05a 0.52 ± 0.05a 0.21 ± 0.03a 0.14 ± 0.05a

VIII 0.49 ± 0.04b 0.51 ± 0.06a 0.50 ± 0.03b 0.38 ± 0.05c

X 0.49 ± 0.03b 0.51 ± 0.04a 0.52 ± 0.06b 0.25 ± 0.04b

Table 1.  Average values of Young’s modulus E, critical surface tension σk, Poisson’s ratio v, and the force to tear 
ft of maple leaves Acer platanoides L. and lime leaves Tilia cordata Mill., determined in consecutive seasons of 
the year; V - May (spring), VIII - August (summer), X - October (autumn). Values shown are the means ± SE. 
a–cValues marked with different letters (in columns) indicate significant differences at p ≤ 0.05.

Month

E (MPa) σk (MPa) v (−) ft (N · mm−1)

Maple 
(Acer)

Lime 
(Tilia) Maple Lime Maple Lime Maple Lime

V 3.98a 1.03a 0.51a 0.37a 0.44a 0.53a 0.21a 0.14a

VIII 24.17b 15.82c 1.59c 1.02c 0.48b 0.52a 0.51b 0.37c

X 21.33b 10.62b 1.24b 0.68b 0.48b 0.50a 0.52b 0.25b

Table 2.  Median value of Young’s modulus E, critical surface tension σk, Poisson’s ratio v and the force to tear ft 
of maple leaves Acer platanoides L. and lime leaves Tilia cordata Mill. determined in consecutive seasons of the 
year; V - May (spring), VIII - August (summer), X - October (autumn). a–cValues marked with different letters 
(in columns) indicate significant differences at p ≤ 0.05.

https://doi.org/10.1038/s41598-019-40645-z


3Scientific Reports |          (2019) 9:4287  | https://doi.org/10.1038/s41598-019-40645-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

differences in the values of all tested leaf strength parameters, depending on the tree species (Fig. 1). In the case 
of maple leaves, the values of Young’s modulus E, critical surface tension σk and the force to tear ft were higher 
than those of lime leaves (Fig. 1a–c), for which only Poisson’s ratio was higher than that of maple leaves (Fig. 1d). 
In addition, a constant upward tendency of the strength parameters under examination was observed, starting 
from spring (minimum) to their maximum value in summer to be then lowered in autumn (Figs 2, 3 and Table 2).

For maple leaves the lowest E value (about 4 MPa) was obtained in spring, while the highest one in sum-
mer - over 24 MPa. Comparable values of this strength parameter (21–24 MPa) and no statistically significant 
differences were obtained for the leaves of this tree species tested in summer and autumn (Tables 1 and 2). As a 
result of multiple comparisons of mean ranks for all the trials at materiality level α = 0.05, statistically significant 
differences in Young’s modulus of lime leaves were obtained, depending on the season. Just as in the case of maple 
leaves, the lowest E value of lime leaves (approx. 1 MPa) was determined in spring. In summer, the E value reached 
the maximum of approx. 16.5 MPa, while in autumn it decreased by over 35% (to approx. 10 MPa) (Fig. 2).

A thorough analysis of the results showed a difference in critical surface tension σk of the leaves of both tree 
species, depending on the seasons. The σk value was lowest in spring and it approximated 0.5 MPa in the case of 

Figure 1.  Relationship between Young’s modulus E (a), critical surface tension σk (b), the force to tear ft (c), and 
Poisson’s ratio v (d) in relation to the tree species.

Figure 2.  Average values of Young’s modulus E (MPa) of Acer platanoides L. maple leaves and Tilia cordata Mill. 
lime leaves with standard deviation, determined in consecutive seasons of the year; V - May (spring), VIII - 
August (summer), X - October (autumn).

https://doi.org/10.1038/s41598-019-40645-z


4Scientific Reports |          (2019) 9:4287  | https://doi.org/10.1038/s41598-019-40645-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

maple leaves and 0.38 MPa for lime leaves. The highest σk value was determined in summer and it was approxi-
mately 3 times higher than the value obtained in spring (Fig. 3, Table 2). At the end of the growing season of trees 
(autumn), a significant decrease in the value of critical surface tension was observed in comparison to the result 
obtained in summer. The value approximated 22% in the case of maple leaves and 33% for lime leaves (Tables 1 
and 2).

