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The degradation of levofloxacin in 
infusions exposed to daylight with 
an identification of a degradation 
product with HPLC-MS
Andrzej Czyrski   1, Katarzyna Anusiak1 & Artur Teżyk2

In this paper the decomposition product of levofloxacin was identified. Levofloxacin was dissolved in 
0.9% NaCl, 5% glucose, and Ringer’s solution. The solutions were divided into two batches: the first 
one was exposed to daylight and the second one was protected from it. The solutions were stored at 
the room temperature. The qualitative analysis of the degradation product was performed using MS 
and TOF detectors. The quantitative assay was done by a validated HPLC method. Visual inspection 
and pH assessment were done. Levofloxacin protected from daylight remained stable in 0.9% NaCl, 5% 
dextrose, and Ringer’s solution. A slight decomposition of the analyte was observed in the solutions 
exposed to daylight with the fastest decomposition rate in Ringer’s solution as compared with 0.9% 
NaCl and 5% dextrose solutions. The degradation product of levofloxacin detected with MS was 
levofloxacin N-oxide. Levofloxacin solutions should be protected from direct daylight to maintain drug 
stability. Levofloxacin N-oxide is formed regardless of the solvent used.

Fluoroquinolones are group of the synthetic antibacterial drugs. They have a broad spectrum of bactericidal 
activity against bacteria such as S. pneumoniae, P. aeruginosa, and B. fragilis. The first fluoroquinolone approved 
by FDA was nalidixic acid. The introduction of the fluorine atom in the 6th position of quinoline ring devel-
oped the antibacterial activity significantly. The fluoroquinolones are divided into four generations. Levofloxacin 
((S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methylpiperazin-1yl)-7-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-
6-carboxylic acid) is a representative of the third generation of fluoroquinolones. Levofloxacin exhibits a wide 
spectrum of bactericidal activity including both Gram-positive and Gram-negative organisms. The activity of 
levofloxacin depends on its concentration in tissues. The desirable concentration is provided with a repeatable 
dose in a defined time interval. Once prepared in solution for clinical use, levofloxacin must remain stable to 
provide effective therapy. Decompensation of levofloxacin once in solution, prior to administration, may lead 
to a lower than anticipated dose and lack of expected bactericidal effect. Due to the increasing resistance of the 
microorganisms to the treatment it is essential to administer the proper dose of drug without the degradation 
products. Moreover, due to the presence of the piperazinyl ring, the decomposition products of fluoroquinolones 
might cause photoallergy1–3.

Levofloxacin stability was assessed in different matrices. It was exposed to different stress factors such as 
UV-light, ozone, and acidic/basic hydrolysis. The decomposition products were detected using MS techniques4–8. 
In our study the decomposition product was detected in the MS analysis supported with GC-TOF. The matrices 
used in our study were the infusions (Ringer’s solution, 0.9% NaCl, and 5% dextrose) exposed and protected from 
daylight at the room temperature. These solutions are the most common in clinical practice and might be consid-
ered as potential solvents for levofloxacin. This study presents the degradation product which might be formed 
during the use of the drug (in-use stability). We also conducted the forced degradation of levofloxacin in a solar 
simulator to check if there were any differences in the formed decomposition products. Our manuscript com-
prises both the application study (in-use stability test) and the base study (the degradation in the solar simulator) 
concerning levofloxacin degradation in commonly used infusions.
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Results and Discussion
The development of HPLC-UV method.  The qualitative analysis was performed with a validated HPLC 
method. The mobile phase consisted of acetonitrile and 0.4% triethylamine solution (24:76, v/v) which was an 
ion pair reagent. This proportion provides the total resolution of the levofloxacin, internal standard (IS) and the 
degradation product. The addition of an ion pair reagent causes better interaction of levofloxacin with the sta-
tionary phase and it reduces the tailing of the peaks when combined with the proper value of pH. According to 
the literature, use of an ion pair reagent up to a concentration of 1% combined with a slightly acidic pH provides 
good resolution of the analytes9. The silanol groups are ionized at the pH above 3.5 and they interact with 1° 
and 2° amines10. The pH of the mobile phase was 2.5. The increase of pH causes the peak tailing. The separation 
mechanism is based on an interaction of the analyte with the free silanol groups of the stationary phase. The other 
factor that was considered for improving the shape of the peak was the use of a phosphate buffer, however the use 
of a such did not improve the quality of the resolution of analytes significantly. The applied organic solvent was 
acetonitrile. The use of methanol resulted in a longer time of analysis. The peaks were broad and the pressure on 
the column was high, the resolution was poor. The mixtures of acetonitrile and methanol in different proportions 
were also tested but it resulted in poor resolution.

