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Distinct mechanisms of temporal 
binding in generalized and cross-
modal flash-lag effects
Ryusuke Hayashi1 & Ikuya Murakami2

It remains unknown how the brain temporally binds sensory data across different modalities and 
attributes to create coherent perceptual experiences. to address this question, we measured what 
we see at the time we experience an event using a generalized version of the flash-lag effect (FLE) for 
combinations of visual attribute (bar orientation, face orientation, or face identity) and probe modality 
(visual or auditory). We asked participants to judge the content of rapidly and serially presented images 
seen at the same time as a briefly presented visual (flash) or auditory (click) probe and estimated the 
“time windows” contributing to decisions using reverse correlation analysis. We also used displays in 
which the visual attribute of a stimulus continuously changed and measured FLEs around abrupt flip 
in change direction and at the initiation and termination of a sequence. We consistently found clear 
latency-difference effects, which depended on visual attribute for the visual probe but did not for the 
auditory probe. The intra-modal FLE can be explained in terms of differential latency and temporal 
integration, but the cross-modal FLE is suggested to operate via a distinct mechanism; the content of a 
successive visual stream experienced after the awareness of a click is interpreted as simultaneous with 
the click.

Our perceptual system is confronted with the difficult task of estimating how the external world develops in time. 
To accomplish this, the system employs a multitude of sensory signals provided by multiple sensory modalities 
such as vision and audition. These are initially processed in separate pathways, within each of which multiple 
attributes of stimuli are extracted via subdivided mechanisms in the computational hierarchy. For example, visual 
processing at the cortical level begins in area V1 (Hubel & Wiesel1) and then proceeds along both ventral and 
dorsal pathways (Ungerleider and Mishkin2; Goodale and Milner3), gaining complexity at progressively higher 
cortical levels. Thereafter, the brain somehow binds different modalities and attributes to represent a world of 
coherent perceptual entities (Treisman & Gelade4, Fujisaki and Nishida5). Exploring what we see in terms of 
visual attributes at the time we experience an event is important when seeking to elucidate the cross-attribute/
modality-binding problem.

A flashed stimulus typically appears to lag behind a continuously moving stimulus even if they are aligned 
in space and time; the phenomenon is termed the “flash-lag effect (FLE)” (MacKay6; Nijhawan7). The FLE does 
not refer only to moving stimuli; it is generalizable to other visual attributes such as changes in color, spatial fre-
quency, etc., when the attribute changes smoothly at a fixed location (Sheth et al.8). Moreover, the FLE can occur 
cross-modally, e.g., when a visual motion is compared with an abrupt onset of sound that serves as an auditory 
equivalent of a visual flash (Alais et al.9; Hine et al.10). As the FLE has been found over a wide range of attributes/
modalities, it is a useful psychophysical tool when investigating the mechanism of temporal binding among var-
ious types of information at the time of an abrupt event, either visual or auditory, hereinafter termed a “probe.”

As neurons respond faster to some stimuli than others, neural latency may influence the FLE (Krekelberg & 
Lappe11). However, it remains unclear how visual information is temporally integrated to construct the percept 
of a visual attribute at visual probe onset (intra-modal binding) or at auditory probe onset (cross-modal binding) 
despite differences in latency for processing.

In this study, we focused on the following four points. First, we sought to quantify the temporal integration 
of visual information for several stimulus attributes. To this end, we used a rapid sequential visual presentation 
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(RSVP) (Murakami12; Murai & Murakami13) and applied reverse correlation analysis (Simoncelli et al.14; Ringach 
& Shapley15; David et al.16; Hayashi et al.17) to estimate which display frames in the RSVP contributed to the judg-
ment of visual content being simultaneous with the probe. The decision regarding what was perceived at probe 
onset was assumed to be based on a weighted sum of a visual sequence around the probe. Reverse correlation 
analysis estimates the linear component (the first-order kernel) of this weight function by summing a randomly 
presented visual sequence conditional on an observer’s binary responses. We refer to this temporal weight func-
tion as the “time window.” Second, we reasoned that if latency affected the time window, the effect would be 
maximal if we used visual attributes with diverse latencies. Orientation is first encoded in V1 neurons (Hubel 
& Wiesel1) but face is explicitly represented only at the stage of the inferior temporal (IT) cortex (Desimone et 
al.18). Moreover, posterior IT is selective for face orientation regardless of face identity, whereas anterior IT is 
selective for face identity rather than orientation (Freiwald and Tsao19). Therefore, we measured time windows 
using face-orientation and face-identification judgments, as well as bar-orientation judgment. Third, we also used 
continuously changing visual stimuli to see whether the time window estimated via RSVP reflects a general prop-
erty of the binding mechanism and also explains perception in other situations in which visual attributes change 
smoothly and continuously, as in conventional FLE studies. Fourth, the generalized FLE has never been stud-
ied cross-modally; although a cross-modal FLE between an abrupt sound and visual motion has been reported 
(Arrighi et al. 20), visual attributes other than motion have never been tested. We examined differences between 
intra-modal and cross-modal FLEs using a visual flash and an auditory click.

