
1Scientific RepoRts |          (2019) 9:4126  | https://doi.org/10.1038/s41598-019-40584-9

www.nature.com/scientificreports

Dual-energy Ct for automatic 
organs-at-risk segmentation in 
brain-tumor patients using a multi-
atlas and deep-learning approach
Brent van der Heyden1, patrick Wohlfahrt  2,3, Daniëlle B. p. eekers1,4, Christian Richter2,3,5,6, 
Karin terhaag1, esther G. C. troost2,3,5,6,7,8,9 & Frank Verhaegen1

In radiotherapy, computed tomography (Ct) datasets are mostly used for radiation treatment planning 
to achieve a high-conformal tumor coverage while optimally sparing healthy tissue surrounding the 
tumor, referred to as organs-at-risk (oARs). Based on Ct scan and/or magnetic resonance images, 
oARs have to be manually delineated by clinicians, which is one of the most time-consuming tasks in 
the clinical workflow. Recent multi-atlas (MA) or deep-learning (DL) based methods aim to improve 
the clinical routine by an automatic segmentation of oARs on a Ct dataset. However, so far no studies 
investigated the performance of these MA or DL methods on dual-energy CT (DECT) datasets, which 
have been shown to improve the image quality compared to conventional 120 kVp single-energy 
CT. In this study, the performance of an in-house developed MA and a DL method (two-step three-
dimensional U-net) was quantitatively and qualitatively evaluated on various DeCt-derived pseudo-
monoenergetic CT datasets ranging from 40 keV to 170 keV. At lower energies, the MA method resulted 
in more accurate oAR segmentations. Both the qualitative and quantitative metric analysis showed 
that the DL approach often performed better than the MA method.

In the clinical radiotherapy workflow, the targeted tumor volume and surrounding organs-at-risk (OARs) are 
manually delineated on image datasets derived from computed tomography (CT), often in combination with 
magnetic resonance imaging (MRI). In current clinical practice, CT acquisitions are mandatory to calculate 
radiation treatment plans and to interpret dose evaluation metrics1,2. As manual delineation is one of the most 
time-consuming tasks and subject to inter- and intra-observer variability, a considerable interest in automatic 
delineation has been seen in recent years to further improve this well-recognized source of uncertainty in the 
radiation planning process3–6. In the last years, multi-atlas (MA) or deep-learning (DL) methods have been inves-
tigated for automatic image segmentation3. Both approaches use a set of labeled medical image datasets as input 
for model training and finally application. In this study, CT image datasets with manually delineated OARs serve 
as reference. Although the fact that automatic contouring algorithms are commercially available, their use in 
radiotherapy clinics remains limited.
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The performance of MA and DL methods for automatic contouring has been already investigated on CT or 
MRI datasets3,7,8. However, to our knowledge, so far no studies explored the use of such methods on dual-energy 
CT (DECT) image datasets, which provide additional tissue information contributing to a reduction of the 
intra-observer variability of physicians9. DECT scans consist of two CT datasets acquired with different x-ray 
spectra or energy separation on the detector level. The combined single DECT datasets can be used to calculate a 
pseudo-monoenergetic image (PMI) with a weighted sum of the low- and high-energy CT scan10,11. To enhance 
the image quality, some commercial systems additionally include noise-suppression algorithms12. Furthermore, 
it has been demonstrated that a PMI can have superior image quality compared to 120 kVp single-energy CT 
(SECT)12–15, which is the current clinical standard in most radiotherapy facilities. The influence of beam harden-
ing on CT numbers can be reduced by PMI datasets leading to improvements in radiation treatment planning, 
especially in proton therapy16. A PMI can also contribute to suppress metal artifacts in CT imaging10,17.

This study first aims to quantitatively evaluate pseudo-monoenergetic CT datasets of different photon ener-
gies ranging from 40 keV to 170 keV for OAR segmentation in primary brain-tumor patients using an in-house 
developed 3D MA and 3D DL based image segmentation method. Secondly, two experienced radiation oncol-
ogists and one experienced radiation technologist performed a qualitative scoring to assess the clinical rele-
vance and accuracy of automatic OAR segmentation. For this evaluation, both methods were applied on two 
pseudo-monoenergetic CT datasets of different energy (40 keV and 70 keV).

