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Circadian and wake-dependent 
changes in human plasma polar 
metabolites during prolonged 
wakefulness: A preliminary analysis
Leilah K. Grant1,2,3,4, Suzanne Ftouni1,2, Brunda Nijagal5, David P. De Souza5, Dedreia Tull5, 
Malcolm J. McConville5, Shantha M. W. Rajaratnam1,2,3,4, Steven W. Lockley1,2,3,4 & 
Clare Anderson1,2,3,4

Establishing circadian and wake-dependent changes in the human metabolome are critical for 
understanding and treating human diseases due to circadian misalignment or extended wake. Here, 
we assessed endogenous circadian rhythms and wake-dependent changes in plasma metabolites in 
13 participants (4 females) studied during 40-hours of wakefulness. Four-hourly plasma samples were 
analyzed by hydrophilic interaction liquid chromatography (HILIC)-LC-MS for 1,740 metabolite signals. 
Group-averaged (relative to DLMO) and individual participant metabolite profiles were fitted with 
a combined cosinor and linear regression model. In group-level analyses, 22% of metabolites were 
rhythmic and 8% were linear, whereas in individual-level analyses, 14% of profiles were rhythmic and 
4% were linear. We observed metabolites that were significant at the group-level but not significant in 
a single individual, and metabolites that were significant in approximately half of individuals but not 
group-significant. Of the group-rhythmic and group-linear metabolites, only 7% and 12% were also 
significantly rhythmic or linear, respectively, in ≥50% of participants. Owing to large inter-individual 
variation in rhythm timing and the magnitude and direction of linear change, acrophase and slope 
estimates also differed between group- and individual-level analyses. These preliminary findings have 
important implications for biomarker development and understanding of sleep and circadian regulation 
of metabolism.

Circadian rhythms, endogenously generated cycles of approximately 24 hours, govern many patterns of behavior 
and physiology including sleep/wake cycles, cognition, feeding patterns, hormone secretion, gene expression and 
cellular processes. Given the circadian system’s control over so many biological processes, it is unsurprising that 
disruption to this endogenous clock and its outputs is associated with adverse health outcomes. Shift workers, 
for example, whose circadian rhythms are often chronically misaligned from their sleep-wake cycle1,2, have an 
increased risk of developing serious diseases including obesity, diabetes, cardiovascular disease, stroke and some 
cancers3–5. Moreover, experimentally-induced circadian disruption in controlled laboratory settings shows that 
misalignment of circadian and behavioral cycles leads to acute cardiometabolic dysfunction in humans6–8. A 
direct influence of the circadian system on metabolic homeostasis has been demonstrated in rodents, whereby 
knocking out core clock genes significantly alters metabolism9–11. Furthermore, studies have demonstrated 24-h 
rhythms in the hepatic, serum and plasma metabolomes of rodents12–14, prompting investigation of circadian 
control of the metabolome in humans.

Metabolomic analysis of human plasma samples collected during a normal day with either an 8:16 h sleep/
wake cycle, or during sleep deprivation reveals 24-h oscillations in addition to wake-dependent increases or 
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decreases in metabolites from a wide variety of chemical classes15,16. Studies conducted under constant rou-
tine conditions, the gold-standard method for assessing endogenous circadian rhythms17, have also described 
24-h rhythms and increases or decreases over time awake in the human metabolome18–21. Analysis of individ-
ual metabolomic profiles, however, has shown substantial inter-individual differences in the timing and abun-
dance of rhythmic lipids and in the magnitude and direction of change in lipids that increase or decrease with 
time awake18,19. Despite this variability, many of the studies published to date have only conducted group-level 
analyses, which given the underlying inter-individual variation, may not accurately describe circadian and 
wake-dependent control of metabolite levels. Furthermore, previous studies have focused on metabolites that 
are resolved on reverse phase LC matrixes (i.e. capturing lipids, fatty acids, acyl carnitines, some amino acids 
and carbohydrates) and have not detected changes in more polar compounds, such as nucleotides, nucleosides, 
organic acids, amino acids, and carbohydrates, which are important intermediates in central carbon metabolism 
and are reflective of changes in macromolecule synthesis, the urea cycle, and pathways of energy (i.e. glycolysis 
and the Krebs cycle).

Polar metabolites have been identified as biomarkers of cancers22,23, diabetes24, Alzheimer’s disease25, myocar-
dial ischemia and infarction26,27, and osteoarthritis28. With single-point assessments of polar metabolites poten-
tially being used as biomarkers of a variety of disease states, it is important that the circadian variation and effect 
of inadequate sleep on these compounds is well understood. Variation in a metabolite’s concentration at different 
times of day or variation induced by sleep loss has implications for the timing and interpretation of clinical diag-
nostic tests and the efficacy of treatments. Improved understanding of circadian- and wake-dependent control of 
metabolism will also contribute to understanding the etiology of cardiometabolic diseases and may inform future 
development of interventions and chronotherapies to treat such disorders. In the current study, we characterized 
circadian- and wake-dependent changes in polar metabolites using HILIC-LC-MS over 40-hours of continu-
ous wakefulness under highly controlled conditions. Changes to metabolite levels were subsequently assessed 
using both group- and individual-level analyses to observe the degree of concordance between these analysis 
approaches.

Results
Circadian and wake-dependent modulation of plasma polar metabolites was investigated in 13 healthy adults (4 
females) aged 20–32 years (Table 1), who underwent a 40-hour constant routine (CR) protocol (Fig. 1). The final 
dataset of metabolites included 99 metabolites identified based on their accurate mass and coelution with authen-
tic metabolite standards, in addition to 1,641 unidentified metabolite features that constituted the untargeted 
matrix and were detected in all participants. Ten of 13 participants had missing data points in the targeted matrix 
resulting in 14% (18 samples; total n = 112) missing data, and 12 of 13 participants had missing data points in 
the untargeted matrix resulting in a total of 16% (21 samples; total n = 109) missing data. Further information on 
missing samples can be found in the methods section.