Experiment 1
We used the RSVP and reverse correlation analysis to estimate time windows. We chose three different visual 
tasks requiring processing at different cortical stages and used visual and auditory probes to explore differences 
between the intra- and cross-modal binding mechanisms.

Methods
observers. Author RH and naïve observers with normal or corrected-to-normal vision participated (N = 16). 
All experiments were performed in accordance with the principles embodied in the Declaration of Helsinki and 
were approved by the institutional review board of the National Institute of Advanced Industrial Science and 
Technology (AIST). Written informed consent was obtained from all participants prior to the start of the experi-
ments, after providing each participant with a written explanation of the aim and scope of the research.

procedure. Visual stimuli were displayed on a CRT monitor (Mitsubishi Electric, RDF19S; refresh rate 
100 Hz) under the control of Psychtoolbox-3 Extensions software (Kleiner et al.21) running in the Matlab 
(Mathworks) programming environment. At the beginning of each trial (Fig. 1a), a white solid square was dis-
played as a fixation point at the center of a uniform gray screen (37.8 cd/m2). After a 500-ms fixation period, ran-
domly chosen images (20 of 151 different images) were sequentially presented every 10 frames (100 ms). A visual 
flash (a white ring surrounding each image, one frame long) or an auditory click (a single pulse, 0.68 ms long, 
synchronized with screen refresh and transmitted to headphones, Hitachi Maxell Ltd., Vraison VH-OH48) served 
as the probe and was delivered randomly during RSVP. After a 500-ms blank interval, each participant reported 
the content of the image seen at probe onset by pressing one of two buttons. The button-press triggered the next 
trial. Each stimulus was confined within 9 × 9 deg. Identical images were displayed at 4.5-deg eccentricity to the 
left and right of the fixation point to render it easier for the observers to gaze at the fixation point throughout the 
RSVP. Each session comprised 100 trials and there were four sessions for each condition.

Visual stimuli and tasks. In each session, one of the following three tasks was chosen in pseudo-random 
order (see Supplementary Information and Fig. S1 for details):

•	 Bar orientation task: The visual stimuli were white bars, the orientations of which were within ± 60 deg from 
the vertical in 151 steps. We assigned stimulus indices ranging from –75 to + 75 to these images, depending 
on the bar orientation. The task was to report whether the bar seen at probe onset tilted counterclockwise 
(CCW) or clockwise (CW) from vertical.

•	 Face orientation task: The visual stimuli were monochromatic facial images in which the head orientation 
was within ± 60 deg in azimuth from the front in 151 steps. We assigned stimulus indices ranging from –75 
to + 75 to these images, depending on the angle of face orientation. The task was to report whether the face 
seen at probe onset faced left or right.

•	 Face identity task: The visual stimuli were monochromatic front facial images morphed from persons A to 
B (both were Asian males easily distinguished from each other by our observers) in 151 steps. We assigned 
stimulus indices ranging from –75 to + 75 depending on the morphing level. The task was to report whether 
the face seen at probe onset looked more like person A’s or B’s. The same two persons (A and B) were used 
throughout the study. All facial images were matched in terms of image histograms to minimize difference in 
low-level features such as luminance and contrast.

Data analysis. We used reverse correlation analysis to estimate the extent to which observers relied on 
images presented at various times when reporting what they saw at probe onset. Note that although the images 
were refreshed every 10 frames, the probe was delivered randomly, with a resolution of only one frame, irre-
spective of the phase of image duration. Thus, each time window was calculated with a resolution of one frame 
(10 ms). We also estimated a two-dimensional window, or a weight map on time-intensity domain, using the joint 
weights of timing and stimulus intensity for perceptual decision-making. For details about estimation of time 
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windows and for the limitation of reverse correlation analysis in relation to the non-linear effect, see Line 75–97 
in Supplementary Information.