Materials and Methods
patient cohort and DeCt imaging. For this retrospective study following the regulatory guidelines and 
approved by the local ethics committee (EK535122015, University Hospital Carl Gustav Carus, Dresden), 14 
primary brain-tumor patients were randomly selected. Each patient agreed with an informed consent to use their 
pseudonymized and anonymized data for scientific purposes (Fig. 1). All patients underwent DECT imaging 
(80/140 kVp) for proton treatment planning at University Proton Therapy Dresden (Dresden, Germany) with a 
single-source DECT scanner (SOMATOM Definition AS, Siemens Healthineers, Forchheim, Germany)18. Each 
DECT scan was acquired with a constant CT dose index (32 cm) of 20.8 mGy and reconstructed using an iterative 
reconstruction algorithm including a beam hardening correction for bone (SAFIRE, Q34/3 kernel, both Siemens 
terminology) with a voxel size of 0.98 × 0.98 × 2.00 mm³.

PMI datasets of 7 different energies (40, 45, 50, 60, 70, 120 and 170 keV) were generated from the 80 kVp and 
140 kVp DECT scans using the application syngo.CT DE Monoenergetic Plus of the image post-processing 
software syngo.via (Siemens Healthineers, Forchheim, Germany). The input PMI dataset of the segmentation 
methods will be referred to as, e.g. PMI-40, i.e. the PMI dataset calculated at an energy of 40 keV. An experienced 
radiation oncologist used the PMI-70 dataset to delineate OARs for radiation treatments of head-and-neck and 
neuro-oncology cases, such as the brainstem, eyes, lenses, optic nerves and parotid glands.

Automatic image segmentation methods. Two fundamentally different image segmentation meth-
ods are investigated; (i) an organ-driven MA method and (ii) a two-step 3D U-Net DL method. In 2017, both 
segmentation methods were evaluated with state-of-the-art segmentation methods in the AAPM thoracic 
auto-segmentation challenge19. Due to the limited patient cohort of 14 subjects, the leave-one-out cross-validation 
approach was applied to test the general performance of both image segmentation algorithms on multiple PMI 
datasets. The MA method is applied on all calculated PMI datasets (N = 7). The 3D U-Net method is, due to prac-
tical restrictions (GPU calculation time), only applied to PMI datasets of the reference energy (70 keV) and the 
energy, which provided the best results for the MA method.

Organ-driven multi-atlas based image segmentation. The in-house developed algorithm for MA based image 
segmentation20 consists of three major steps: the pre-processing, the deformation and the post-processing step. 
The atlas database is composed of atlases with its CT and OAR segmentation volume. In the pre-processing step, 

Figure 1. Study flowchart. The multi-atlas (MA) method was applied on all pseudo-monoenergetic image 
(PMI) datasets. The deep-learning (DL) approach was applied on the energies indicated with an asterisk. The 
reference energy E (70 keV) was used for manual contouring of the organs-at-risk (OARs). The quantitative and 
qualitative segmentation accuracy was assessed between the automatically generated contours and the manual 
contour using the Dice similarity coefficient (DSC), the 95th percentile Hausdorff distance (HD), the center of 
mass displacement ∆CoM and a four-grade scoring system.
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the CT volume is denoised using the edge-preserving multi-threaded curvature flow image filter (5 iterations; 
time step = 0.05) implemented in the Insight Segmentation and Registration Toolkit (ITK).

In the deformation step, Elastix was used to apply a multi-stage deformable image registration between the CT 
volume of the unsegmented patient and the CT volumes stored in the atlas database21. This deformable image reg-
istration algorithm first calculates an affine transformation followed by a B-spline transformation. The calculated 
deformation field is then used to deform the CT and segmentation volume from all atlases within the atlas data-
base to the unsegmented CT volume. For every OAR, a consensus between the deformed segmentation volumes 
is found by applying the simultaneous truth and performance level estimation (STAPLE) filter on the atlases with 
the highest normalized cross-correlation (NCC) coefficient around the OAR22. In the final post-processing step, 
the segmentations resulting from the STAPLE filter were morphologically smoothed to obtain the final segmen-
tation. The method was processed on a 400 core HTCondor CPU cluster.

Two-step 3D U-Net deep-learning method. The two-step 3D U-Net DL method is a 3D convolutional neural net-
work architecture, which was applied twice in succession. First, the 3D bounding box location of each OAR was 
detected, and second, the OAR found in the previously detected bounding box was segmented.