The force to tear ft of the maple leaf samples was higher than that of the lime leaves (Fig. 1c). However, statis-
tically significant differences in ft values for the maple tree were found only between the leaves tested in spring, 
where the value of this parameter was the lowest and amounted to 0.21 N · mm−1, and those obtained in summer 
or autumn. For those groups no statistically significant differences in ft values were observed and they ranged 
from 0.5 N · mm−1 to 0.52 N · mm−1 (Tables 1 and 2). The season of the year affected the variation in ft values of 
lime leaves. The lowest value was determined in spring (0.14 N · mm−1). In summer it was over 2.5 times higher 
than in spring and in autumn it decreased to approx. 0.25 N · mm−1 (Tables 1 and 2).

As for Poisson’s ratio v of lime leaves, the season of the year did not significantly affect the variety of its value, 
which was at a comparable level (Tables 1 and 2). For maple leaves the v quotient was statistically different only 
between the leaf groups examined in spring and summer. For autumn and summer leaves, the v value was deter-
mined at the same level (Tables 1 and 2).

Table 3 depicts the variation of the photosynthetic pigment content determined by the spectrophotometric 
method, and the leaf greenness index defined by means of SPAD-502 with regard to the seasons. Both pigment 
concentration (chlorophyll a and b, carotenoids) and the leaf greenness index were different for both tree species 
and the date of the measurement. It is obvious that the greenness index varies in relation to the season. The low-
est value was obtained in autumn for lime leaves, while the highest one in spring for both tree species. The leaf 
greenness index determined in summer amounted to 40.81 for the lime tree and 42.36 for the maple tree. A small 
chlorophyll amount and nearly 5 times higher carotenoid concentration in the autumnal yellow maple leaves 
precluded the determination of this index by means of SPAD-502 (Table 3).

Moreover, a significant reduction in chlorophyll a concentration in maple leaves was observed in autumn. 
The maximum value determined in summer (2444.5 μg · g−1) was over 30 times higher than the minimum one 
obtained in autumn (approx. 78 μg · g−1). The highest content of this pigment in lime leaves (approx. 588 μg · g−1) 
was determined in spring. In autumn it decreased by a factor of five (Table 3). The results of the study also indicate 
an increase in chlorophyll b content in the leaves examined in summer as compared to spring, and its significant 
decrease in autumn. Distinct differences in chlorophyll b content in different seasons of the year were noticed 
only in the case of maple leaves, whereas the changes in the content of this pigment were not statistically signifi-
cant as far as lime leaves are concerned (Table 3).

Table 3 also shows the content of carotenoids, i.e. other photosynthetic pigments found in leaf chloroplasts. In 
this case, no significant differences in the amount of these dyes in the leaves under examination were observed. 

Figure 3.  Average values of critical surface tension σk (MPa) of Acer platanoides L. maple leaves and 
Tilia cordata Mill. lime leaves with standard deviation, determined in consecutive seasons of the year; V - 
May(spring), VIII - August (summer), X - October (autumn).

The tree species
The season of 
the year

The greenness 
index (unit SPAD) Chl a (µg · g−1) Chl b (µg · g−1) Car (µg · g−1)

Lime (Tilia) spring 29.97a 587.82a 134.01a 147.62a

Maple (Acer) spring 32.24b 2062.40b 779.73b 205.55a

Lime summer 40.81c 397.67a 141.36a 168.87a

Maple summer 42.36c 2444.50c 897.58c 341.93b

Lime autumn 12.76d 102.37d 63.52a 165.23a

Maple autumn — 77.95d 90.89a 383.99b

Table 3.  Photosynthetic pigment content (chlorophyll a and b, carotenoids) determined by means of the 
spectrophotometric method and the greenness index determined by means of the chlorophyll SPAD-502 
meter of lime and maple leaves in relation to the seasons of the year. a–cValues marked with different letters (in 
columns) indicate significant differences at p ≤ 0.05.
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The concentration of carotenoids remained at a comparable level as far as both the tree species and the seasons 
are concerned (Table 3).