We assessed the proportion of plasma metabolites in the targeted and untargeted matrices that changed in a 
rhythmic, linear or combined rhythmic and linear fashion over the 40-hours of extended wakefulness. Results 
of these analyses and model estimates for all statistical analyses are shown in SI Figs S1 and S2, and SI Tables 1–4 
respectively. Representative examples of metabolites that exhibited rhythmic, linear and combined rhythmic and 
linear changes in plasma levels at the group-level are shown in Fig. 2B for the targeted matrix and in Fig. 3B for 
the untargeted matrix.

Analysis of metabolites at the group-level.  Group-level analysis of the 99 identified metabolites 
showed that 21 metabolites were significantly rhythmic and nearly all (90%) had a peak time (acrophase) during 
the biological night, occurring within 10 hours after Dim Light Melatonin Onset (DLMO). Furthermore, four 
metabolites showed a significant linear change; aconitic acid and uridine increased whereas phosphoric acid and 
proline decreased with time awake. In addition to the 21 rhythmic only and four linear only metabolites, seven 
of the 99 metabolites showed both rhythmic and linear changes. Five metabolites increased (threonine, cysteic 
acid, phenylalanine, ornithine and methylcitrate) and two decreased with time awake (pantothenic acid and 
lysine) and all had acrophases during the biological night. The 28 rhythmic metabolites (including combined 
rhythmic and linear metabolites), comprised 16 amino acids, 6 organic acids, 2 nucleotides, 2 carbohydrates and 
derivatives, and a single vitamin and peptide (see Table S1 for metabolite identities). Pathway analysis29 showed 
enrichment of the phenylalanine and tyrosine metabolism pathway (Table 2, and SI Fig. S3 and Table S6). The 

Demographics M ± SD or No. (%)

N 13

Age (years) 25.00 ± 4.31

Males 9 (69%)

Body mass index (kg/m2) 22.00 ± 2.14

Dim light melatonin onset time (decimal time) 20.91 ± 1.47

Wake time (decimal time) 07.19 ± 0.73

Bed time (decimal time) 23.19 ± 0.73

Morningness Eveningness Questionnaire score 37.92 ± 2.66

Table 1.  Demographic characteristics of study participants. Note: Participant excluded from the analysis is not 
included in this table.
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overall 11 linear metabolites (including combined rhythmic and linear metabolites), comprised 6 amino acids, 
2 organic acids, and a single vitamin, xenobiotic and nucleoside (see Table S2 for metabolite identities). While 
the arginine and proline metabolism pathway showed enrichment, this was no longer significant following false 
discovery rate correction (SI Fig. S4 and Table S7). The time-course of all metabolites from the targeted matrix 
are shown in Fig. 2A.

Group-level analysis of the untargeted data showed a similar proportion of metabolites (~22%) to those in 
the targeted matrix were significantly rhythmic. A wide range in acrophase times were observed with many of 
the metabolites peaking during the daytime (60%). Group-level analysis of the untargeted matrix also showed 
that ~8% of metabolites were significantly linear, of which most (66%) of these decreased with time awake. 
Approximately 3% of metabolites showed a combined rhythmic and linear pattern of change. Just over half (51%) 
of these metabolites decreased over time and the majority (67%) of these peaked during the day. Of the metabo-
lites showing combined rhythmic and linear trends that increased, the majority (72%) had an acrophase during 
the night. The time-course of metabolites from the untargeted matrix that were significantly rhythmic, linear or 
combined rhythmic and linear are shown in Fig. 3A.

Analysis of metabolites at the individual-level.  Following group-level analysis, we next analyzed indi-
vidual participant metabolite profiles (i.e. single metabolite profiles over time for each participant), including the 
1,287 (99 × 13 participants) targeted profiles and 21,333 (1,641 × 13 participants) profiles from the untargeted 
matrix. Results of these analyses are shown in SI Fig. 2. Of the profiles from the targeted matrix, ~10% were 
significantly rhythmic and over half (64%) of these rhythmic profiles peaked during the day. Profiles that were 
significantly linear accounted for ~5% of all analyzed profiles within the targeted matrix, and most (63%) of these 
showed an increase with time awake. Approximately 3% of individual profiles in the targeted matrix showed a 
combined linear and rhythmic pattern of change. Of these, over half (56%) increased with time awake, and 70% 
had acrophases during the night. In metabolites that decreased, however, there was an even spread of acrophases 
throughout the day and night.

The identified rhythmic compounds detected at the individual-level comprised mainly amino (29%) and 
organic acids (22%), although a number of nucleotides and nucleosides (16%) and carbohydrates and deriv-
atives (14%) were also rhythmic. Amino acids had acrophases mainly during the evening and throughout the 
night. Similarly, organic acids predominantly peaked during the biological night, whereas carbohydrates and their 
derivatives had acrophases throughout the day and night. Nucleotides and nucleosides, however, tended to peak 
during the morning hours, in the first half of the day. Pathway analysis of these rhythmic compounds showed that 
the urea and Krebs cycle pathways were significantly enriched (see Table 2, and SI Fig. S5 and Table S8). Similar 
to the rhythmic metabolites, linearly changing metabolites comprised mainly amino acids (29%), organic acids 
(29%), carbohydrates (16%), and nucleotides and nucleosides (9%). The amino and carboxylic acids showed both 
increases (amino: 55%; carboxylic: 52%) and decreases (amino: 45%; carboxylic: 48%), whereas most of the car-
bohydrates increased (69%) and all nucleosides and nucleotides increased with time awake. Significantly enriched 
pathways for the linear metabolites included the Krebs and urea cycles, malate-aspartate shuttle, beta-alanine 
metabolism and galactose metabolism (see Table 2, and SI Fig. S6 and Table S9).

Of the 21,333 individual untargeted profiles, ~14% were significantly rhythmic and ~4% showed a linear 
change with time awake. Similar to the group-rhythmic metabolites, most (62%) of the significant individual-level 
rhythmic profiles peaked during the day. There was a near-even split in the direction of linear change, with just 
over half (54%) of metabolites decreasing with time awake. Of all the significant individual profiles, ~4% were 
combined rhythmic and linear. These profiles tended to show an increase (56%) with time awake and peaked 
mostly during the day (79% of those increasing, and 56% of those decreasing).