As a result of the AAPM 2017 thoracic auto-contouring challenge19, the original implementation of the 
deep-learning (DL) algorithm, used in this study, was made available by Dr. Xue Feng from the University of 
Virginia. The algorithm was written in Tensorflow (Python 2.7) and made use of the NVIDIA’s CUDA® Deep 
Neural Network library (cuDNN) computational kernels.

To train the 3D DL convolutional neural network, a training dataset of atlases was created. Every atlas in 
the training dataset consisted of two 3D volumes: (i) the CT volume and (ii) the segmentation volume. Before 
learning the first step of the 3D U-net model, pre-processing of the CT and segmentation volume was performed. 
The segmentation volume contains information about the manual OAR segmentations wherein unique OAR 
flag IDs were assigned to every voxel in the volume. In this automatic pre-processing step, CT numbers between 
−500 HU and 1500 HU were normalized and both volumes (i and ii) were resized to unify voxel dimensions 
(0.98 × 0.98 × 2.00 mm³).

The first training step (900 epochs) was applied on down-sampled and cropped volumes. The normalized 
CT and segmentation volume were down-sampled to half of its original dimensions, where after the volume 
was cropped with 48 voxels to remove less important air voxels from both volumes. Unique OAR flag IDs were 
assigned in the segmentation volume, except for the eye lenses. No model was learned for the eye lens, because its 
volume was too small after down-sampling. Alternatively, the segmentation volume of the eye lens was morpho-
logically subtracted from the segmentation volume of the eyes before down-sampling.

The network architecture contained three encoding and three decoding layers, used weighted cross entropy as 
loss function and the dropout was equal to 0.5. For each OAR, a bounding box with preset fixed sizes was deter-
mined. The bounding box size was equal to [80, 88, 88] voxels for the brainstem, [48, 88, 88] for the eyes and optic 
nerves, and [64, 120, 120] for the parotid glands. In the second step, one network (500 epochs) is trained per OAR 
to segment the foreground pixels. In the last automatic post-processing step, the segmented foreground pixels of 
the OAR were cleaned. The non-contiguous regions were removed and the binary holes were filled using morpho-
logical operations. Because no model was trained for the eye lens, an algorithm was written to detect the binary 
hole in the eye segmentation automatically, and to identify these pixels as eye lens. In total, 28 neural networks 
were trained and applied on two graphics cards: the Geforce Titan Xp and the Quadro P6000.

Quantitative and qualitative segmentation accuracy assessment. For quantitative assessment of 
the image segmentation accuracy, three evaluation metrics were used: the Dice similarity coefficient (DSC), the 
95th percentile Hausdorff distance (HD), and the center of mass displacement (∆CoM). Each metric compares the 
automatic segmentation SAUTO  and the manual delineation performed by the radiation oncologist SRO, which 
serves as ground truth here. The DSC calculates the overlap between two 3D volumes and is equal to one for a 
perfect overlap and equal to zero without any overlap. The distance between two outer surfaces is described by the 
HD, where the optimal outcome is equal to 0 mm and where increasing distances indicate less or no overlap23. To 
ignore the influence of a very small subset of inaccuracies in the automatically generated OAR segmentation, the 
95th percentile of the HD is considered in this study. The Cartesian ∆CoM between two segmentations is a meas-
ure of the 3D position shift of the segmentation.

For qualitative assessment, two experienced radiation oncologists as well as an experienced radiation technol-
ogist individually scored the automatic image segmentation according to a discrete four-grade scale. The evalua-
tion was done for all OARs on the PMI-70 dataset and additionally on the PMI-40 dataset for the optic nerves. A 
score of 1 was assigned to clinically unacceptable contours, for which it would take more time to modify than to 
restart a manual delineation. Score 2 or 3 were assigned to clinically acceptable contours with major and minor 
changes, respectively. A score of 4 was assigned to clinically acceptable contours with none or negligible changes. 
This qualitative assessment was performed twice on all 14 patients.

Results
Quantitative assessment. The results of the three different evaluation metrics (DSC, HD, and ∆CoM) for 
the MA method applied on various PMI datasets are presented in Fig. 2.