Table 4 shows the results of fluorescence measurement F/Fm′, the efficiency of photosynthesis Y(II) and elec-
tron transport rates through photosystems ETR. The results differed both in terms of tree species and the seasons. 
Moreover, it was noted that depending on the time of the year, both the photochemical quantum efficiency of 
Photosystem II and electron transport efficiency ETR varied. A low ETR value of 0.35 for autumn leaves of the 
maple tree was indicative of their poor photosynthetic activity. In this case, chlorophyll a content was also very 
low and amounted to approx. 78 μg · g−1 (Table 3), which indicated a decrease in the quantum efficiency of pho-
tochemical reaction closely related to chlorophyll content. The reduced electron transport rate ETR in autumn 
also signified a deterioration in the physiological state of the leaves under examination as a result of the ongoing 
senescing process.

For the leaves of both tree species, the efficiency of photosynthesis Y(II) decreased from spring to autumn, as 
opposed to chlorophyll fluorescence F/Fm′, whose value in the period under examination increased and reached 
the maximum value in autumn (Table 4). A reduction by over 54% of photosynthetic efficiency Y(II) of maple 
leaves in autumn as compared to spring was also observed, which was closely related to chlorophyll a content 
(Table 3). The Y(II) value of lime leaves was decreased by over 35% in autumn as compared to spring. Thus, the 
highest quantum efficiency of photochemical reaction Y(II) was observed in both tree species in spring and 
amounted to 0.663 for lime leaves and 0.715 for maple leaves respectively (Table 4).

Discussion
The investigation conducted by Kitajima55 shows that cellulose content and lamina density jointly improve leaf 
strength, and these carbon-based physical traits, rather than phenolic-based defence, clarify species distinction 
in herbivory, leaf lifespan and habitat factors. Tensile experiments provided the evidence of variation across tree 
species and seasons of the year in leaf mechanical properties. Our measurements showed that the most stiffness 
leaves (the highest values of Young’s modulus) for both species were in the summer. However, late in the senes-
cence process (exactly in autumn) more notable decrease in E values was observed in the case of lime leaves. 
During the study period maple leaves were considerably stiffer than lime leaves (Fig. 1a, Tables 1 and 2). As 
expected the leaf stiffness is strongly depended on tree species. The major difficulty in comparing all our results 
of the mechanical properties with other reports, was the lack of scientific studies presenting the values of various 
strength parameters, e.g. Young’s modulus or critical surface tension of maple and lime leaves. The comparison of 
the results was only possible in regard to the leaves of other plant species (trees, shrubs) subjected to the tensile 
force. For oak species, Kawai and Okada20 obtained the E value of approx. 29 MPa for Quercus crispula leaves 
and approx. 44 MPa for Quercus serrata leaves. Méndez-Alonzo19 designated Young’s modulus for individual leaf 
structures of 27 species of shrubs growing in California (USA). As far as whole leaves were concerned, the E value 
obtained in these studies was within the range of 0.64–18.7 MPa.

In general, the range of values of critical surface tension (σk) for the tested leaves was under 1,6 MPa (Tables 1 
and 2). Similar to the leaf stiffness these values depended on tree species. In comparison, the critical surface 
tension value, as measured by Caldwell32 for the leaves of 20 species of shrubs and small trees representing 10 
botanical families, ranged from approx. 1 MPa to over 15 MPa for Pultenaea muelleri and Hakea ulicina leaves. 
According to Onoda29, the average critical surface tension value for over 1000 plant species was approximated 
3.31 MPa. With such a large number of leaves of different plant species, it was obvious that there were huge dif-
ferences of up to 95 times between the highest and the lowest value of the specific mechanical trait. The average 
critical surface tension value determined by Kawai and Okada20 for the leaves of 8 tree species belonging to the 
beech family (Fagaceae) amounted to 2.61 MPa.

For the most shrubs and small tree leaves studied by Caldwell32 the force to tear assumed the tenths of 
N · mm−1, with the exception of Pultenaea muelleri leaves, for which ft exceeded 2 N · mm−1, and Hakea ulicina 
leaves with the value of over 6 N · mm−1. In the studies conducted by Onoda29 the average force of leaves tearing 
for over 900 plant species amounted to 0.87 N · mm−1. Depending on the oak species, Kawai and Okada20 deter-
mined value of the tearing force of the leaf samples within the range of 0.29 N · mm−1– 0.34 N · mm−1.

