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East-Asians at the ABCA12 gene
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Published online: 19 March 2019 © Natural selection acts on genetic variants by increasing the frequency of alleles responsible for a
. cellular function that is favorable in a certain environment. In a previous genome-wide scan for positive
selection in contemporary humans, we identified a signal of positive selection in European and Asians
at the genetic variant rs10180970. The variant is located in the second intron of the ABCA12 gene,
which is implicated in the lipid barrier formation and down-regulated by UVB radiation. We studied the
signal of selection in the genomic region surrounding rs10180970 in a larger dataset that includes DNA
sequences from ancient samples. We also investigated the functional consequences of gene expression
of the alleles of rs10180970 and another genetic variant in its proximity in healthy volunteers exposed
to similar UV radiation. We confirmed the selection signal and refine its location that extends over 35 kb
and includes the first intron, the first two exons and the transcription starting site of ABCA12. We found
no obvious effect of rs10180970 alleles on ABCA12 gene expression. We reconstructed the trajectory of
the T allele over the last 80,000 years to discover that it was specific to H. sapiens and present in non-
Africans 45,000 years ago.

ATP binding cassette (ABC) transporters are trans-membrane ubiquitous proteins, that translocate natural sub-
strates across plasma membranes. In humans, there are 49 genes coding for ABC transporters, arranged in eight
subfamilies extensively studied because at least 11 of 49 genes are known to cause severe inherited diseases'. The

. ATP-binding cassette, sub-family A member 12 (ABCA12) gene was discovered from cDNA of human placenta®.

: ABCA12 is 207 kb long with fifty-three exons and two very long introns at its beginning (26.5kb and 47.3 kb,

. respectively, Fig. 1a). ABCA12 is a keratinocyte transmembrane transporter that binds and hydrolyzes ATP to
transport lipids in the lamellar granules®. This activity is required to form the extracellular lipid barrier in the
outermost layer of the skin, the stratum corneum of the epidermis’. The lipid barrier is composed of three lipid
classes (cholesterol, free fatty acids, and ceramides) and acts as a primary barrier between the body and the envi-
ronment to prevent excessive water loss and to avoid penetration of pathogens*. ABCA12 has also a role in immu-
nity: in macrophages it regulates the cellular cholesterol metabolism via an LXRb-dependent post-transcriptional
mechanism?®.

UV-radiation has a major effect on skin and keratinocytes and it is one of the most studied environmental
stressors of the epidermal homeostasis. In keratinocytes, UV-radiation induces mutagenesis, apoptosis, prolifer-
ation, and metabolic changes. UV-radiation has a major role in determining skin pigmentation®’, but it also can
have a detrimental effect on the lipid barrier reducing the intercellular lipid cohesion®. Earlier studies suggest that
UVB radiation down-regulates epidermal ABCA12 gene expression’ and in general UV light influences other
ABC transporters activity in lymphocytes'®.
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Figure 1. Positive selection at ABCAI2. (a) The ABCAI2 gene has is 55 exons and two long introns at its
beginning. The black rectangle indicates the 70 kb region surrounding rs10180970 considered in this project.

(b) rs10180970 is the most differentiated variant between Africans and non-Africans as shown by the absolute
difference of the derived allele frequency (ADAF), however, other variants seem to be also extremely differentiated.
(c) The Cross Population Extended Haplotype Homozogysity statistic (XP-EHH), measured between pairs of
continental populations, shows a signal of positive selection in non-Africans over 35kb downstream rs10180970,
especially in East-Asians. (d) The signal is confirmed by the Integrated Haplotype Score (iHS) within continental
populations. In panels b—d the dashed line indicates the genomic position of rs10180970.

The always growing availability of ancient DNA information allows us to directly reconstruct the history of
genetic mutations and understand if consequences of past adaptations are relevant for contemporary humans'!.
Past events of positive selection can be tested as detection of a major shift in allele frequencies'?%.

In a genome-wide scan for positive selection in contemporary humans, we identified a signal of positive selec-
tion in Europeans and Asians at rs10180970 C/T, located in the second intron of ABCA12". In the study, we
demonstrated that the derived allele T is highly frequent in Asians and Europeans, compared to Africans, where
the ancestral C variant prevails. This evidence, together with the identification of patterns typical of positive
selection in the genomic region of rs10180970 let us speculate that ancestor of current Europeans and Asians
should have had an advantage in carrying the T allele and that it would be interesting to determine the functional
consequences and the trajectory of the T allele through time.