As the PMI-70 dataset was originally used by the radiation oncologist for manual contouring, it was defined 
as reference PMI in the further analysis. In general, the DSC between the manual and automatic contour was 
maximal when the MA method used PMI datasets of the lowest energy (i.e. PMI-40). The largest mean differ-
ences were found to be 2.6% for parotid glands and 8.1% for optic nerves. Smaller relative DSC differences were 
noticeable for brainstem (0.4%) and eyes (0.4%). In general, the HD between manual and automatic segmentation 
reduced on average when the MA method was applied on the PMI-40 dataset compared to the PMI-70 dataset: 
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10.4% for brainstem, 4.2% for eyes, 20.6% for optic nerves and 11.9% for parotid glands. A similar trend was 
observable for the ∆CoM metric. The DSC for eye lenses were difficult to interpret due to the large discrepancies 
over the whole energy range of PMI datasets.

Considering the general improvements in DSC, HD, and ∆CoM  for the MA algorithm using the PMI-40 
dataset, the 3D U-Net DL model was trained on the PMI-40 and PMI-70 datasets in a leave-one-out 
cross-validation approach. Figure 3 depicts the three evaluation metrics for both segmentation methods using the 
PMI-40 and PMI-70 datasets.

The DL neural networks trained on the PMI-40 dataset slightly underperformed compared to the one trained 
on the PMI-70 dataset. The DSC reduced on average with 4.0% for brainstem and 4.1% for optic nerves. Smaller 
relative DSC differences between the application on PMI-40 and PMI-70 datasets were noticeable for eyes 
(−0.2%) and parotid glands (−0.7%).

The DL approach outperforms the MA method on all three quantitative metrics for both PMI-40 and PMI-70 
datasets, except for optic nerves. Compared to the DL method, the DSC for optic nerves was on average 28% and 
19% larger for the MA method applied on PMI-40 and PMI-70 datasets, respectively.

Figure 2. (a) Quantitative evaluation metrics calculated between the manual reference contour and the 
automatic segmentations generated by the multi-atlas based image segmentation using pseudo-monoenergetic 
image (PMI) datasets of 7 different energies ranging from 40 keV to 170 keV. The markers indicate the median 
value, the whiskers represent the 25th and 75th percentile and the black marker is the reference energy (70 keV). 
(b) Relative differences between PMI datasets of different energies and the PMI of the reference energy (70 keV).

Figure 3. Quantitative evaluation metrics between the manual and automatic segmentations derived from 
pseudo-monoenergetic image (PMI) datasets of 40 keV and 70 keV for the multi-atlas (MA) and deep-learning 
(DL) based image segmentation. The markers indicate the median value and the whiskers represent the 25th and 
75th percentile.

https://doi.org/10.1038/s41598-019-40584-9


5Scientific RepoRts |          (2019) 9:4126  | https://doi.org/10.1038/s41598-019-40584-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

Qualitative assessment. Comparing both segmentation approaches in a qualitative four-grade scoring 
system using the PMI-70 dataset, DL-based segmentations were less assigned to the ‘not clinically acceptable’ cat-
egory, except for optic nerves (Fig. 4). The application of the DL approach led to not clinically acceptable assign-
ments (score 1) in less than 5% of all brainstem, eye lens and parotid gland segmentations. DL-based contours 
of the brainstem, eye, eye lenses and parotid glands were classified as acceptable with or without minor changes 
(scores 3 and 4) in 42.9%, 96.4%, 90.5% and 75.0%, respectively.

In accordance with the quantitative assessment, the optic nerve segmentations by the MA method scored better than 
the DL method (Fig. 5). Only 4.7% of the optic nerve segmentations using the MA method were assigned to the ‘not 
clinically acceptable’ category, where the DL approach resulted in 33.3%. The segmentations of the optic nerves using 
the PMI-40 datasets resulted in less assignments to the ‘major changes’ category and more assignments in the ‘minor 
changes’ category. The stacked bar charts of the three individual scorers are presented in the Supplementary Materials.

Figure 6 gives a visual representation of the manual and automatic OAR delineation for both segmentation 
methods. In the left column, patient 1 with the overall lowest DSC is shown. The right column shows patient 2 
with the overall largest DSC.