Results
Visual probe. Fig. 2a–c show plots of the estimated time windows relative to visual probe (flash) onset in the 
bar orientation, face orientation, and face identity tasks, respectively. The observers made their decisions based on 
images presented within a certain frame range around flash onset. The full widths at half-maximum (FWHMs) of 
the estimated time windows for the bar orientation, face orientation, and face identity tasks were 245.4, 263.4, and 
283.1 ms, respectively. Such fairly broad values were anticipated, because each image was 100 ms in duration (this 
was inevitable, given the need for the visibility of the RSVP), thus artificially inflating time-window estimates by 
up to 90 ms both forwards and backwards. The time window peak for the bar orientation task occurred 42.9 ms 
after the flash, indicating that the flash was perceived to lag the changing orientation, consistent with the findings 
of classical FLE studies. On the other hand, the peak for the face orientation task (Fig. 2b) was at –13.5 ms (i.e., 
13.5 ms before the flash). Finally, the peak for the face identity task (Fig. 2c) was at –83.3 ms relative to the flash, 
thus exhibiting a large “flash-lead” effect. The difference from the bar orientation results was thus over 125 ms.

Figure 2d–f are weight maps in the time-intensity domain. The observers made decisions relying not only on 
the images that differed most radically from the midpoints, i.e., the most obvious and easiest images to report, but 
also using more-or-less wide ranges of stimulus intensity; the peak timing was relatively constant across different 
stimulus intensities, thus stimulus discriminability in each task had a negligible effect on the peak timing.

Auditory probe. Fig. 3a–c show the estimated time windows relative to click onset for the bar orientation, 
face orientation, and face identity tasks, respectively. Unlike what was seen with the flash, the peak latencies were 
located after the click in all three tasks (47.8, 82.2, and 78.8 ms), and the variability across tasks was much smaller. 
The FWHMs of the time windows were 338.0, 378.1, and 345.2 ms for the bar orientation, face orientation, and 
face identity tasks, respectively, thus wider than those under the flash condition.

Figure 3d–f show weight maps in the time-intensity domain for the bar orientation, face orientation, and face 
identity tasks, respectively. Evidently, observers made their decisions based on a wide range of stimulus intensities 
at times after click onset.

Fig. 4 summarizes the results of Experiment 1; the peaks and FWHMs of the best-fit time windows are plot-
ted in a and b, respectively, for each condition. A two-way analysis of variance (ANOVA) (three visual attrib-
utes × two probe modalities) of the peaks revealed significant main effects of visual attribute [F(2, 90) = 7.84, 
p < 0.01] and probe modality [F(1, 90) = 72.6, p < 0.01], and their interaction [F(2, 90) = 19.66, p < 0.01]. A 

Figure 1. (a) Schema of the procedure of Experiment 1. (b) Schema of the procedure of Experiment 2. (c) 
Examples of visual sequences under the “probe-terminated,” “complete,” and “probe-initiated” cycle conditions 
in Experiment 3.
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multiple comparisons test (Tukey’s SDM test, p < 0.05) confirmed significant peak differences among the three 
tasks for the flash, but not for the click. A two-way ANOVA of FWHM revealed a significant main effect only of 
probe modality [F(1, 90) = 36.69, p < 0.01]; the time window for a click was significantly broader than that for 
a flash. The mean peak significantly differed from zero (i.e., flash onset time) in the bar orientation task (t-test, 

Figure 2. The results of Experiment 1 (flash stimulus / visual probe). The red broken line denotes flash onset. Left 
column: The time window for the flash, estimated using data averaged across all observers; (a) Bar orientation 
task, (b) Face orientation task, and (c) Face identity task. The red crosses indicate the weight estimated for 
each frame and the blue curves indicate the best-fit curves using the non-central t-distribution. Right column: 
the weight map for the flash condition in the time-intensity domain, estimated from data averaged across all 
observers; (d) Bar orientation task, (e) Face orientation task, and (f) Face identity task. Brighter pixels indicate 
how much the image at the corresponding time and stimulus intensity contributed to reporting that “the bar was 
tilted CCW” (bar orientation task), “the face was facing left” (face orientation task), and “the face looked more 
like that of person A” (face identity task) when the flash appeared; darker pixels indicate the opposite.
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t = 4.50, p < 0.01) and in the face identity task (t = −5.63, p < 0.01) but not in the face orientation task, indicat-
ing a “flash-lag” effect in bar orientation and a “flash-lead” effect in face identity when using the visual probe. 
The peak significantly differed from the click onset time in all three tasks (t = 3.37, 6.39, and 5.64, respectively, 
p < 0.01) showing “click-lag” effects when using the auditory probe regardless of visual attribute to judge.