Here we present results from investigating the genomic region surrounding rs10180970. We confirm that
this region underwent positive selection and investigate one possible selected phenotype. We have extended the
set of individuals used to investigate genetic variation and natural selection at rs10180970, including also DNA
sequences from ancient human samples. We confirm the signal of positive selection at rs10180970, investigate
linkage with genetic variants in its proximity and the effect of the two alleles on ABCA12 gene expression.

Results

Natural selection signal at the ABCA12 gene extends 10 kb downstream rs10180970. We iden-
tified rs10180970 as a possible candidate for positive selection in Europeans and Asians during a genome-wide
scan for positive selection conducted on populations from Phase I 1000 Genomes Project!®. In this study, we
considered a 70kb region surrounding rs10180970 including the first two exons, the first and most of the second
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T/T T/C C/C

. . . 0 0.09 0.91
Complete Genomics full dataset | Africans Europeans & Asians 0.89 0.10 0.01
. . . . 0 0.05 0.95
Complete Genomics unique Africans Europeans & Asians 0.88 011 001
1000 Genomes Phase IIT Africans Europeans & Asians 0.01 0.14 0.84

0.85 0.14 0.01

Table 1. Genotypes frequencies at rs10180970 in Phase IIT 1000 Genome and Complete Genomics datasets
both full and non overlapping with 1000 Genomes Phase I (unique).

introns, and the transcription starting site of ABCA12 (Fig. 1a). Compared to Phase I, the 1000 Genomes Phase
III dataset'® includes 1,412 more samples belonging to 12 more populations (Supplementary Table S1) and in the
region under study includes 1,612 variants for which the ancestral state is known and that we used to calculate
statistics suggestive of population differentiation and positive selection.

Between pairs of continental populations, we evaluated the absolute difference of the derived allele frequency
(ADAF) and the Cross Population Extended Haplotype Homozygosity (XP-EHH'”). ADAF approaches 1 when
the derived allele prevails in one population and is almost absent in the other. According to ADAF, rs10180970
is still the most differentiated variant in comparisons of Africans and non-Africans in 70kb surrounding
rs10180970 (Fig. 1b). In Phase III the T/T genotype frequency in the combined sample of Europeans and Asians
is significantly higher than Africans (Table 1, Fisher exact test p-value < 2.2e-16). Similarly, in the Complete
Genomics dataset (CG)'8, the T/T genotype is significantly more frequent among Asians and Europeans com-
pared to Africans. This is true both when considering samples partially overlapping with Phase I, and samples
unique to CG (Table 1, Fisher exact test p-value < 2.2e-16), suggesting that the observed pattern of higher derived
allele frequencies in Europeans and Asians compared to Africans was not due to the specific set of sample used
but is reproducible. XP-EHH detects recent positive selection highlighting selective sweeps in which the selected
allele has approached or achieved fixation in one population but remains polymorphic in the overall population.
In the 1000 Genomes Phase III dataset, we observe a stretch of negative XP-EHH outside the expected variance
range (i.e., -1,1) in pairs of Africans with non-Africans. The signal is located approximately at 10kb downstream
rs10180970, suggesting recent positive selection in non-Africans in this region (Fig. 1¢), and it is particularly
strong in East-Asians. Within continental populations we calculated the Integrated Haplotype Score (iHS'). iHS
detects the classic signal of strong directional selection through the identification of unusually long haplotypes
with low diversity surrounding core SNPs. As for XP-EHH, also for iHS we observe peaks of unusually high iHS
10kb downstream rs10180970 in non-African populations and especially in East-Asians (Fig. 1d).

Altogether these results show that while rs10180970 is the most differentiated variant in the ABCA12 gene,
haplotypes downstream rs10180970 differ between Africans and non-Africans. Haplotypes carrying the T allele
0f rs10180970 are very common in Europeans and Asians and tend to be longer and less diverse in these two pop-
ulations compared to the others, suggesting that this region might have been affected by recent positive selection
in these two populations.

As linkage between variants in a long haplotype can be responsible for spurious signals, we computed linkage
disequilibrium (LD) in continental populations between rs10180970 and 2,034 genetic variants in 70 kb sur-
rounding rs10180970. For all populations but Africans, we observe LD within 10kb downstream rs10180970
(Fig. 2a). In East-Asians and Europeans LD extends over 35kb downstream rs10180970, in a region inclusive
of the first intron and the first exon. Within this block, LD is high in East-Asians (r? around 0.75) and moder-
ate in Europeans (r? around 0.50). The genomic region in high LD contains functional features such as chro-
matin regulation (H3K4Mel and H3K27Ac), enhancers and a promoter located in the proximity of the first
intron and includes SNPs with ADAF > 0.70 (Fig. 2b). Therefore we conclude that other SNPs are in high LD
with rs10180970 in East-Asians and part of a long haplotype that is located in a genomic region with regulatory
features.