Our knowledge of the leaf mechanical properties remains incomplete if we do not examine the values of the 
Poisson ratio. Using the tensile test and our authorial method - the random markers method47 we were able to 

The tree species
The season of 
the year F/Fm′ Y (II) ETR

Lime (Tilia) spring 0.337a 0.663a 6.17a

Maple (Acer) spring 0.285b 0.715b 2.27a

Lime summer 0.413c 0.587c 53.56b

Maple summer 0.331a 0.669a 18.97c

Lime autumn 0.572d 0.428d 5.96a

Maple autumn 0.674e 0.326e 0.35a

Table 4.  Quantum efficiency of photochemical reaction in PSII and ETR electron transport rate in lime and 
maple leaves in relation to the seasons of the year. a–cValues marked with different letters (in columns) indicate 
significant differences at p ≤ 0.05. F/Fm′ - min/max fluorescence of the sample adapted to light; Y(II) - quantum 
efficiency of photochemical reaction in PSII, value approximating the efficiency of photosynthesis; ETR – 
electron transport rate.
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determine the v values (Tables 1 and 2). Due to the technical obstacles encountered by researchers, there is no 
available literature concerning the v value of leaves to compare our results.

The examinations of overall physiological changes - photosynthetic traits, occurred throughout senescence 
illustrate differences between the tree species (Table 3). For both maple and lime leaves the greenness index has 
the highest values in the summer. That reflects the interdependence of nitrogen nutritional status of plants. Those 
results agree with the studies conducted by Fini58 where the chlorophyll content obtained from the SPAD-502 
meter varied different lime and maple species. According to Wolf59 in the process of leaf senescence, the decrease 
in the chlorophyll a concentration is clearly observed, while the chlorophyll b content is only slightly altered. 
Whereas, Koike6, showed that both parameters remain stable throughout the growing season of trees. Moy et al.60 
indicate a relatively constant total chlorophyll content in the sugar maple tree leaves (Acer saccharum Marsh.), 
from mid-August to mid-September. Junker and Ensminger8 analyzed the concentration of the photosynthetic 
dyes in the sugar maple green leaves collected in the summer, as well as in the colorful autumn one. The different 
leaves dyeing also indicated the consecutive stages of their senescing process8,61.

In comparison to the green summer leaves the autumn ones contained over four times less total chlorophyll, 
while for the colorful once only trace amounts of this pigment. Moreover, Koike6 revealed that the content of 
total chlorophyll and b fraction in e.g. maple and lime leaves decrease in relation to the height place of the leaves 
collection in the tree crown (i.e. tree’s vertical profile).

Our measurements of the content of carotenoids showed the lack of differences in the amount of this chlo-
rophyll dyes in examined leaves (Table 3). Lichtenthaler’s study62 study concerning chlorophyll and carotenoids 
content of lime leaves showed that more of these pigments are found in leaves exposed to the sun than in those 
shaded ones. In the case of the sugar maple, dyes concentration increased from spring to mid-summer, followed 
by a significant decrease thereafter.

According to Angelini63 providing appropriate growth conditions to plants guarantees the photosynthetic 
efficiency Y(II) of 0.85. Whereas very low values (0.2–0.3) indicate irreversible changes in the PSII structure 
resulting from the occurrence of stress-inducing factors. Ferrini64 highlighted that the trees from urban plantings 
are exposed to drought, hot air and relatively high soil temperature, as well as low fertility and soil compaction. 
The salts used in the winter on pavements and streets penetrate into the ground and generate unfavorable envi-
ronmental conditions for the proper growth. In addition, the damage of the leaves surface of trees growing near 
the roadway can lead the dysfunction of their photosynthetic apparatus11,65.