Experiment 2
Variations in time window peaks were revealed above. However, the time window estimated in the RSVP par-
adigm may not be related directly to the perception associated with a conventional FLE paradigm wherein a 
visual attribute continuously changes. Here, we used a continuously changing stimulus, and abruptly flipped the 
direction of change to test whether the “perceived flip time” lag or lead the “physical flip time” depending on tasks 
and conditions. We determined the perceived bar orientation, face orientation, and face identity at the onset of a 

Figure 3. The results of Experiment 1 (click stimulus / auditory probe). Conventions are identical to those in 
Fig. 2.
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probe presented at various times around the flip time to estimate the trajectory of percept relative to the stimulus 
trajectory (see Figs 1b and S5 in Supplementary Information). We examined whether the observed lag or lead 
effect was consistent with the observed peak variability in the RSVP paradigm.

Methods
procedure. In the current study, it was extremely difficult for our observers to directly report perceived face 
orientation or face identity at probe onset. Instead, we determined the subjective neutral points of bar orientation, 
face orientation, and face identity at the subjective probe onset—in the case of the bar orientation task, the degree 
of physical inclination of the stimulus required to achieve a subjective appearance of being upright. The trajec-
tory of percept was reconstructed from a set of subjective neutral points measured at several probe onset times 
(Fig. 1b, see Supplementary Information for details).

The procedure was the same as that of Experiment 1, except that the visual attribute changed continuously. 
The stimulus index changed at every frame (10 ms). The direction of stimulus change was flipped at certain times 
during presentation. We used two kinds of sequences: for the CW/CCW sequence, the index was initially set low, 
increased by one every frame and then after the flip decreased by one every frame; for the CCW/CW sequence, 
the index was initially set high and then decreased by one every frame and, after the flip, increased by one every 
frame. The probe appeared at a time randomly chosen from 12 times relative to the flip. In each trial, the total 
stimulus duration was chosen from the range 700–1100 ms and the probe appeared at a time chosen from the 
range 350–550 ms after stimulus onset.

In each task, trials evolved according to the staircase method (see Supplementary Information for details); 
each staircase was designed to converge on the subjective neutral point, i.e., the image actually presented at probe 
onset when the image seen at probe onset was neutral (a vertical bar, a front-facing face, or a neutral face). Each 
observer completed at least two sessions for each task under each probe condition (flash or click). Under the flash 
condition, N = 11, 10, and 7 for the bar orientation, face orientation, and face identity tasks, respectively; under 
the click condition, N = 7, 7, and 6, respectively. The mean deviation of the subjective neutral point from the 
physically neutral stimulus at probe onset was obtained by averaging the stimulus indices between the last two 
staircase reversals and between the two staircase sequences (with data for the CW/CCW sequence sign-inverted 
and merged with those for the CCW/CW sequence).

Data analysis. If one could keep track of what was perceived at each time, then it would be possible to deter-
mine whether a flash-lag or flash-lead effect was present by calculating the time shift between the trajectory of the 
stimulus index, g t( ), where t = 0 at the flip, and the trajectory of the percept as expressed by the index of the cor-
responding stimulus, f t( ) (for the method of estimating f t( ) from the measured deviation of the subjective neu-
tral point, see Supplementary Information); the time lag, td, between the two functions was determined by the 
argument of the maximum of the cross-correlation:

∫ τ τ τ= +( )t f g t dargmax ( ) ( )d t

Figure 4. Summary of Experiment 1. The red and blue bars indicate the flash and click conditions, respectively. 
Error bars indicate ± 1 SE. (a) Peaks of estimated time windows averaged across all observers. (b) FWHMs of 
estimated time windows averaged across all observers.
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Results
The upper row of Fig. 5 shows the estimated percept as a function of probe onset time for the bar orientation, face 
orientation, and face identity tasks. Panels a) and b) show the results under the flash and click conditions, respec-
tively. Under the flash condition, the troughs in the estimated trajectory of the percept were at −31.4 ± 13.0 ms, 
−1 ± 6.4 ms, and 27.4 ± 10.2 ms for the bar orientation, face orientation, and face identity tasks, respectively. 
Under the click condition, the troughs were at 5.4 ± 17.7 ms, 2.8 ± 15.4 ms, and −2.8 ± 10.3 ms, respectively. A 
two-way ANOVA (three visual attributes × two probe modalities) of trough time revealed a significant inter-
action only [F(2, 41) = 3.42, p < 0.05]. Accordingly, we performed a one-way ANOVA (three visual attributes) 
of trough time only under the flash condition and confirmed a significant main effect [F(2, 25) = 7.5, p ≪ 0.01]. 
The estimated trajectory of percept was less sharp than the stimulus trajectory, suggesting that observers made 
their decisions based on a temporally averaged stimulus over a certain time window (the range estimated in 
Experiment 1 was 245–380 ms). Unlike in Experiment 1, however, the stimulus in Experiment 2 changed con-
tinuously; undesirable confusion caused by stimulus history may have affected the observers’ perception in dif-
ferent ways from task to task, resulting in different apparent vertical shifts in the curves. Below, we focus on 
the horizontal shift, i.e., the time lag of the estimated trajectory of percept (Fig. S5c and d) and the dependency 