The intraday CV and RE were within the range 1.51–1.70% and 0.22–1.54%, respectively (Table 1). The inter-
day CV and RE were 2.77–4.36% and 0.74–4.07%, respectively. They obey the ICH recommendations for valida-
tion of analytical methods. The method was linear – it was proved by the Mandel’s test where test value was 0.4667 
vs. table value 34.11. The value of the intercept was not statistically significant, and it was omitted. The recovery 
exceeded 99%.

The analyte remained stable in stability tests. The RE did not exceed 2.0% after both storage for 24 hours at 
room temperature and storage at −20 °C for three months. After three freeze-thaw cycles the RE did not exceed 
2.2% (Table 2).

The chromatogram of the solution of levofloxacin is presented in the Fig. 1. There were no additional peaks 
that could interfere with an IS peak (Fig. 2). The chromatogram of the investigated solution is shown in a Fig. 2b. 
All the peaks were fully resolved. The decomposition product peak was detected in addition to the levofloxacin 
and IS peaks. The appearance of the additional peak was associated with the change in the color of the solutions. 
The color was intact for the solutions protected from any source of light. The color of the solutions exposed 
to daylight and solutions exposed to lamp light in a solar simulator became more intense, which implied that 
decomposition of levofloxacin took place.

The LC-MS analysis.  The levofloxacin solution samples collected at the beginning of the experiment were 
injected onto LC-MS system. The LC-MS analysis of levofloxacin resulted in m/z 362 ion (Fig. 3). In the LC-MS 
analysis of the solutions exposed to light the degradation product was detected. It was m/z 378 [M1 + H]+ (Fig. 4). 
The GC-MS with TOF detection also confirmed the presence of the degradation product, a compound with 
molecular weight 377. This implies the presence of the additional oxygen in the molecule. The new compound 
could be either the N-oxide or hydroxy derivative. Ge et al.11 reported the presence of a degradation product 
with a molecular weight 377. It was a result of the hydroxylation in the piperazine ring. The fragmentation ions 
in our study that were observed are m/z 362 (F1 + H+) which was due to removal of an oxygen atom from the 
levofloxacin N-oxide molecule and m/z 334 (F2 + H+) which was a result of decarboxylation of the ion m/z 378 
(M1) (Fig. 4). Tong et al.12 observed the removal of an oxygen atom in the N-oxides during MS analysis. It is 

Nominal concentration of 
levofloxacin

Inter-day assay 
(n = 5)

Intra-day assay 
(n = 5)

[mg/mL] CVa REb CVa REb

2.0 3.58 4.07 1.51 0.71

3.0 4.36 1.20 1.70 0.22

5.0 2.77 0.74 1.67 1.54

Table 1.  The validation parameters. aCV – coefficient of variation, bRE- relative error.

Experimental conditions

Concentration, mg/mL

2.0 3.0 5.0

After storage at room temperature for 24 h

  Mean assayed value, mg/mL 2.01 0.98 5.10

  Accuracy, %RE 0.5 2.0 2.0

After three freeze-thaw cycles

  Mean assayed value, mg/mL 2.04 1.01 5.07

  Accuracy, %RE 2.2 1.0 1.4

After storage at −20 °C for three months

  Mean assayed value, mg/mL 2.03 1.02 5.08

  Accuracy, %RE 1.5 2.0 1.6

Table 2.  The stability of levofloxacin in the samples.
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characteristic for N-oxides fragmentation and makes it possible to distinguish them from the hydroxylated com-
pounds. In the MS spectrum the ion m/z 247 [F3] was also detected. It was a result of the removal C4H9NO 
from the ion m/z 334. The analogic fragmentation was observed by Tang et al. for fluoroquionolones with pip-
erazine moiety13. The ions m/z 344 and 318 were also observed. They were the result of the removal of water 
and CO2 from the ion m/z 362 [F1 + H]+. The loss of water was not observed for the m/z 378 ion. According to 
Ramanathan et al.14 the loss of water in N-oxides during ESI-MS fragmentation is not significant. The opposite 
is observed in aliphatic hydoxylated compounds where the lost of water is predominant. It also confirmed the 
presence of N-oxide. The neutral loss during the fragmentation process is characteristic for the fragmentation of 
fluoroquinolones13,15. The degradation product of levofloxacin in the investigated compounds was levofloxacin 
N-Oxide.