Figure 1.  Participants completed a 6-day laboratory protocol. The protocol consisted of (i) two baseline days 
(8:16 sleep/wake based on average sleep time two weeks before admit [AD]), (ii) a 40-hour constant routine, and 
(iii) two recovery days with up to 12-hour sleep opportunities before discharge (DC). White bars represent wake 
episodes in 100 lux, black bars represent sleep episodes in 0 lux, and grey bars represent a DLMO assessment 
on day 2 and the 40-h CR in <3 lux ambient light. During the CR protocol, black diamonds represent blood 
samples, with larger diamonds representing samples used in the current metabolomics analysis. The protocol is 
shown in relative clock time with a relative bedtime of midnight. Study events were scheduled relative to each 
individual’s pre-study self-selected wake time.
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Comparison of group- and individual-level analyses.  We next examined the level of concordance in 
group- and individual-level analyses. As seen in Fig. 4A, the proportion of significant (rhythmic, linear or both 
rhythmic and linear) metabolites was decreased overall in the individual-level analysis (22%) compared to the 
group-level analysis (32%). This decrease appeared to be driven mainly by a reduction in significantly rhythmic 
metabolites; however, the proportion of linear metabolites also decreased slightly in the individual-level analysis 
of untargeted profiles. Figure 4 also shows the percentage of metabolites showing rhythmic (Fig. 4B, including 
combined rhythmic and linear metabolites) and linear (Fig. 4C, including combined rhythmic and linear metab-
olites) changes for each individual participant. The proportion of overall significant metabolites differed between 
participants, with some participants having less than 10% of metabolites showing rhythmic and linear changes 
during prolonged wakefulness (Fig. 4A).

Figure 2.  (A) Time course of metabolite concentrations (z-score area under the peak) for all identified metabolites 
in the targeted matrix. Significant metabolites are marked by the coloured bar to the right of the heatmap (red – 
rhythmic; green – linear; blue – combined rhythmic and linear). Data are represented relative to DLMO (time 
0), the time at which plasma melatonin reached 5 pg/mL. (B) Examples of significant profiles are shown for 
tryptophan (top: night peaking rhythmic, not linear), sucrose-6-phosphate (middle, upper: day peaking rhythmic, 
not linear), L-proline (middle, lower: linear increasing, not rhythmic), and 2-methylcitrate (bottom: night peaking 
rhythmic with linear increase). Data are plotted relative to DLMO, and by relative clock time, with relative bedtime 
at midnight. Errors bars represent SEM. The area between the dashed lines represent the ‘biological night’, defined 
as DLMO plus 10 hours, and the blue dashed line represents the predicted fit of the model.

https://doi.org/10.1038/s41598-019-40353-8


5Scientific Reports |          (2019) 9:4428  | https://doi.org/10.1038/s41598-019-40353-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 3.  Group-level analysis of the untargeted metabolite matrix. (A) The time course of metabolites 
significantly rhythmic (top left), linear (top right), and combined rhythmic and linear (bottom) in group-level 
analysis. Data are represented relative to DLMO (time 0), the time plasma melatonin reached 5 pg/mL. (B) 
Metabolite concentrations showing rhythmic and linear trends during sleep deprivation from the untargeted 
matrix. Examples include day peaking rhythmic, not linear (top left), night peaking rhythmic, not linear (top 
right), day peaking rhythmic with linear increase (middle, upper left), night peaking rhythmic with linear increase 
(middle, upper right), day peaking rhythmic with linear decrease (middle, lower left), night peaking rhythmic with 
linear decrease (middle, lower right), linear increase, not rhythmic (bottom left), and linear decrease, not rhythmic 
(bottom right). Data are plotted relative to DLMO, and by relative clock time, with relative bedtime at midnight. 
Errors bars represent SEM. The area between the dashed lines represent the ‘biological night’, defined as DLMO 
plus 10 hours, and the blue dashed line represents the predicted fit of the model.

Analysis Pathway
Total metabs 
in pathway

#sig. metabs in 
pathway Raw p

FDR 
adjusted p

Group
Rhythmic Phenylalanine and tyrosine metabolism 13 4 0.000623 0.0492

Linear — — — — —

Individual

Rhythmic
Citric acid cycle 23 9 0.000107 0.0085

Urea cycle 20 8 0.000226 0.00892

Linear

Citric acid cycle 23 10 2.41E-06 0.00019

Urea cycle 20 8 5.83E-05 0.0023

Malate-aspartate shuttle 8 4 0.00195 0.0337

Beta-alanine metabolism 13 5 0.00207 0.0337

Galactose metabolism 25 7 0.00213 0.0337

Table 2.  Results of the pathway enrichment analysis showing significant pathways*. *Only metabolic pathways 
that were significant following FDR correction are shown. The total number of metabolites in the pathway, the 
number of significant metabolites in the pathway and the raw and FDR adjusted p-values are shown for each 
pathway. The full results of the pathway enrichment analysis are shown in SI Tables 6–9 and Figs 3–6.
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As seen in Fig. 4B and 4C, there were differences between participants in which metabolites were significant, 
and there were no metabolites that were significantly rhythmic or linear for all participants. While not significant 
in all participants, there were metabolites that were relatively consistent across some participants (i.e. significant 
in at least n = 6), although, acrophase and slope estimates often differed substantially between participants for 
many of these metabolites. Due to this inter-individual variability, we observed a number of metabolite fea-
tures, ~21% (6/28) and ~17% (4/23) for rhythmic and linear metabolites (including combined rhythmic and 
linear metabolites) that were significant in almost half of the individual participants profiles (n = 6/13), but not 
significant at the group-level. The observed inter-individual variability in acrophase also contributed to some 
group acrophase estimates not being representative of the timing of rhythms in individual participants, even 
when these metabolites were significant at both the group- and individual-level (Fig. 4B). For linear metabolites, 
however, group estimates of the direction of change generally reflected changes at the individual-level, although 
the magnitude of change was often decreased in the group estimate relative to individual participant profiles 
(Fig. 4C). Overall metabolites with consistent profiles between individuals were more likely to be significant at 
the group-level (Fig. 4D), and metabolites that had either a wide range in acrophases for rhythmic metabolites, or 
opposing slope directions for linear metabolites, were not significant at the group-level, despite being significant 
in approximately half of the participants (Fig. 4E). Surprisingly, we also observed a group of metabolites that 