Figure 5. (a) Inter-observer average of the estimated trajectory of the percept as a function of visual probe 
(flash) onset time relative to flip time. Crosses indicate estimates based on data; the solid curves ( f t( )) are the 
best-fit cubic spline functions. The V-shaped solid black curve (g t( )) indicates the stimulus trajectory. Blue: bar 
orientation task; Yellow: face orientation task; Green: face identity task. (b) Results for the auditory probe 
(click). (c) Scatter plots of all flash conditions and all observer data showing the correlation between the peaks 
of the time windows in Experiment 1 and the time lags in Experiment 2. The black line is the linear regression 
line. (d) Results for the click.
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thereof on visual attributes and probe modality. Under the flash condition, the trajectory of percept in the bar 
orientation task shifted to the past (i.e., leftward on the plot) compared to the stimulus trajectory. Therefore, the 
observers tended to make judgments based on images presented after the flash. In the face orientation task, the 
curve similarly shifted to the past, but somewhat less. Although the results of Experiment 1 show that the peak in 
the time window in the face orientation task was located slightly before the flash onset (−13.5 ms), the peak time 
was not significantly different from zero and the time window per se had a slightly longer tail after the flash. This 
property of the time window in the face orientation task may explain the apparent absence of the flash-lead effect 
observed in Experiment 2. In the face identity task, the curve shifted slightly to the future, indicating that the 
observers tended to make decisions based on the images presented before the flash. On the other hand, the three 
click curves exhibited less marked differences in time shift.

In summary, the estimated trajectories of percept shifted along the time axis compared to the stimulus tra-
jectory, consistent with the flash-lag and flash-lead effects observed in Experiment 1, except for the bias in the 
vertical axis and the small flash-lag shift in the face orientation task.

The lower row of Fig. 5 shows a scatterplot for all conditions and all observers; the abscissa indicates the peaks 
of the time windows in Experiment 1 and the ordinate indicates the time lags (td) in Experiment 2. The correlation 
was significant (t-test, t = −3.89, p < 0.01 for the flash; t = −2.66, p < 0.05 for the click), indicating that latency 
differences depending on visual attributes and probe modalities found when using the RSVP paradigm 
(Experiment 1) were linearly related to the time lags seen in Experiment 2, when continuously changing stimuli 
were used as in conventional FLE experiments. The slope of the linear relationship was significantly shallower 
than −1 (t = 5.89, p <<0.01 for the flash; t = 3.79, p ≪ 0.01 for the click), probably because the time lags in 
Experiment 2 were underestimated upon stimulus flipping. Although the observers were asked to report the 
percept at probe onset, their decisions could have been compromised by the percept at the flip time, especially 
when probe onset was close to flip time. Such confusion might also have made the estimated curve broader than 
it should be in different ways from task to task.

Experiment 3
If the time window estimated using the RSVP paradigm is a relevant FLE signature, that window should predict 
how the FLE might depend on the stimuli presented after or before the probe. Thus, we used a continuously 
changing stimulus without any abrupt flipping, as in typical studies of the FLE (the “complete” condition), and 
compared the data with those obtained when the same stimulus sequence was presented either within a pre-probe 
period or within a post-probe period (“probe-terminated” and “probe-initiated” conditions, respectively; see 
Fig. 1c). If the time window for a certain task deviated sufficiently toward the future after the probe, a judg-
ment under the “complete” condition should be determined principally by the stimulus sequence after the probe. 
In such a case, judgments made under the “complete” condition should be more similar to those made in the 
“probe-initiated” condition than in the “probe-terminated” condition. The opposite should be true if the time 
window deviated sufficiently toward the past relative to the probe.

Methods
The stimulus display was refreshed every 10 ms and the stimulus index was continuously changed by one 
unit without any flipping. In the “complete” condition, the index was changed in one direction (either up or 
down; e.g., CW or CCW bar orientation task); the total duration was randomly chosen from the range 800–
1200 ms. The probe onset time was randomly chosen from the range 400–600 ms after stimulus onset. In the 
“probe-terminated” and “probe-initiated” conditions, the stimulus was presented only before or after the flash, 
respectively. The observers were instructed to report the content of visual attributes at the termination or the 
initiation of the stimulus sequence. A blank gray screen was presented during the rest of the period. The FLE for 
each condition was measured as the subjective neutral point obtained using the staircase method as was done in 
Experiment 2. Observers who participated in Experiment 2 also performed Experiment 3.