The presence of the ion (m/z 378) was observed by Wang et al.16, Lalitha Devi et al.17 and De Witte et al.4. N-oxide 
is formed due to the presence of electrons from the methyl group, which is a better donor than hydrogen. It results 
in higher electron density at the tertiary nitrogen atom at the piperazine ring4. Ciprofloxacin, which possesses sec-
ondary amine nitrogen atom at the piperazine ring, does not form N-oxide18. Sturrini et al.19 exposed levofloxacin to 

Figure 1.  The chromatogram of the HPLC analysis for the levofloxacin solution (5 mg/mL) (levofloxacin  
tr – 3.17 min).

Figure 2.  The chromatogram of levofloxacin: (a) dissolved in Ringer’s solution at day 0th (time-zero analysis), 
(b) dissolved in the Ringer’s solution exposed to daylight at 84th day (levofloxacin tr – 3.10 min., levofloxacin 
N-Oxide tr – 4.05 min., IS – 6.56 min).
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solar simulator dissolved in wastewater and several degradation products were detected. The degradation products 
arose from the removal of the methyl group from piperazine ring, the substitution of fluorine atom with hydroxyl 
group, or dehalogenation. The degradation products were detected not only in wastewater19 but also in untreated 
river water7. Ge et al.12 proposed main transformation pathway for hydroxyl radical photooxidation for levofloxacin 
in pure water. The primary degradation products were the result of hydroxylated defluorination or hydroxylation 
and removal of the piperazinyl ring. Ge et al.20 found also that photoinduced decarboxylation, defluorination, and 
also piperazinyl dealkilation depend on the structure of the analysed fluoroquinolone.

According to the literature, levofloxacin N-oxide does not possess any bactericidal activity21. Its presence as a 
degradation product may lead to the lack of the bactericidal effect and increase of bacterial resistance to the active 
agent. Levofloxacin N-oxide might also be a potential mutagen due to the presence of a quinolone-3-carboxylic acid 
or naphthyridine analog. Zhu et al. confirmed that levofloxacin could not be considered as a genotoxic impurity22.

Figure 3.  The LC-MS chromatograms of the following ions: (a) levofloxacin m/z 362 (tr – 10.7 min); (b) 
levofloxacin N-oxide m/z 378 (tr – 11.2 min.).

Figure 4.  The fragmentation pathways of levofloxacin N-oxide (M1- levofloxacin N-oxide, F1, F2, F3 – 
fragmentation ions).
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The stability study.  Levofloxacin remained stable in the solutions protected from daylight. For solutions 
exposed to daylight the opposite is observed as a decrease in levofloxacin drug level was found. The most signif-
icant decrease was observed in Ringer’s solution. At the 84th day the observed concentration in Ringer’s solution 
was an approximately 85% of the initial concentration of levofloxacin.

At the 84th day the observed concentration of levofloxacin exposed to daylight formulated in 5% dextrose and 
0.9% NaCl was approximately 96% of the initial concentration (Table 3). The values of the rate constant were: 
1.99 × 10−3 [day−1], 7.48 × 10−4 [day−1] and 5.11 × 10−4 [day−1] for levofloxacin dissolved in Ringer’s solution, 0.9% 
NaCl, and 5% dextrose, respectively. The stability estimated from Equation1 (‘The constant rate calculation’ section) 
shows that 10% of levofloxacin is decomposed within 53 days in Ringer’s solution, 141 days in 0.9% NaCl and 206 
days in 5% dextrose for the solutions exposed to daylight. The lower stability of levofloxacin in the Ringer’s solution 
exposed to daylight may be associated with the presence of calcium ions as the fluoroquinolones have an affinity for 
divalent ions. They form complexes which are unstable, and it may affect the stability of the drugs23.