No significant association between ABCA12 expression and genotype at rs10180970. Having
confirmed the signal of natural selection at rs10180970 we next asked if the two alleles have a different effect on
gene expression. Furthermore, in the hypothesis that another variant in linkage with rs10180970 can be respon-
sible for the functional changes, we decided to include also rs2970968 in the analysis. Besides being in linkage
disequilibrium with rs10180970 in East-Asians and having high ADAF like other variants, rs2970968 has two
further features that make it an interesting variant. First, we predicted the functional consequences of the variants
with high ADAF and in linkage disequilibrium with rs10180970 in East-Asians using Funseq® (Supplementary
Table S2). We confirmed that rs2970968 (leftmost dark red cross in Fig. 2a) is located in a region predicted to be
an enhancer?! in lymphoblastoid, HeLa and HUVEC cell lines and that it is located in transcription factor binding
peak of several transcription factors, although not in transcription factor motifs within peaks (Supplementary
Fig. S1). One of the transcription factors is implicated in mammalian skin tumors (ATF2?2%) and three others
are regulated by UVB radiation (STAT3, GATA3, and POU2F2)*%, Secondly, rs2970968 is the closest SNP to a
region that has shown to be essential for the functioning of the promoter of ABCA 12 (Supplementary Fig. S1).
We investigated ABCA12 expression in relation to the three genotypes of rs10180970 (C/C, C/T, T/T) and
rs2970968 (A/A, A/G, G/G). Human skin would be the ideal tissue to test allele-specific gene expression, however
sampling technique is invasive. It is instead possible to quantify ABCA12 expression in total mRNA extracted
from pulled hairs without the need for invasive skin biopsies®. Because ABCA12 expression is influenced by sun
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Figure 2. Linkage disequilibrium between rs10180970 and variants within 70kb. (a) Vertical dotted line
indicates the genomic position of rs10180970. Circles represent other variants at their genomic position on the
x-axis and the r> measures the non-random association of the alleles of each variant with rs10180970 on the
y-axis. Crosses distinguish pairs in which the genetic variants have ADAF > 0.70 as shown in Fig. 1. (b) Screen-
shot form Genome Browser showing chromatin modification and state segmentation for several cell types in the
genomic region under investigation.

exposure”, to discriminate between the genetic and the environmental effects, we performed the experiment
in a group of individuals of different geographical origin but all resident in the same city. We determined the
genotypes at rs10180970 and rs2970968 through DNA sequencing and measured ABCA12 expression through
quantitative PCR of reverse transcribed total mRNA extracted from pulled hair roots. We considered as refer-
ence the average ABCA12 gene expression of genotypes of the ancestral alleles (C/C for rs10180970, and AA for
rs2970968), which are also the allele prevalent in Africans, and calculated the fold change of the other observed
genotypes. After quality controls, we had data on both genotype and ABCA 12 expression for 36 and 39 samples at
rs10180970 and rs2970968, respectively. As shown in Fig. 3, there is no significant correlation between ABCA12
gene expression and genotypes at both loci (One-way non-parametric ANOVA p-values > 0.9 for both sites),
suggesting no effect of rs10180970 or rs2970968 genotypes on ABCA12 expression in hair roots. Therefore, we
conclude that the effect of the selection at these two loci on gene expression is not obvious when individuals are
exposed to similar UV radiation.

While it is not possible to model the gene effect in mouse because there is no homologous region in mouse, we
found that ABCA12 is well expressed in HaCaT cells, a spontaneously transformed aneuploid immortal keratino-
cyte cell line from adult human skin®’. We determined by Sanger sequencing that HaCaT cells are heterozygous
at rs10180970 and therefore can be used for allele-specific expression assessment at this locus. As a preliminary
work, we silenced ABCA12 in HaCatT cells using small interfering RNAs and confirmed that ABCA 12 expression
is reduced after UVB radiation (20 m] and 30 m]), with downregulation remaining sustained up to 18 hours after
treatment (Fig. 4).