Results
The results for the flash are shown in Fig. 6a. In the bar orientation task, the FLE differed significantly between 
the “probe-terminated” and “complete” conditions (t-test, t = −4.48, p < 0.05) but not between the “complete” 
and “probe-initiated” conditions. Thus, when observers were asked to report bar orientation at flash onset under 
the “complete” condition, they relied mainly on images presented after the flash. These results are consistent with 
those of Experiment 1; the peak in the time window in the bar orientation task was located after the flash and 
the observers made decisions based primarily on images presented after the flash. In the face orientation task 
also, the FLE differed significantly between the “probe-terminated” and “complete” conditions (t-test, t = −4.48, 
p < 0.05) but not between the “complete” and “probe-initiated” conditions. Results of the face orientation task in 
Experiment 3 were consistent with those in Experiment 2, but apparently not with those in Experiment 1 showing 
the peak of the time window located slightly before the flash onset. We consider that these results can be recon-
ciled by the longer tail of its time window after the flash than before. Unlike what was seen in the bar orientation 
and face orientation tasks, the FLE for the face identity task differed significantly between the “complete” and 
“probe-initiated” conditions (t-test, t = −2.20, p < 0.05) but not between the “probe-terminated” and “complete” 
conditions. This implies that observers relied on images presented before the flash when judging face identity. 
These results were consistent with those of Experiment 1, where the peak in the time window in the face identity 
task was located before the flash.

The click results are shown in Fig.  6b. For all tasks, the FLE differed significantly between the 
“probe-terminated” and “complete” conditions (t-test, t = −6.02, −8.70, and −2.48 for the bar orientation, face 
orientation, and face identity tasks, respectively, p < 0.05), but not between the “complete” and “probe-initiated” 
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conditions, consistent with the results of Experiment 1 in which the peak of the time window for all tasks was 
located after the click.

We found that the results under the “probe-terminated” condition in the bar and face orientation tasks showed 
statistically significant differences from zero (t-test, t = 6.14 and 8.44, p < 0.01). These results apparently contra-
dict a previous study (Eagleman & Sejnowski22) showing that a stimulus similar to that in our flash-terminated 
condition induced no flash-lag/lead effect when reporting the perceived position of a moving visual stimulus 
relative to a visual flash’s. In this experiment, we used continuously changing stimuli with visual attributes for 
which our observers’ performances exhibited a broad “time window” in Experiment 1, and thus stimulus history 
could impact more on bar- and face-orientation judgement than relative position judgment. It is also noteworthy 
that the FLE in the flash-terminated condition may depend on several parameters of stimulus configuration such 
as eccentricity (Kanai et al.23).

Discussion
We combined the RSVP with reverse correlation analysis in Experiment 1 and directly estimated weights applied 
to the visual sequence to characterize the display frames on which observers relied when reporting the contents 
of visual attributes at probe onset. We found that the peak of the time window varied depending on the visual 
attribute used and probe modality. In particular, when observers made decisions on face identity at flash onset, a 
large flash-lead effect was evident. In Experiment 2, we used a continuously changing stimulus with abrupt flips in 
the direction of change and analyzed time shifts between the trajectories of stimulus and percept. We found that 
the time shift tended to be predicted by the difference in the peaks of the time windows obtained in Experiment 
1. In Experiment 3, we measured FLE as in typical FLE studies to explore whether perception was determined 
by images presented before or after the probe. Again, the results were explained by the differences in the time 
windows of Experiment 1.

To date, several hypotheses have been proposed to explain the original FLE of visual motion, and we will par-
ticularly focus on two influential models (Krekelberg and Lappe11): temporal averaging (Krekelberg & Lappe24), 
and differential latency (Whitney and Murakami25; Ogmen et al.26).

The hypothesis of temporal averaging asserts that the position signals (not light intensity as in Bloch’s law) of a 
moving stimulus are averaged over a certain period; the FLE occurs because the position of the moving stimulus 
develops along a trajectory whereas the flash persists at the same position (Krekelberg & Lappe11). This theory 
readily explains the effects of post-flash motion changes on the size of the FLE and the FLE at motion initiation 
(Eagleman & Sejnowski22). However, the interval for averaging estimated in the original study was unrealistically 
long (approximately 630 ms), probably because of the naïve assumption that only positional signals received after 
the flash are uniformly averaged.