The degree of degradation of levofloxacin in the samples exposed to the solar simulator was similar to the 
samples exposed to daylight. Samples exposed to the solar simulator in Ringer’s solution, 0.9% NaCl, and 5% 
dextrose yielded a levofloxacin concentration of 88%, 95%, and 92% of the initial concentration, respectively. The 
measurements conducted in the solar simulator confirmed the results from the in-use stablility test - levofloxacin 
decomposed the fastest in the Ringer’s solution and the slowest in 0.9% NaCl solution when exposed to the light. 
The samples protected from the light in the solar simulator remained stable.

The stability of levofloxacin in 5% dextrose, 0.9% sodium chloride, and Ringer’s solution protected from day-
light was confirmed by the Williams et al.8 and van den Bussche et al.24. Williams et al. conducted the study in 
polyvinyl chloride bags. In our study the Ringer’s solution sample was in a polyethylene bag. The 0.9% NaCl 
and 5% glucose samples were in a polyolefin/polyamide bag. Levofloxacin N-oxide is formed in the all solutions 
exposed to daylight regardless the material used. The rate of levofloxacin decomposition in the solutions exposed 
to daylight was slow. If there is no possibility to protect the solution of levofloxacin, it should be used ex tempore.

Conclusions
Levofloxacin dissolved in Ringer’s solution, 0.9% NaCl, and 5% dextrose remained stable in the solutions pro-
tected from daylight. Levofloxacin decomposes in the solutions exposed to daylight but the decomposition is 
not rapid. The shortest t0.1 measured was in Ringer’s solution. The levofloxacin degradation product identified 
was inactive levofloxacin N-oxide. It is formed regardless of the used solvent. Solutions of levofloxacin should be 
protected from daylight to maintain drug stability or otherwise used immediately.

Material and Methods
Standards and reagents.  Levofloxacin and triethylamine were obtained from Sigma-Aldrich Chemie 
(Steinheim, Germany). Moxifloxacin was purchased at SantaCruz Biotechnology (USA). Acetonitrile, methanol 
was purchased from Merck (Darmstadt, Germany) and 85% orthophosphoric acid from Fluka (Germany). All 
the reagents were of the HPLC purity grade. Formic acid (Fluka, Germany) for LC-MS was used. Ultra-pure water 
was used. 0.9% NaCl (Lot 13J27G61), 5% dextrose (Lot 14G18E1K), and the Ringer’s solution (Lot 1310213) were 
purchased at Baxter.

Calibration standards.  The concentration of levofloxacin solution was 12 mg/mL and moxifloxacin (IS – 
internal standard) 1 mg/mL. The working solutions of levofloxacin were prepared by the dilution of the stock 
solution. The concentration range was 1–6 mg/mL. The concentration of the working solution of IS was 150 mg/L. 
The linear regression equation describing the relationship between levofloxacin concentration and the peak area 
was determined by the least squares method. 10 μL of the analysed solution was diluted with 990 µL of a proper 
solvent (0.9% NaCl, 5% dextrose or Ringer’s solution). 100 μL of the dilution was mixed with 20 μL of the working 
solution of IS and filled up to 200 μL. The dilution was injected onto HPLC system. The volume of an injection 
was 20 µL.

The investigated solutions.  Levofloxacin was dissolved in a proper solvent (0.9% NaCl, 5% dextrose, or 
Ringer’s solution) under aseptic conditions. The color of the solutions was yellow. The final concentration was 

Solution

Solutions Exposed To Daylight

Initial concentration 
[mg/mL]

Day of storage

7 14 21 28 42 56 84

% Initial concentration remaining

0.9% NaCl 5.07 100.77 100.18 99.10 98.87 97.90 96.61 95.11

5% Glucose 5.07 100.02 99.24 98.72 98.32 97.80 96.91 96.01

Ringer’s Solution 5.04 100.80 97.45 95.89 93.06 90.44 88.77 85.60

Solutions Protected From Daylight

0.9% NaCl 5.05 101.89 101.56 100.91 100.49 101.20 100.98 99.11

5% Glucose 5.07 100.00 99.63 99.21 99.23 98.28 98.40 99.80

Ringer’s Solution 5.07 101.69 100.137 99.21 99.25 99.48 98.55 98.41

Table 3.  The changes of the concentration of levofloxacin in the solutions exposed to and protected from daylight.
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5 mg/mL. The solvents were isotonic – the osmolarity was within the range 290–298 mOsm/kg. The dissolution 
of levofloxacin in the solvent did not change the osmotic pressure significantly. Visual stability was defined as 
a retention of the original clear, transparent yellow and visually particulate-free solution. One set for each sol-
vent consisted of 6 bags. Three of them were exposed to daylight, and the remaining three were stored in the 
dark – they were covered with foil. All the bags were kept inside the building, stored at the room temperature 
(23.7 °C ± 0.7 °C). The samples were collected in Spring (84 days). 23 days were cloudy, 35 days were partly cloudy 
and 26 days were sunny.