Figure 4.  Comparison of group- versus individual-level analyses. (A) The percentage of metabolites that 
were significantly rhythmic (black), linear (grey), or combined rhythmic and linear (blue) at the group-level 
(Gr.), overall for the individual-level analysis (Ind. total), and for each individual participant (A–M). (B) 
Acrophase and (C) slope values are shown for significant metabolites (including combined rhythmic and linear 
metabolites) at the group-level (Gr.) and in individual participants (A–M). Metabolites are ordered based on 
the number of significant cosinor or linear fits across participants, with group-significant metabolites shown 
first. Participants are ordered from left to right based on the greatest number of significantly rhythmic or linear 
metabolites at the individual-level. (D) Metabolites that were significantly rhythmic (left) or linear (right) in 
group- and individual-level analyses. (E) Metabolites significantly rhythmic (left) or linear (right) in almost half 
of individuals but were not group-significant. (F) Metabolites that were significantly rhythmic (left) or linear 
(right) in group-level, but not individual-level analyses (non-significance denoted by broken lines in individual-
level plots). Individual participant profiles are shown in colour and the group mean (±SEM) for that metabolite 
is shown below in black.
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were significant at the group-level but were not significant in a single individual, as seen in the examples shown 
in Fig. 4F. Approximately 6% (25/428) of group-rhythmic metabolite features and 15% (27/185) of group-linear 
metabolite features were not significant in a single participant. This proportion increased to ~65% for rhyth-
mic and ~68% for linear metabolite features when all metabolites significant in less than a third of participants 
(n = 3/13) were included.

Discussion
Our study presents the first evidence of circadian- and wake-dependent modulation of polar metabolites over 
the course of 40-hours of extended wakefulness. We describe rhythmic and linear changes in plasma metabolites 
at both the group- and individual- level. Due to large inter-individual differences observed in both circadian- 
and wake-dependent metabolites, our findings highlight the importance of data being examined at both the 
group-and individual-level for biomarker discovery work. For a biomarker discovery program, aiming to identify 
biomarkers of an abnormal state, the biomarker should ideally have utility at the individual-level. Targeting or 
rejecting a metabolite based on group-level data may therefore lead to inconclusive results or a missed signal of 
interest. With this in mind, while our data support earlier findings demonstrating rhythmic and/or linear changes 
in the human plasma metabolome during sleep deprivation15,16,18–21, they also suggest caution when interpreting 
results from analyses of grouped data.

Previous studies using reverse phase-LC-MS to detect changes in plasma metabolite levels, indicated that 
~13–40% of the lipids and apolar metabolites preferentially detected by this platform are under circadian con-
trol15,19–21. We show that a similar proportion of polar metabolites detected using HILIC-LC-MS exhibited circa-
dian rhythmicity in our group-level analyses (~22% or ~26% including metabolites that were combined rhythmic 
and linear). Furthermore, the timing of the peak of metabolite rhythms in our targeted matrix was consistent with 
previous reports that have shown amino acids to peak predominantly in the evening and during the biological 
night15,20,21. Ten (of 28, including those showing a combined rhythmic and linear pattern) metabolites found 
to be rhythmic in our targeted group of compounds were rhythmic in at least one other study15,16,20,21. These 
included leucine, lysine, methionine, valine, 4-hydroxyphenylpyruvate, isoleucine, tyrosine, ornithine, phenyla-
lanine, and tryptophan. Furthermore, 4 metabolites (citrulline, arginine, citric acid and pantothenic acid) found 
to be rhythmic in the current study did not show rhythmicity in previous studies15,16,20 and 4 metabolites (proline, 
glutamate, lactate and glycerol) shown to be rhythmic in at least one previous study16,20 were not rhythmic in our 
dataset in group-level analyses but were rhythmic (except glutamate) in at least one participant. Differences in 
methodologies, for example CR versus non-CR conditions, meal timing and pooling samples, may account for 
the differences in results. The findings of the current study also confirmed lack of rhythmicity in 13 metabolites 
previously shown not to be rhythmic in at least one other study16,20 (e.g. taurine, uridine, serine, oxalate, pyruvate 
and AMP). Overall, our analyses using HILIC-LC-MS detected 12 previously unreported rhythmic metabolites, 
which included organic acids (e.g. methylcitric acid, fumaric acid, glucuronic acid, isocitric acid, and cysteic acid) 
and nucleotides (e.g. deoxyuridine monophosphate and inosinic acid).

Following our group-level analysis, we also analyzed individual participant profiles. These analyses showed 
that ~14% (~18% including combined rhythmic and linear metabolites) of individual participant metabolite pro-
files were rhythmic. Similarly, despite the difference in the classes of measured metabolites, Chua et al.19 reported 
that ~18% of lipid metabolite profiles were rhythmic, suggesting that a similar proportion of lipid and polar 
metabolites are under circadian control. Based on the identified metabolites from the targeted matrix, the rhyth-
mic metabolites in the current study were predominantly amino and organic acids, such that pathways involving 
these classes of metabolites, including the Krebs and urea cycles, showed enrichment. While some metabolites 
involved in the urea and Krebs cycles had acrophases during the biological night, most had acrophases during 
the day, consistent with the diurnal peak in urea concentration30,31 and energy expenditure reported in the liter-
ature32. Furthermore, the timing of amino acid rhythms in the current study is broadly consistent with previous 
research showing that transcripts associated with gene expression and RNA metabolism tend to peak during the 
night33–35, such that that the timing of amino acids observed in the current study coincides with the timing of 
protein synthesis.