The hypothesis of differential latency asserts that the FLE occurs because the moving stimulus is of shorter 
latency than the flash; the moving stimulus has traveled some distance whereas the flash is delayed by several tens 
of milliseconds, hence appearing to lag. This theory explains the reduction in the size of the FLE when the moving 
stimulus is dimmed in terms of a reduction in the latency difference (Patel et al.27), and also explains the perceived 
trajectory of motion stimulus whose moving direction abruptly flips (Whitney & Murakami25). However, the 
theory does not explain the FLE developing at motion initiation. As a moving stimulus and a flash are physically 
indistinguishable at onset, a moving stimulus cannot already be of shorter latency, so an additional mechanism 

Figure 6. The inter-observer FLE averages for the “probe-terminated” (green), “complete” (cyan), and “probe-
initiated” (magenta) conditions. Error bars indicate ± 1 SE. Each asterisk indicates a significant difference 
(p < 0.05) compared to the value associated with the “complete” condition. (a) Results for the flash. (b) Results 
for the click.
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such as metacontrast masking and/or attention related to the Fröhlich effect will be required (Fröhlich28; Kirshfeld 
& Kammer29; Whitney & Cavanagh30. Note that Ogmen et al.26 offer an integrative explanation of the FLE at 
motion initiation based on the differential latency hypothesis that takes into account visibility processing as well 
as position computation.

Studies on the audiovisual FLE are worth mentioning in relation to the controversy over the mechanism of the 
FLE. Arrighi et al. (2005)20 reported that the cross-modal FLE of an auditory probe was larger than the FLE of a 
visual probe. A naïve view of differential latency theory would require that a flash must be processed faster than 
a tone. However, on the contrary, the neural latency of audition tends to be shorter than that of vision; Arrighi et 
al. regarded such observations as counterevidence for differential latency. However, this is debatable, because the 
cross-modal FLE may reflect a distinct underlying mechanism; effect size does not necessarily reflect processing 
latency per se.

The temporal averaging and differential latency theories are not mutually exclusive. A possible explanation 
reconciling the two theories is to assume that visual information is gathered across a certain time window, but 
that information is not uniformly averaged over time after the probe arrives, rather being averaged employing a 
certain “weight” distribution around the time of probe onset (including a period preceding the probe) and the 
weighting shapes might differ by visual attribute and probe modality. As this hybrid model includes a temporal 
integration mechanism, the model can naturally explain the FLE evident at motion initiation. In this scheme, the 
time window can also be viewed as a probabilistic distribution of differential latency.

The results of Experiment 1 indicate that a certain time window is critical in terms of reporting the content 
of a visual attribute at probe onset, and imply that the report is generated by integrating stimulus information 
gathered across a moderate time period, with the peak and interval depending on the visual attribute and probe 
modality. Experiment 2 showed that the time lag between the percept and stimulus found when the stimulus con-
tinuously changed was predictable by the peak shift in Experiment 1, supporting the claim that latency differences 
among visual attributes elucidated in the RSVP paradigm underlie the FLE. We presume that the peak differences 
in bar orientation, face orientation, and face identity judgments reflect latency variations among the visual attrib-
utes by reference to probe latency (Fig. 7a). Physiological evidence indicates that bar orientation is first encoded 
in V1 neurons with short latencies (about 35 ms, Lamme and Roelfsema31), but that face information is explicitly 
represented only at the stage of IT, with much longer latencies (109–114 ms for neurons in posterior IT and 
123–143 ms for neurons in anterior IT, Schmolesky et al.32; Lamme & Roelfsema31). Psychophysical studies also 
indicate that reaction times are faster for face detection than for face identification (Barragan-Jason et al.33); the 
latter thus requires a longer processing time before it is achieved at a higher stage of the processing hierarchy. All 
previous studies yielded data consistent with the peak differences revealed in this study.

Notably, the concept of differential latency used here is not limited to neural response delay, rather including 
any type of processing load that delays awareness of a visual attribute in a broad sense. For example, face identity 
judgment may require more elaborate inspection than bar orientation judgment, and the sluggishness (or low 
temporal resolution) of face identification may affect latency in a manner such that observers tend to perceive the 
last unambiguous image presented before the probe as being the image presented at probe onset.