TheT variant of rs10180970 is specific to H. sapiens and rapidly increased in frequency in non-
Africans. We determined the pattern of genetic variation at rs10180970 in time and space in 88 ancient and
2,764 contemporary samples ranging the last 80,000 years with the aim to understand when the T allele first
appeared and how its frequency evolved through time. Among contemporary samples, 41 were collected for this
study and are from 9 geographically diverse populations (Supplementary Table S1). Their genotype at rs10180970
was determined by Sanger sequencing a 600 bp region containing the variant. For the rest of the contemporary
samples genotypes at rs10180970 were publicly available from the 1000 Genomes Phase III'® and a study on West
Africans®. For ancient samples, we used publicly available raw sequencing data (Supplementary Table S3) to per-
form variant calling. Beside H. sapiens, ancient samples include also one Denisova sample and two Neanderthals.

The allele frequency of the derived allele T (f;) through time was determined grouping individuals in bins of
2000 years (Fig. 5). Some pools are made of very few individuals (n =1 in extreme cases). Individuals were subdi-
vided according to species and within H. sapiens in Africans and non-Africans. In our data, the T allele appeared
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Figure 3. ABCA12 expression in relation to the three genotypes of (a) rs10180970 and (b) rs2970968. Fold
change refers to average ABCA 12 gene expression of ancestral genotypes, which are also the genotypes prevalent
in Africans (C/C for rs10180970, and AA for rs2970968).
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Figure 4. ABCA12 expression in HaCaT cells and UVB irradiation (a) ABCA12 is expressed in HaCaT cells
and can be silenced using small interfering RNA. (b) ABCA12 expression is reduced after Ultraviolet B (UVB)
radiation and cells do not recover even after 18 hours. T6 and T18 indicate 6 and 18 hours after UVB radiation;
mJ = milliJoule.

for the first time around 45kya in a H. sapiens sample from Russia®? and rapidly f; reached 0.9 in non-Africans
remaining stable until the present day.

Of the 16 African ancient samples available to date, only three have reliable data in the rs10180970 region
(Supplementary Table S3). The most ancient African data is from Ethiopia 4.5 kya®®, while the other two are
from 1.3-2kya**. All ancient Africans have genotype C/C. In contemporary Africans f is very low but not com-
pletely absent (0.09), while in North-Africans f; is on average 0.4 and T is the major allele in Egyptians, within
North-Africans (Fig. 5b). Admixture analysis shows that the Africans and North-Africans with higher f;, in fact,
have quite high European and South Asian components probably reflecting recent admixture (Fig. 5¢).

Both Neanderthals and the one Denisova sample available are homozygous for the ancestral C allele, sug-
gesting that the T allele might have been specific to H. sapiens, as far as we know about the other two species. In
support of this hypothesis, two recent publications find that there is a very little probability of admixture in the
region surrounding rs10180970 between H. sapiens and Neanderthals* (Supplementary Fig. S2) and H. sapiens
and Denisova®.
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Figure 5. Prevalence of the T allele of rs10180970 in time and space. (a) T allele trajectory in the last 80,000
years in 88 ancient and 2,764 contemporary samples. The T allele is observed for the first time 45,000 years ago
in non-Africans and rapidly rose in frequency. (b) T allele frequency is very low among African populations
with the exception of North-Africans (especially Egyptians and Ethiopians) and African American. (¢) T
allele was probably recently introgressed in African American, as admixture analysis show a shared genetic
component of African American with Europeans and East-Asians in the region under investigation. Vertical
bars represent single individuals and colors reflect membership to admixture clusters in the most likely
hypothesis of five clusters.

We conclude that the T variant of rs10180970 is specific to H. sapiens and rapidly increased in frequency in
non-Africans, while the low prevalence of T in contemporary Africans might be due to recent admixture with
Europeans and South-Asians.

Discussion

Humans are exposed to environmental agents through the naked skin, and in fact, strong natural selection has
been detected in a number of skin-related phenotypic traits such as hair and eye pigmentation®*”, and hair
thickness®***. The lipid barrier is the most external layer of the skin and it acts as an interface with the environ-
ment, providing protection against UV, dehydration, and pathogens. The formation of lipid barrier is a complex
process and mutations in genes involved in this process result in skin diseases. Nevertheless, to date, to our
knowledge, no studies investigated natural selection of genes that contribute to build the lipid barrier such as
ABCAI2.

The genetic variant rs10180970 located on chromosome 2 in the ABCA12 gene, is predicted to be under pos-
itive selection in Europeans and Asians, as we discovered in a genome-wide scan based on population differenti-
ation'®. Here we investigated the genomic region containing rs10180970 to ask whether the variant is truly under
positive selection and investigated the functional consequences of the selection event.