As has been reported previously for plasma lipids19, none of the polar metabolites were consistently rhyth-
mic across all individuals and we observed a large degree of inter-individual variation in the timing of rhythms 
between participants. As seen in Fig. 3B, some participants appeared to have a similar timing of rhythms across 
most metabolites (e.g. acrophase estimates for participant K were mostly during the evening hours), suggesting 
that some individuals may have a particular phase predominance in their metabolic profile. A similar finding 
was observed in plasma lipids, whereby participants could be clustered into morning and evening phenotypes 
based on the peak times of lipid rhythms19. Further characterization of the range of inter-individual variability in 
metabolites within and between individuals is necessary if these are to be used as potential biomarkers. The wide 
range of individual phases observed in metabolites is not surprising, however, when the inter-individual variation 
in well-established circadian markers is taken into consideration. Melatonin, the gold standard marker of circa-
dian phase, when measured under dim light conditions exhibits an ~5-h range of phase (5.85-h in the current 
sample) and phase angles (DLMO time relative to sleep) in young healthy individuals (e.g.36,37). Even within indi-
viduals, there is also variation in internal phase relationships, for example, between melatonin and temperature38, 
not only because of methodological variance but also likely intrinsic differences in internal circadian organiza-
tion. It is therefore important to interpret potential new circadian markers with similar expectations, i.e., that 
substantial inter-individual variation will exist, and biomarkers are not likely to exhibit identical timing between, 
or even within individuals, but that does not preclude their use as circadian biomarkers. A long-term goal of this 
work is to better understand the inter-individual variation in biomarker profiles to inform the eventual develop-
ment of single- or dual-timepoint markers of circadian phase for clinical and operational use, as has already been 
attempted using both the human metabolome21 and transcriptome39,40.
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Given large inter-individual differences in metabolites, we sought to compare the results of our group- and 
individual-level analyses. Overall, metabolites that had consistent profiles between participants tended to be sig-
nificant at the group-level, while those with a large spread of acrophases were typically not significant at the 
group-level. Furthermore, we observed that 25 of 428 metabolites were significant at the group-level despite not 
being significant in a single individual. These findings are important given the widespread use of group-level 
analyses in previous studies assessing circadian rhythms in the metabolome15,16,20,41.

In addition to identifying rhythmic metabolites, we also identified approximately 8% (11% including com-
bined rhythmic and linear metabolites) of metabolites that showed a linear increase or decrease with time awake 
in group-level analyses. The proportion of linearly changing metabolites in the current study is similar to the 
proportion of metabolites that showed an increase or decrease in response to acute sleep deprivation (~12%20), 
and sleep restriction to 5.5-h time-in-bed for 8 nights (~4%42). Despite similarity in the proportion of metabolites 
increasing or decreasing, metabolites that changed linearly in the current study are not consistent with the metab-
olites that changed in response to chronic (5–8 nights) sleep restriction42,43, such that a number of metabolites 
that were altered by sleep restriction did not show a wake-dependent change in the present study (e.g methionine, 
tryptophan, oxalic acid, gluconic acid, malic acid and glucose). Furthermore, 3 metabolites showing a linear 
change in the current study did not change in response to chronic sleep restriction42,43 (cis-aconitic acid, lysine 
and threonine). Phenylalanine, however, which showed an increase with extended wakefulness in the current 
study also showed an increase following 5 nights of 4-h time-in-bed43 but did not change following 8-nights of 
5.5-h time-in-bed42. The difference suggests that biomarkers signaling sleep loss due to acute sleep deprivation 
may not be the same as those sensitive to chronic sleep deficiency, which is consistent with that reported using 
a transcriptomic approach44. Another possible explanation is that the 24-hour rhythm of some metabolites was 
shifted due to the sleep restriction protocol (as seen for melatonin45,46), such that the change attributed to sleep 
restriction may represent measurement at a different phase of the rhythm. This may be the case for some of the 
metabolites identified as markers of sleep restriction, for example tryptophan, phenylalanine, and isoleucine, 
as these metabolites have been shown to be rhythmic, both in the current study and in previous research15,16,21. 
Further investigation is required to determine whether the metabolites that show wake-dependent increases or 
decreases in response to sleep deprivation are also altered by sleep restriction, or whether there are different 
mechanisms resulting in a different set of metabolites showing change in response to the sleep deprivation versus 
sleep restriction.

Our data examining wake-dependent changes in metabolites during acute sleep deprivation largely confirm 
those reported previously16,20 with respect to the metabolites which did not change in response to sleep loss. For 
example, 23 metabolites that showed no linear change in the current study also did not change in response to 
sleep deprivation in previous studies16,20. We did, however, detect a linear change in 8 metabolites which were 
found not to change in response to sleep deprivation in previous research (phenylalanine, pantothenic acid, orni-
thine, uridine, threonine, proline, lysine and cis-aconitic acid). Furthermore, our results differed to previous 
studies showing increases in lactid acid20, taurine and tryptophan16 (though tryptophan did not change in one 
previous study20) as we did not show a linear change with time awake in group-level analyses for these metabo-
lites. With the use of HILIC-LC-MS in our study however we were able to detect linear changes in 3 metabolites 
(phosphoric acid, cysteic acid, 2-methylcitric acid) not previously captured in other studies.

In our analysis of individual participant metabolite profiles, we found that 4% (~8% including combined 
rhythmic and linear metabolites) of metabolite profiles changed linearly. Based on the targeted analyses, these 
were mainly amino and organic acids, as well as a smaller number of carbohydrates. Enrichment analysis showed 
that the linearly changing metabolites were related to energy metabolism in the glycolysis and Krebs cycle path-
ways. While some of the metabolites in these pathways decreased, the majority increased with time awake and 
this is consistent with the reported increase in energy expenditure during sleep deprivation32,47. The urea cycle 
pathway also showed enrichment, with majority of the metabolites involved in this pathway showing an increase 
with time awake, which is consistent with the increase in urea in response to sleep loss30,48.