Rather than calibrating the stimulus range of each task in terms of discriminability, we used the same angular 
range of stimuli, thus ± 60 deg in the bar and face orientation tasks and morphed face images between two males 
in the face identity task. Consequently, the observed differences in the peaks of the time windows across tasks 
might be attributable simply to differences in task difficulty, which could have affected decision making. However, 
it is unlikely that task difficulty is the only factor explaining the observed differences in the peaks. When we 
controlled for the difficulty of bar orientation judgment by changing the orientation range, the peaks of the time 

Figure 7. Possible explanations of (a) intra-modal binding and (b) cross-modal binding. Each bold arrow 
represents a processing delay in terms of reporting the content of a visual attribute.
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windows were consistently located after the flash even when bar orientation judgment was as difficult as face 
orientation or face-identity judgment (data not shown).

When the luminance of a motion stimulus decreases under ordinary FLE conditions, the lag decreases and 
even becomes a flash-lead effect (Patel et al.27.). The flash-lead effect reported in the previous study reflects delay 
in visual signal input to the visual cortex. The flash-lead effect observed in the face-identity judgment in our study 
is novel in the sense that it is caused by a latency difference attributable to successive hierarchical processing in 
the visual cortex.

The results of Experiment 1 yield a quantitative estimate of the range of temporal integration. The FWHMs 
of the estimated time windows were 200–250 ms for the flash condition and 300–350 ms for the click condition, 
comparable to those of previous studies, implying that perceptual distances between moving and flashed stimuli 
are based on average positional differences across several hundred milliseconds (Krekelberg & Lappe24). The time 
windows estimated here were, however, distributed both toward the past and into the future, and the peak times 
exhibited variabilities of several tens of milliseconds depending on the visual attribute, whereas previous studies 
assumed that visual information was uniformly integrated across an extraordinarily wide range (approximately 
500–600 ms) only after probe onset.

Our finding that the FLE was greater for a click than for a flash is consistent with a previous study, although the 
authors considered their finding as counterevidence for the differential latency hypothesis (Arrighi et al.20). We 
also found that the variability in the peaks of the time windows (depending on the visual attribute) became much 
smaller when a click was used rather than a flash. We thus propose that reporting of visual content at auditory 
probe onset requires cross-modal binding that is fundamentally different from intra-modal binding.

During intra-modal binding, multiple visual entities are bound to form a unified and coherent visual experi-
ence; the content of each visual attribute is updated (with some delay) after every stimulus update. When observ-
ers are asked to report the content of a visual attribute at flash onset, the frames of images used for judgment (i.e., 
the time window) are determined by the differential latency between the probe and the visual attribute of interest 
(Fig. 7a).

On the contrary, vision and audition are processed separately up to certain stages. During cross-modal bind-
ing, the contents of the two modalities represented in separate processing streams are not necessarily bound into 
a single entity unless accompanied by adaptation, learning, or spatiotemporal congruency. As the click was deliv-
ered through headphones, neither a temporal nor a spatial clue was available to the observers to infer click onset 
relative to the dynamically changing visual stimulus. In such a case, the content of the visual stream experienced 
before awareness of a click was not recognized as simultaneous with the click. Rather, it is likely that observers 
began to inspect visual contents after they became aware of the click, interpreting the click as a “go” signal and 
then reporting the most likely content at the time they heard the click, as if a visual snapshot at the time of the 
“go” signal were newly registered for this purpose (Fig. 7b). As the processing time needed to become aware of 
the click was invariant across tasks, the peak of the time window under the click condition was always located 
after click onset regardless of the visual attribute used. Hine et al.10 reported a “click-lead” effect when observers 
were asked to judge whether a click occurred before or after the time when a moving visual stimulus passed the 
fixation cross. In our framework, this could be accounted for by considering that the time when their observers 
became aware of the visual event served as the timing of a “go” signal that triggered cross-modal interpretation of 
the timing of the click. Thus, their results do not contradict our explanation of cross-modal binding.

Postdiction theory (Eagleman and Sejnowski22) that involves a mechanism resetting temporal integration 
and a theory that combines attention, backward masking, and priming (Sheth. Nijhawan, Shimojo8) have been 
proposed as possible accounts for the FLE. Our theory aims to explain the FLE based only on a simple binding 
mechanism but does not exclude the possibilities that additional, perhaps more higher-order, mechanisms also 
affect the FLE.

In summary, we estimated the time windows required for bar orientation, face orientation, and face identity 
judgments, at the time of a flash or click using the RSVP and reverse correlation analysis. We found that the peaks 
of time windows changed depending on the visual attribute the observers were required to report when the flash 
occurred. Differential latencies accompanied by temporal integration explained the findings. The results also 
imply that cross-modal binding differs fundamentally from intra-modal binding in the FLE context.

Data Availability
Details about our experimental procedure are provided in Supplementary Information.
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