A study by Lichtenthaler66 showed that the average fluorescence value F/Fm′ in the leaves of different tree 
species (incl. lime and maple) ranged from 0.81 to 0.83 under exposition to the sun and from 0.74 to 0.76 for the 
shade. The chlorophyll fluorescence in the maple leaves remained at a very high level from mid-August to early 
October60 then there significant reduction in F/Fm′ to the extremely low level in the second decade of October 
occurred. However, our results indicate that in the case of the analyzed leaves, the F/Fm′ chlorophyll fluorescence 
value was lower and it ranged from 0.285 (spring) to 0.674 (autumn) for maple leaves, and 0.337 (spring) and 
0.572 (autumn) for lime leaves (Table 4).

Conclusions
Our results revealed that both the season of the year and the tree species strongly influenced the values of strength 
parameters such as E, σk, ft, and photosynthetic dyes content. The leaves mechanical and phenotype parame-
ters undoubtedly affect the improvement of defenses against herbivores and resistance to environmental factors. 
Significantly higher values of Young’s modulus, critical surface tension, the force to tear and pigment concen-
tration were determined for the leaves of the maple tree as compared to the lime tree. During the final leaf stage 
(autumn) the values of the strength parameters were at the intermediate level between the minimum (spring) and 
the maximum (summer). For the leaves of both tree species, the highest index of photosynthetic efficiency was 
determined in spring, whereas in summer the leaf greenness index was the highest. Quantum efficiency of pho-
tochemical reaction was highest in spring when trees and their leaves needed the most light to grow and develop, 
while its lowest value was noted in autumn, which was related to the senescing process of leaves.

In order to understand the physical properties affecting leaf lifespan, we propose to extend the existing studies 
based on mechanical and phenotypic parameters by those, which simultaneously analyze leaf biochemistry. Other 
studies have stated that by carrying out biochemical analysis, we would be able to determine carbon-based traits 
e.g. lamina density, which affects the strength and leaf lifespan.

Material and Methods
In laboratory tests we used the leaves of the two tree species - Acer platanoides L. and Tilia cordata Mill. growing 
in close proximity to one another and coming from a private garden (51°22′N, 21°46′E) located in the Masovian 
Voivodship ~16 km west of Puławy.

Leaf flushing began in the 3rd and 4th week of April for the maple and the lime tree, respectively. The begin-
ning of the research was established at the moment when the leaves reached the shape and size characteristic for 
the species, i.e. in the 2nd week of May. The tests of leaf mechanical properties and phenotype parameters were 
conducted during one season phenological observation in 2016, i.e. in mid-May (spring in Poland), mid-August 
(summer) and mid-October (autumn). The leaves were randomly selected and cut off very carefully so as not to 
damage their surface. The plant material examined in the middle of May had no visible damage, while in summer 
and in autumn there were naturally occurring surface damage processes caused by e.g. herbivorous pests and 
abiotic factors (Fig. 4). The research was completed in mid-October due to the intense fall of leaves in the second 
half of the month, as a result of which most of the trees were leafless at the beginning of November. The leaves 
used in the study were evenly sized. The collected plant material was placed in a plastic box lined with damp tis-
sue paper and immediately transported to the laboratory for tension measurement and photosynthetic pigment 
determination.
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The strength tests were conducted on a test-bench equipped with a strain-gauge table and a computer with 
appropriate software to determine the value of Young’s modulus and Poisson’s ratio on the basis of an authorial 
method47 based on image analysis as well as the analysis of the positions of points randomly placed upon the 
material under examination (random markers method)47,67. The main advantages of applying this method are, 
among others, the possibility of omitting boundary conditions, thus making the obtained test results independ-
ent from the deformations of the material occurring in the area of critical sections68, as well as determining the 
precise correlation between the tensile force and the degree of sample deformation47. It cannot be ignored that 
the measurements can be made anywhere in the material under examination, even if it is partially damaged. An 
additional advantage is the possibility of observing the natural course of sample deformation as a result of the 
tensile force47. Young’s modulus, Poisson’s ratio and critical surface tension of the leaves under examination were 
determined on the basis of a single-axial tensile test. The samples for laboratory tests were shaped like dumbbells 
of 50 mm in length and 20 mm in width and were cut out by means of a specially designed blanking die so that 