We confirmed the signal of selection in Europeans and Asians and discovered high linkage disequilibrium in a
35kb region downstream rs10180970 (Fig. 2). In the 35kb region the signals of positive selection are as strong or
stronger than those initially found at rs10180970 (Fig. 1) and include the promoter of the gene (Fig. 2). By using
a larger dataset of DNA sequences and a more fine population subdivision compared to the one used to discover
the signal, we observe that the signal is stronger in East-Asians compared to South-Asians, possibly because
South-Asians exposure to UV radiation is more similar to that of Africans. Despite confirming the positive selec-
tion signal we could not observe obvious allele-specific effect of rs10180970 on ABCA12 gene expression (Fig. 3)
in a sample of individuals exposed to the same level of UV radiation. Finally, we traced the history through time
of the allele under selection using publicly available ancient human sequences and established that the mutation
is specific to H. sapiens (Fig. 5, Supplementary Fig S2). While our findings strongly corroborate the signal of selec-
tion they also suggest that a different functional approach should be used to decipher the functional consequences
of the event of selection in terms of gene expression.

We suggest that further work is required to fully decipher the effect of selection on ABCA12 and identified
the keratinocyte-derived HaCaT cells as a model system for in vitro experiments. We determined that ABCA12
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is expressed and can be silenced in the HaCaT cells, and more importantly HaCaT cells are heterozygous at
rs10180970, therefore ideal for investigating allele-specific effects. On the other hand, because of the possibility
that other sites in linkage with rs10180970 are involved, it would be probably worth while to consider sequence
information at other sites as well. More in general, overall indication for future research implicate the study of the
non-coding regions of ABCA12, like sequence/haplotype-specific enhancer assay, even if the dimensions of the
gene can be a limitation.

There are two main findings from our work. First, we reconstructed the demographic history of the T allele
using the currently available information to discover that it is specific to H. sapiens and it was apparently very
frequent in humans that migrated out of Africa prior to 50kya. The second main finding is that while rs10180970
might act as a sentinel for the signal of selection, the signal extends over 35kb and includes the first intron, the
first two exons and the transcription starting site of ABCA12. Linkage disequilibrium in this region is high in
East-Asians and Europeans, there are several regions predicted to be enhancers and two regions predicted to be
sites of chromatin modifications (methylation and acetylation), thus possibly influencing gene expression.

Our study endorses and refines previous studies. Similar to ABCA12, other members of the ABC family have also
been identified in previous scans for positive selection*'. The genomic region containing ABCA12 was identified as
one of the most differentiated between continental populations*?, and in fact ABCA12 hosts one of the top ten SNPs
in the genome, useful to discriminate continental populations in clustering analyses**. ABCA12 was identified as
one of the top candidate genes in a study investigating local adaptation in Asians** and stands out in a selection scan
performed with LD-based statistics on HapMap Phase II data*. However, none of these studies provides an indica-
tion of the exact genomic location of the signal within the gene. In this study, we corroborate the signal of selection
at rs10180970 that was localized in our previous study'®, and provide initial evidence that will help understand why
the T allele of rs10180970 was favored in the ancestors of current Asians, in particular, East-Asians, and Europeans.
Our work also shows that with the exception of few cases (e.g.**) it is surprisingly difficult to identify the selected
allele and selected phenotype, even with abundant sequence data and functional tests.

Methods

Samples and genotyping. Forty samples were collected from healthy fully informed, consenting, adult
volunteers from 9 countries (Supplementary Table S1). Saliva samples were collected using the Oragene DNA
(OG-500) kit. Genomic DNA was phenol-chloroform extracted from saliva®. All experiments were carried out
in accordance with relevant guidelines and regulations. The study was approved by the ethics committee of the
University of Naples Federico II (protocol number 106/15) and conducted in accordance with the relevant guide-
lines and regulations. Written informed consent was obtained from all participants.

Genotypes at rs10180970 and rs2970968 were obtained by Sanger-sequencing a 325bp and 400 bp regions,
respectively, of the ABCAI2 gene where the variants are located. The fragments were amplified from genomic
DNA by PCR in a final volume of 50 ul using oligos designed with Primer3***° and the following conditions: 1
cycle 95°C for 5'; 35 cycles at 95 °C for 1/, 62°C for 1/, 72°C for 45”; 1 cycle at 72 °C for 10’. PCR products were
purified using PCR purification kit from QIAGEN.