Comparable to the rhythmic metabolites, there was also inter-individual variation in the patterns of change 
of linear metabolites, such that the magnitude, and in some cases the direction of change, differed between par-
ticipants (Fig. 4C). While these different responses between participants may indicate differential vulnerability 
to the metabolic consequences of sleep loss, confirmation requires further investigation to determine whether 
these inter-individual responses to sleep loss are stable and trait-like. Our finding of inter-individual variation in 
linearly changing metabolites is consistent with the large inter-individual differences reported in lipids showing 
wake-dependent changes18, although our results suggest that polar metabolites are less likely to change with time 
awake than lipid species (27% lipid vs 8% polar). As with our analysis of rhythmic metabolites, we observed differ-
ences in which metabolites showed significant linear changes depending on whether the data were analysed at the 
group- or individual-level. For example, we observed that 29 of the 188 metabolites detected as significantly linear 
at the group-level were not significantly linear in a single participant. This discrepancy highlights the impor-
tance of using both group- and individual-level analyses in biomarker discovery, as had we only conducted a 
group-level analysis, significant resources may have been used in trying to identify and validate group-significant 
metabolites that lack utility as a biomarker at the individual-level. There were a small number of unidentified lin-
ear metabolites from the untargeted matrix, however, that showed strikingly consistent changes across majority 
of the participants (e.g. right panel of Fig. 4D). Metabolites such as these may be useful as biomarkers of sleep 
pressure, however, further work to identify these metabolites and to validate our results is required.

Our study has three main strengths. First, our data are novel in that our analytical approaches allowed detec-
tion of a broad range of polar and non-polar metabolites, extending the range of metabolites that had previously 
been detected. While circadian- and wake-dependent changes have been previously described in moderately 
polar metabolites under CR conditions20,21, our findings, showing large inter-individual differences in the cir-
cadian phase of polar metabolites, suggest that these prior data were potentially confounded by the pooling of 
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samples from multiple participants at the same clock time. Second, our study is the first to employ both group- 
and individual-level analyses to examine 24-hour rhythms and wake-dependent changes in polar metabolites. 
Differences between group- and individual-level analyses have only been investigated in plasma lipids18,19, 
while other studies that have measured both moderately and non-polar compounds have reported data at the 
group-level15,16,20,42,43. Finally, our sample includes female participants, which have not been included in some 
previous publications (e.g.15,16,18–21). While the small number of females precludes extensive analyses of sex dif-
ferences, we did observe that four metabolite features were significantly rhythmic in 3 of 4 women and no men, 
and a further four were significantly linear in 3 of 4 women and no men. While these preliminary findings sug-
gest there may be sex differences in the expression of some metabolites, further research with larger numbers of 
men and women, and equal group sizes is required to further elucidate possible sex differences in circadian and 
wake-dependent changes in plasma metabolites.

This study comprises the first step within a larger biomarker discovery program, where the current study was 
designed to produce proof-of-concept data within a small, but highly controlled study. The small sample size 
or the frequency of sampling, however, means that the current study may have been underpowered to detect 
some rhythmic or linear changes at the group-level, particularly those with low amplitudes or shallow slopes. 
Despite this, our sample size and sampling frequency is commensurate to previous metabolomics studies15,16,20. 
Future validation studies should be conducted on larger populations with more frequent sampling (e.g. 2-hourly). 
Furthermore, as with previous studies, participants in the current study were all young and extremely healthy, 
and the laboratory conditions were highly controlled during the CR protocol. While at this stage in the bio-
marker development process it is important to first identify the presence of any circadian and wake-dependent 
changes in an homogenous sample under highly controlled conditions, these findings will need to be validated 
in other populations and in less controlled, applied settings including circadian misalignment, sleep restriction, 
and in field settings. To this end, future inclusion of a control group with a normal sleep/wake schedule, ambu-
latory activity and typical food intake would aid in determining whether any linear changes observed were due 
to external factors. Finally, while we identified metabolites that changed linearly during sleep deprivation it is 
difficult to ascertain whether these metabolites are directly under the control of the sleep homeostat and are truly 
wake-dependent, or perhaps represent something else, for example, a build-up of certain metabolites from the 
hourly meals given during the CR. Similarly, the use of a CR protocol makes it difficult to uncouple the contribu-
tion of the circadian system and the sleep homeostat. Future studies might employ a forced desynchrony protocol 
to allow for a more comprehensive investigation of the individual contribution of the homeostatic and circadian 
processes on the abundance of specific metabolites.

To our knowledge this is the first study to characterize circadian- and wake-dependent changes in polar 
plasma metabolites. Our results describe circadian- and wake-dependent control of the polar metabolome and 
highlight the importance of analyzing these types of data at both the group- and individual-level. We showed that 
analysis at the group-level resulted in inaccurate measures of the abundance and time-course of both rhythmic 
and linearly changing metabolites. Underlying inter-individual differences in circadian- and wake-dependent 
modulation of the metabolome will also likely be an important consideration for future biomarker development 
programs using metabolomics.

Methods
Participants.  Fourteen healthy adults (13 following exclusion of n = 1, 4 females, 24.74 ± 4.09 years; Table 1) 
completed a 6-day in-laboratory study. Participants were free from medical, psychiatric or sleep disorders, had 
not engaged in night- and/or shift-work in the past three years, or travelled across more than one time zone in the 
past three months. Two weeks prior to the laboratory study, participants maintained a self-selected 8:16 sleep-
wake schedule, which was confirmed by wrist actigraphy (Actiwatch Spectrum, MiniMitter Inc, Bend, OR) and 
sleep diaries. The use of prescription and over-the-counter medications, supplements, recreational drugs (also 
exclusionary if consumed in the previous month based on self-report), nicotine, caffeine, and alcohol were not 
permitted from 3 weeks prior to admission until completion of the study. Urine drug screening, and a pregnancy 
test for women, was conducted prior to laboratory admission. All participants provided informed consent and the 
study was approved by the Monash University Human Research Ethics Committee (CF14/2790 – 2014001546). 
The experiments were conducted in accordance with the Declaration of Helsinki.

Study Protocol.  Participants were continuously monitored for 6-days in an environment free of time cues. 
There was no access to windows, clocks, live TV, or newspapers, and participants were supervised by technicians 
trained not to reveal time of day. Women were studied during their follicular phase, with admit occurring imme-
diately after their last menses, to minimize differences between women due to menstrual phase. The study started 
with two baseline nights with sleep scheduled at the same time as participants’ self-selected sleep in the two weeks 
prior to admission. Full polysomnography was recorded on the first night to confirm no presence of sleep disor-
ders, including restless legs syndrome, periodic limb movements, and sleep disordered breathing. During baseline 
days, participants were fed three main meals and three snacks per day.