Calculation time. On average, the DL method demanded for training (53 ± 4) hours on a Geforce Titan Xp 
or Quadro P6000 (NVIDIA Corporation, Santa Clara, USA) for one neural network in our adopted leave-one-out 
cross validation. An average inference time of (20 ± 2) seconds was required to segment all OAR foreground pix-
els of one patient. The MA method which was performed on a 400 core HTCondor CPU cluster required around 
10 minutes to segment all OAR foreground pixels of one patient.

Discussion
Much effort has been clinically made to study the advantages of DECT imaging in radiotherapy, to demonstrate 
its clinical relevance and accuracy in dose calculation especially for proton therapy as well as to implement DECT 
in a clinical workflow16,24–26. However, to our knowledge, no study has been investigated automatic OAR segmen-
tation methods on multiple PMIs, neither for MA methods nor DL approaches.

The MA and DL methods were quantitatively and qualitatively evaluated for various PMI datasets. Compared 
to the higher energies, for most OARs, the automatic segmentation using the MA method revealed better quanti-
tative results using the PMI-40 dataset. This resulted in a DSC improvement of 8% for the optic nerves compared 
to the automatic segmentation generated using the PMI-70 dataset.

The PMI-70 dataset was also used for manual delineation. According to Wohlfahrt et al.18, this dataset reveals the 
best image-noise and contrast-noise ratio compared to the other six reconstructed PMIs. Since this might have intro-
duced a small bias in the results, the quantitative metric errors of the MA method were reported relatively to PMI-70.

Thereafter, the PMI-40 and PMI-70 datasets were used for neural network training. In the quantitative results 
of the 3D U-Net, the contrary was observed. Here, the segmentation results of the PMI-70 dataset were slightly 
better than the segmentation results using the PMI-40 dataset, which may be explained by the lower noise levels 
in the PMI-70 compared with the PMI-40 dataset. To quantify differences in image noise between PMI-40 and 
PMI-70, the CT numbers in Hounsfield Units (HU) within a uniform brain region were evaluated in a circular 
region-of-interest, which were (50 ± 9) HU and (43 ± 5) HU, respectively. Except for the cerebrospinal fluid, the 
brainstem is surrounded by brain tissues having nearly the same image intensity and therefore it is more difficult 
to perform a segmentation while having higher noise levels in the non-contrast cranial body region.

The DSC, HD, and the ∆CoM metrics of the eye lenses were difficult to interpret due to the large discrepancies 
over the whole energy range. These discrepancies occurred because eye lenses are small and only consist of a few 
voxels. The inclusion or exclusion of a single voxel or only a few voxels will lead to a large change in the quantita-
tive evaluation metrics.

Figure 4. Stacked bar chart of the qualitative four-grade scoring (not clinically acceptable, clinically acceptable 
with major changes, clinically acceptable with minor changes, clinically acceptable) of the automatic multi-atlas 
(MA) and deep-learning (DL) based image segmentations. The numbers in the bars indicate the occurrence 
in each category by the medical experts. The sum of the occurrence is equal to 84 for all organs (14 patients, 3 
scorers and left/right), except for the brainstem (N = 42).
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Quantitatively and qualitatively, the 3D deep-learning approach performed better than the multi-atlas 
method, except for the optic nerves. The optic nerves are a relatively small volume delineated on every single 
axial CT slice. Since the anatomical extension of optic nerves is not only in transversal direction, relatively small 
volumes on multiple axial CT slices do not necessarily form a connected 3D object. This very likely caused the 
increased difficulties to find a contiguous segmentation volume of the 3D deep-learning approach compared to 
the MA method. An overview of the organ volumes is listed in the Supplementary Information.

Figure 5. The relative and absolute occurrence of changes in the qualitative scoring between the multi-atlas 
(MA, red shaded) and deep-learning (DL, yellow shaded) methods including all observers. If the scoring of 
both approaches was the same, it was categorized as no change (grey shaded). For the respective method, 
improvements of one (light color) to three (dark color) qualitative scores were distinguished.
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The quantitative performance of both automatic segmentation methods was compared to published results 
of other methods. Zaffino et al.27 quantitatively assessed the performance of their automatic image segmentation 
software (PLASTIMATCH) applied on neurological cancer patients. They reported (values extracted using the 
DataThief3 software) a median DSC of 0.79 for brainstem, 0.43 for optic nerves and 0.78 for parotid glands using 
a mean of 18 ± 3.5 atlases to segment each patient. Considering the median DSC, our MA method applied on 
the PMI-40 dataset performed similar with 0.81 for brainstem, 0.67 for optic nerves, and 0.79 for parotid glands. 
Our DL approach applied on the PMI-70 dataset performed better for some OARs, such as 0.86 for brainstem 
and 0.85 for parotid glands. Here, a lower median DSC of 0.50 was calculated for optic nerves. Our DSC obtained 
for parotid glands, brainstem, and eyes using the DL method were comparable with the reported inter-observer 
variability of 0.85, 0.83, and 0.83, respectively28,29.