All other contemporary samples in the study are part of public collections and genotype data at rs10180970
was available in form of vcf files'®!#3!. For ancient samples we screened publicly available sequence reads data of
400 samples spanning 80,000-200 years before present’>'-*%, however filtering for coverage >2 in the region of
interest resulted in 89 samples listed in Supplementary Table S3. Variant calling in ancient samples was performed
with samtools/bcftools®.

Derived allele frequencies, linkage disequilibrium, admixture, introgression, natural selection
analyses. Derived allele frequencies were computed using vcftools®® using the information on derived allele
from the 1000 Genomes Project!®. Linkage disequilibrium (LD) between rs10180970 and any other SNP in
+2 Mb was computed with PLINK1.9%. Clustering analysis in a region of 2 Mb surrounding rs10180970 includ-
ing 55,683 Single Nucleotide Polymorphisms (SNPs) was done with ADMIXTURE®. ADMIXTURE was run
under the hypotheses of 2 to 10 clusters with cross-validation computation.

Data for checking if the region of rs10180970 is among the ones putatively introgressed form Neanderthal were
downloaded from http://genetics.med.harvard.edu/reichlab/Reich_Lab/Datasets_-_Neandertal_Introgression.html.

Integrated haplotype score (iHS) and Cross-Population Extended Haplotype Homozygosity (XP-EHH) were
calculated with Hapbin®. Parameters for iHS calculation were-minmaf 0.01, —cutoff 0.01. iHS and XP-EHH
log-ratio were normalized to have zero mean and unit variance using the standard normalization implemented in
Hapbin that groups variants in bins of 2% frequency.

RNA extraction and processing from hair follicles.  Hair follicles (5 to 7 bulbs) were grasped as near to
the scalp as possible without damaging hair roots. Total RNA was extracted from bulbs on the day of collection, or
following storage at 4 °C for 1-5 days in RNA Later and placed into a 1,5 ml microcentrifuge tube containing 1 ml
of Trizol Reagent (Fisher Molecular Biology). RNA extraction was then conducted according to manufacturer’s
instructions. 500 ng RNA were reverse-transcribed using SuperScript® VILO™ MasterMix (Invitrogen). gPCR
was performed on technical triplicates per each sample using Light Cycler 480® IT (Roche), on 2l of previously
diluted cDNA (1:5) template using LightCycler® 480 SYBR Green I Master Mix (Roche), according to the manu-
facturer instructions. The thermal profile consisted of 1 cycle at 95°C for 10; 40 cycles at 95°C for 10”, 60 °C for
10”, 72°C for 10”. Fold changes were calculated relative to Hypoxanthine Phospho Ribosyl Transferase (HPRT1)
expression as in”°.
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HaCat cells culturing, genotyping, silencing and UV radiation. HaCat cells were cultured in 75 cm?
tissue culture flasks in Dulbecco’s Modified Eagle’s Medium, containing 10% fetal bovine serum and 1% penicillin
and streptomycin. Cells were maintained in a humidified atmosphere (5% CO2) at 37°C. Genomic DNA was
extracted from HaCat cells”! and genotype at rs10180970 was determined by Sanger sequencing.

For silencing experiments, HaCaT cells were transfected with a ABCA12-targeting siRna (Sigma Aldrich).
Transfection was performed with Oligofectamine following the manufacturer’s protocol. Cells were collected
72 hours after transfection. Silencing efficiency was evaluated by Real Time Quantitative PCR (RT-qPCR)
following total RNA extraction using RNeasy Mini Kit-QIAGEN and 1 ug and reverse-transcription using
SuperScriptA® VILO™ MasterMix (Invitrogen).

For UVB radiation HaCaT cells were plated in 60 mm plates and grown to 70-90% confluence. Subsequently,
cells were irradiated with 20 and 30 mJ/cm? using three lamps (Philips Ultraviolet 8 TL 20 W/01 RS lamps;
Philips, Eindhoven, Netherlands) generating UVB light in the range of 290-320 nm with an emission peak at
312 nm. The intensity of UVB irradiation was measured using a phototherapy radiometer (International Light,
Newburyport, MA) of UVB. After irradiation cells were incubated for 0, 6 and 18 hours and ABCA12 expression
was assessed by Real Time PCR (RT-PCR). Fold changes were calculated relative to Ribosomal Protein Large PO
(RPLPO) expression as in”%72,

Data Availability
The datasets generated during and analysed during the current study are available from the corresponding author
on request.
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