Upon waking on Day 3, participants commenced a 40-h constant routine (CR). During the CR, participants 
remained awake under constant supervision in dim light conditions (<3 lux), in a semi-recumbent posture (head 
of bed at 45°), and received identical hourly snacks (quarter sandwich, 60 ml water and 40 ml apple juice). The 
calorie content of hourly snacks was ~1.1 x the average resting energy expenditure (REE) for all participants 
(1796 ± 236 cal/day) and the macronutrient content adhered to the recommendations of the Australian Dietary 
Guidelines 201349. REE for each participant was calculated as50:

= . ∗ + . ∗ − . ∗ +REE weight kg height cm age9 99 ( ) 6 25 ( ) 4 29 5Male
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= . ∗ + . ∗ − . ∗ −REE weight kg height cm age9 99 ( ) 6 25 ( ) 4 29 161Female

Participants had the choice of four sandwich options that were approximately equivalent in calorie 
(1804 ± 99 cal/day) and macronutrient content (~20% protein, ~33% fat, ~46% carbohydrate). Each participant 
received only one of the sandwich options for the duration of the CR.

Lighting.  During baseline and recovery days, maximum ambient light during wake episodes was 
~100.9 ± 18.2 lux when measured in the horizontal plane and ~44.0 ± 13.9 lux when measured in the vertical 
plane at the height of 182 cm. On baseline night 2 and during CR, lights were dimmed to ~2.8 ± 0.5 lux in the 
horizontal plane and ~1.2 ± 0.3 lux in the vertical plane when measured at 182 cm. During scheduled sleep epi-
sodes, ambient lighting was turned off. The room lighting was generated from ceiling-mounted 4100 K fluores-
cent lamps (Master TL5 HE 28W/840 cool lights, Philips Lighting, Amsterdam, Netherlands) that were covered 
with neutral density filters (3-stop LEE Filters, Lightmoves, Noble Park, Australia). Illuminance measures (J17 
Lumacolor photometer, Tektronix, Beavertown, USA) were taken daily in four locations around the room, posi-
tioned directly under light panels.

Blood sample collection and processing.  Plasma samples were collected during the CR via an indwell-
ing intravenous cannula, inserted into the forearm or antecubital vein approximately 1-hour after wake. Blood 
was collected hourly for plasma melatonin assay, and additional blood was collected every 2-hours for metabolo-
mics analysis starting 2-hours post wake. At each collection, whole blood was collected in a syringe and aliquoted 
into a blood tube spray coated with K2EDTA. Samples were immediately centrifuged at 4 °C, or stored in a fridge 
at 4 °C for up to ~30 minutes until processing. Samples were spun at 1,300 × g for 10 minutes and plasma was 
aliquoted into 500 µL fractions and temporally stored on dry ice before transfer to permanent storage at −80 °C 
within 4–12 hours.

Of the total 546 scheduled blood collections (39 samples × 14 participants), 529 were collected successfully 
(3.11% missing samples) and assayed for melatonin. For the metabolomics analysis, up to ten 4-hourly samples 
per participant were analyzed at times 2, 6, 10, 14, 18, 22, 26, 30, 34 and 38 hours post-wake. Of the 140 possible 
samples, 18 (13.6%) were missing due to either a missed collection (n = 1 sample) or had moderate to severe 
haemolysis (orange to pink in colour; n = 17 samples). To be included in the metabolomics analysis, participants 
could not have more than 70% missing blood samples, and no more than two consecutive missing samples. To 
avoid excluding two individuals, a 4-hourly sample was replaced with a successful collection occurring 2 hours 
before or after the sample that required replacement— for example, a sample collected at 32 hours was used to 
replace a missing sample at 34 hours. With these replacements, a total of 124 samples were included in the final 
metabolomics analysis from 14 participants.

Of the 124 plasma samples analysed using LC-MS, five samples were lost in both the targeted and untargeted 
matrices post-analysis due to mis-injection into the LC-MS (n = 119 samples). Retention time drifts (>2 mins) 
resulted in the exclusion of an additional three samples from the untargeted matrix following XCMS analysis 
(n = 116), but not from the targeted matrix which was manually integrated such that the retention time window 
could be widened to incorporate these metabolites (n = 119). One male participant was excluded entirely from 
further analysis, as this additional loss of samples resulted in three consecutive missing time-points in the middle 
of their data series making it difficult to interpret the model fits. Following removal of this participant, 10 of 13 
participants had missing data points in the targeted matrix resulting in 14% (18 samples; total n = 112) missing 
data, and 12 of 13 participants had missing data points in the untargeted matrix resulting in a total of 16% (21 
samples; total n = 109) missing data. Demographic information of the 13 participants included in the final anal-
ysis are shown in Table 1.

Marker of the circadian clock.  Total blood plasma melatonin was determined at the Adelaide Research 
Assay Facility (ARAF; University of South Australia, Adelaide, Australia) by reverse-phase C-18 column extrac-
tion of 500 µl plasma, followed by double antibody radioimmunoassay using standards and reagents supplied by 
Buhlmann Laboratories (RKMEL-2, Buhlmann Laboratories AG, Schönenbuch, Switzerland). The sensitivity of 
the assay using 500 µl of extracted plasma was 1.0 pg/ml. Samples were assayed in duplicate and the intra-assay 
coefficient of variation of the assays was 7.61%. The inter-assay coefficient of variation of the low concentration 
quality control was 11.03%, and the inter-assay coefficient of variation of the high concentration quality control 
was 13.08%.

To determine circadian phase, Dim Light Melatonin Onset (DLMO) was defined as the time at which plasma 
melatonin levels reached 5 pg/ml in the first cycle of the CR, calculated by interpolating between two adjacent 
samples51. For two participants, DLMO was calculated from the second cycle due to missing samples in the first 
24-h cycle. The biological night was defined as DLMO plus 10 hours (DLMO + 10) and split according to first half 
(first 5 hours) and second half (second 5 hours) of the night. The biological day was defined hours the 14 hours 
between DLMO + 10 and DLMO. The biological day was further broken down into two equal 7-h halves.