Considering the fact that both approaches, MA and DL, performed well for some OARs, while poorly for 
others (e.g. the optic nerves), more effort needs to be put into learning and evaluating the algorithms on larger 
datasets. However, the median DSCs reported in this study were comparable with the reported inter-observer 
variability assessed on conventionally used 120 kVp CT images3,28,29. Both algorithms were already compared to 
state-of-the-art automatic contouring techniques in the ‘thoracic auto-segmentation challenge’ organized at the 
2017 annual meeting of the American Association of Physicists in Medicine, in further studies they should also 
be evaluated on other body sites19.

In terms of calculation time, the training time of the DL method is not the most important factor in OAR 
segmentation for radiotherapy, because the site-specific model training only needs to be performed once for a 
single DECT-derived PMI dataset of a specific energy and OAR combination. The time required to apply the 
automatic OAR segmentation on new patient datasets is more important in a clinical radiotherapy workflow, 
since the algorithm will be applied on each cancer patient being examined. The inference time of the DL method 
(±20 seconds) is much faster than the ±10 minutes of CPU cluster calculation time required by the MA method. 
Besides the improved OAR segmentation time of the DL method, the quantitative and the qualitative results were 
generally better for most of the OARs.

In this retrospective study, the automatic segmentations by state-of-the-art MA and DL approaches19,20 were 
evaluated between various PMI datasets (40 to 170 keV) on a limited atlas database of 14 primary brain-tumor 
patients that underwent DECT imaging to assess the influence of different image contrasts on delineation varia-
bility. Due to our adopted leave-one-out cross-validation approach, we do not expect a considerable change of the 
median value of the respective metric calculated for the MA method if more patients are included in this study. 
As a limitation of this retrospective study, the DL method was only trained on 13 patients (N-1), however, larger 
patient databases are desired for DL approaches.

Many automatic contouring algorithms in radiotherapy are still evaluated on conventional 120 kVp SECT 
images19,30. As already demonstrated in previous studies10,18, PMI datasets can improve image quality in terms of 
contrast and noise as well as reduce beam hardening artifacts depending on the energy selected for PMI generation 
compared to conventional 120 kVp SECT. For other applications such as a non-automatic and dedicated bone mineral 
segmentation, it has also been shown that the use of PMI datasets could reduce inter- and intra-observer variability31.  

Figure 6. Comparison of the manual (orange), deep-learning (DL; blue), and multi-atlas (MA; green) based 
image segmentation methods for all organs-at-risk for two patients.
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However, to fulfill the requirements of the as-low-as-reasonably-achievable (ALARA) principle, only DECT 
scans were clinically acquired for the investigated patient cohort, since no added value for medical pur-
poses was expected from a conventional 120 kVp SECT and an 80/140 kVp DECT scan in direct succession. 
Consequently, this retrospective study solely aimed at the evaluation of the performance of MA and DL methods 
on DECT-derived PMI datasets. After demonstrating the benefits of PMI datasets for automatic segmentation, a 
future prospective study could be designed to directly assess the differences between SECT and DECT consider-
ing the radiation protection law and an ethics approval.

Conclusions
For the first time, a quantitative and qualitative assessment of multi-atlas and deep-learning based segmenta-
tion approaches was performed with DECT-based pseudo-monoenergetic images of different energies. For the 
multi-atlas method, PMIs calculated at lower energies generally resulted in better OAR segmentations. The neural 
network generally performed better than the multi-atlas method. However, the deep-learning approach encoun-
tered difficulties with the higher noise levels in PMIs of low energy. Further studies on larger image datasets 
and other body regions are needed to compare the performance of both OAR segmentation algorithms between 
DECT-derived datasets and possibly conventional 120 kVp SECT scans.
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