Figure 4.  Pictures of green (spring, summer) and yellow/green-brown (autumn) leaves of Acer platanoides L. 
(a) and Tilia cordata Mill. (b) and leaf surface images (quintuplicated) obtained by means of the Leica DM 2500 
optical microscope.
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the main leaf vein was located on the symmetry axis of the dumbbells. The method in question requires the pro-
vision of a third dimension (thickness) of the sample cut out for examination. The measurement of this size was 
done in 3 points: 4 times on the main nerve of the leaf, the lateral nerves and on the leaf blade itself by means of 
a micrometer screw accurate to within 0.01 mm. Sample thickness was the average value of its 12 unitary meas-
urements. The sample was fastened to the terminal of a universal testing machine and then stretched at the rate 
of force accretion dF/dt of 0.13 N · s−1. The starting point of the measurement was preceded by depositing pow-
dered graphite markers. The image of the stretched sample surface along with its markers was transferred from 
the camera to the memory of the computer analyzing the changes in the distance between the points during the 
stretching process47. Each measuring series consisted of 30 repetitions. Young’s modulus E for each sample was 
determined on the basis of the direction quotient of a straight line approximating a single dependence εx = f(σ), 
where ɛx is the relative elongation in the direction of the x-axis, and σ is tension (MPa). Critical surface tension 
σk (MPa) was determined on the basis of relation (1), Poisson’s ratio v (−) according to (2), and the force to tear 
ft (N · mm−1) according to formula (3):

σ =
F

S (1)k
max

ε

ε
= −v

(2)
y

x

=f F
w (3)t
max

where:
Fmax - maximum force at which the sample is destroyed (N),
S - sample cross-sectional area (mm2),
εx - relative elongation of the sample in the direction of the acting force F,
εy - relative deformation of the sample in the direction perpendicular to the applied force F,
w - sample width (mm).
Collecting data during the measurement and doing necessary calculations in order to determine the mechan-

ical parameters were controlled by the computer program “Videoo”67. The total value of the determined strength 
quantities was the average of all the unitary measurements.

The determination of photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) was performed 
by means of the spectrophotometric method in three repetitions for each leaf. As for measuring the leaf greenness 
index by using the chlorophyll marker SPAD-502 and testing chlorophyll fluorescence, quantum efficiency of 
photosynthesis Y(II) and the rate of electron transport through photosystems (ETR) by means of the Mini-PAM 
2000 by Waltz Germany, the repetitions were conducted ten times on each leaf.

Photosynthetic pigments were determined by two methods. In the first one, chlorophyll and carotenoids 
were defined by isolating them from the leaves in the dark, using acetone containing 0.01% w/v BHT (butylated 
hydroxytoluene) so as to prevent oxidation. The UV-Vis spectra were measured by means of a Carry Bio 300 
dual-beam spectrophotometer, while pigment concentrations were calculated on the basis of Lichtenthaler and 
Buschmann’s procedure69. In the second method, the chlorophyll marker SPAD-502 was used to receive the result 
automatically, without the necessity to collect and destroy the samples. The procedure involved grasping the leaf 
into a measurement clip equipped on one side with the source of light and a photodetector measuring the amount 
of light passing through the leaf on the other. The pressure of the clip caused overexposure of the sample, while 
the photodetector, measuring the radiation of 650 nm in wavelength, made it possible to determine the amount 
absorbed by chlorophyll. In order to correct the result calculated by the microprocessor and expressed in con-
ventional units on the display, 940 nm-wavelength light absorbed by the rest of the structure was used. After two 
seconds another measurement was possible70.

Quantum efficiency of photochemical reaction Y(II) (the relation between the quantum used in photochem-
ical transmutation and the total amount of photosynthetically active radiation PAR) and electron transport rate 
ETR11 were measured by means of modulated fluorescence (PAM). The method involved measuring the chloro-
phyll fluorescence signal by means of the Mini-PAM 200 Photosynthesis Field analyzer by Waltz Germany. In 
the process of emitting modulated light pulses (switched on and off at high frequencies) onto the photosynthetic 
sample, the fluorescence signal of agitated chlorophyll a molecules (PS II) was recorded71,72. The analysis of the 
results was conducted by means of WinControl Software for PAM Fluorometers (Waltz Germany).

The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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