Metabolomics analysis.  Metabolomics analysis was performed on plasma samples collected at 4-hourly 
intervals starting 2-hours post wake (Metabolomics Australia, Bio21 Molecular Science and Biotechnology 
Institute, University of Melbourne, Parkville, Australia). Samples were thawed on ice and 20 µL of plasma was 
aliquoted for analysis by LC-MS. An additional 20 µL from each sample was pooled to generate a plasma qual-
ity control (PQC) sample, from which aliquots were taken in preparation for extraction with plasma samples. 
Plasma samples and PQCs were extracted using 180 µL acetonitrile/methanol (1:1 v/v) solution containing 2 µM 
13C-sorbitol, 2 µM 13C15N-AMP, and 2 µM 13C15N-UMP as internal standards. Samples were vortexed for 30 sec-
onds, sonicated for 5 minutes at 4 °C, then incubated for 10 minutes at 4 °C (in an Eppendorf Thermomixer). 
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Sample (prepared in batches of 24, with a PQC every 10 samples) were centrifuged (4,500 × g, 10 minutes, 4 °C) 
and 180uL of the supernatant was transferred into a glass vial. An aliquot of each sample of the extracts (10 µL) 
was pooled to create a pooled biological quality control (PBQC) sample.

Samples (10 µL) were resolved on a ZIC®-pHILIC column (5 µm particle size, 150 × 4.6 mm, Merck SeQuant®) 
connected to an Agilent 1260 (Santa Clara, CA, USA) HPLC system running a 29.5-minute gradient with mobile 
phases 20 mM ammonium carbonate (pH 9.0; Sigma-Aldrich; Solvent A) and 100% acetonitrile (solvent B) at a 
constant flow rate of 300 µL/min. The elution gradient started at a composition of 80% solvent B and decreased to 
30% solvent B in 18.5-minutes for 6.5-minutes. Extracted plasma volumes of 7 µL were injected onto the column 
(maintained at 25 °C). Metabolites were detected by electrospray ionization using an Agilent 6545 Q-ToF MS 
system (Santa Clara, CA, USA) in negative ionization mode. The instrument was cleaned and calibrated weekly 
to ensure a mass accuracy of ±0.2 ppm. Detailed Q-Tof MS parameters can be found in Stewart, et al.52. Samples 
were analysed in the same analytical batch and randomized by participant and time, with a QC every 5 samples. 
PQCs were run every tenth sample to monitor any batch preparation effects and PBQCs were run every tenth 
sample to monitor instrument performance during the run. Solvent blanks were analysed every 24 samples to 
monitor background. Five mixtures of authentic standards (234 metabolites) were also run to generate a library 
for the targeted analysis.

Metabolite identification for the targeted analysis (targeted matrix) was based on accurate mass, retention 
time and MS/MS fragmentation patterns for metabolites in the standard mixtures. Relative abundances based 
on area under the metabolite peak were obtained using MassHunter Quantitative Analysis B 0.7.00 (Agilent). 
Metabolites with low quality chromatographic peaks (<10,000 area count) and peaks not reliably detected across 
samples were excluded resulting in the detection of 99 (of 234) metabolites [Level 1 confidence according to the 
Metabolomics Standard Initiative53]. The untargeted matrix containing 1,641 metabolite features, which include 
metabolite features already represented in the targeted matrix, was generated by XCMS centWave algorithm54 to 
detect molecular features in the raw files and the features list was further refined in CAMERA55 to group related 
features by annotating isotope and adduct peaks.

Statistical analysis.  To reduce biological variability between participants and timepoints, raw area count 
data were normalized relative to the median metabolite abundance for each individual sample. Given differences 
in the relative concentration of metabolites between individuals, the median normalized data were z-scored in 
order to scale the data prior to analysis. Data were z-scored relative to the mean and standard deviation of each 
participants’ scores for a single metabolite. Each time-point was then expressed relative to DLMO, where DLMO 
was defined as time 0. Grouped data were averaged across 4-hour phase bins to align the data points relative to 
each participant’s internal circadian time. Data were fitted with a non-linear regression model18 that was com-
prised of a cosinor function with a linear component:

π φ
τ

=




− 

 + +{ }y A t Ct Dcos 2

In the model, A is the amplitude of the sinusoid, τ is the period set at 24-h, t is time, Ø is the acrophase of the 
sinusoid, and C and D are the slope and y-intercept of the linear component, respectively. Fitting of the model was 
conducted in SAS 9.4 using the proc nlin procedure. The model was fitted to the 99 and 1,641 metabolite profiles 
averaged within phase bins from the targeted and untargeted matrix (group-level analysis), and to each individual 
participants’ metabolite profiles from the targeted and untargeted matrix (individual-level analysis). The cosinor 
and linear components of the regression were considered significant if the amplitude and slope, respectively, were 
significantly different from 0. Where the regression model detected a significant nadir, acrophase was calculated 
as the peak 12-hours later. Given the exploratory nature of the study, p-values were set at 0.05. The model esti-
mates for all analyses, including amplitude, acrophase and slope estimates are shown in SI Tables 1–4.

Pathway enrichment analysis was conducted in MetaboAnalyst 3.0 (http://www.metaboanalyst.ca) using the 
Enrichment Analysis module. This analysis provides a p-value for the overall likelihood that a metabolite set or 
pathway is involved based on the metabolites entered, and also indicates the degree of enrichment (fold enrich-
ment), which is representative of how many metabolites within a specific pathway are present in the metabolite set 
entered into the analysis. For example, if two out of four metabolites in a pathway are present then that pathway 
will show a greater fold enrichment than a pathway that has two out of 10 metabolites that are present. Pathway 
enrichment analysis was conducted separately for linear and rhythmic metabolites at the group and individual 
level. Metabolites that were combined rhythmic and linear were included in both analyses. The results of the path-
way enrichment analyses generated in MetaboAnalyst 3.0 are shown in SI Figs 3–6 and SI Tables 6–9.

Data Availability
Raw area count data from the untargeted matrix, which includes metabolite features in the targeted matrix, is 
available as supplementary information (Table S5). Requests for further data access will be considered on a case-
by-case basis. Applications for data access should be sent to Dr. Clare Anderson (clare.anderson@monash.edu).
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