The solutions of levofloxacin in the investigated infusions were also exposed to solar simulator equipped with 
the xenon lamp. This lamp meets the D65/ID65 emission standards defined by ISO. The test obeyed the ICH 
quidelines. The samples protected from the light with an aluminium foil were used as dark controls. The power of 
the source of light was 250 W/m2. The samples were analysed with HPLC-UV method.

The HPLC-UV analysis.  The analytes were detected with UV detector (detection wavelength λ = 295 nm), 
the temperature was ambient. The flow rate was 1 mL/min. The elution was isocratic. The mobile phase consisted 
of acetonitrile and 0.4% triethylamine solution adjusted to pH 2.5 with ortophosphoric acid (24:76, v/v). The 
LiChroCART column (250 × 4 mm, 5 μm, Merck Germany) with LiChroCART guard column (4 × 4 mm, 5 μm, 
Merck Germany) were applied for chromatographic separation. The method was validated according to ICH 
(International Council for Harmonisation) guidelines. The peak of the decomposition product was separated 
from the LEVO peak (Rs = 2.9). The chromatograms are shown in Fig. 1 and in Fig. 2. The blank samples injected 
onto HPLC system did not show any peaks.

The validation parameters.  The following validation parameters were assayed linearity, precision (CV – coeffi-
cient of variation) and accuracy (RE-relative error), specificity, stability and recovery.

The linear equation describes the relationship between LEVO concentration and the area under the peak of 
LEVO and IS ratio. The calibration curve was calculated by the least squares method. Five calibration curves were 
prepared on five separate days and the validation parameters were calculated.

Intra-day and inter-day CV and RE were estimated for control samples at the following concentrations: 2.0, 
3.0 and 5.0 mg/mL (Table 1).

The stability was evaluated during three freeze-thaw cycles, after storage for three months at the temperature 
−20 °C and after storage at a room temperature 24 h. The analytes are stable if the deviation from the nominal 
concentration is within ±10% (Table 2).

The recovery was determined by comparing the levofloxacin/IS area ratios obtained from the infusions spiked 
with a known amount of levofloxacin solution to the ones of water spiked with levofloxacin solution. The recovery 
was tested for the following concentrations: 2 mg/mL, 3 mg/mL and 5 mg/mL.

The MS analysis.  The LC-MS analysis.  10 μl of investigated solution was diluted with methanol to 1 mL, 
then 20 μl of the above dilution was further diluted with methanol to 1 mL. The mixture was injected onto MS sys-
tem. LC-MS measurements were performed on a 1200 series liquid chromatograph coupled with a 6410B Triple 
Quad mass spectrometer (Agilent, USA). Separation was performed at 40 °C with a Poroshell 120 EC-18 column 
(3.0 × 75 mm, 2.7 µm, Agilent, USA). Mobile phases were: 0.1% formate buffer pH 3.2 [A] and 0.1% formic acid in 
acetonitrile [B]. Gradient elution was programmed as follows: 95% [A] and 5% [B] for 5 min., followed by a linear 
change of 80% [A] and 20% [B] in 3 min., then linear change to 5% [A] and 95% [B] in 5 min. and was held for 
7 min., then by a linear change of 95% [A] and 5% [B] for 2 min. Post time was 2 min. and total chromatographic 
cycle was 24 min. The flow rate was 0.5 mL/min. The instrument was operated with electrospray ionization (ESI) 
source in the positive mode. MS conditions were: drying gas temperature (nitrogen), 300 °C; nebulizing gas flow, 
8 L/min; nebulizing gas pressure, 40 psi; capillary voltage, 4 kV; fragmentor voltage, 50–250 V. The acquisition was 
carried out in the scan mode (m/z 50–650).

The GC-MS-TOF analysis.  GC–MS measurements were performed on an Agilent 7890 gas chromatograph 
(Agilent USA) with an L-PAL3 autosampler (Leco USA) coupled with a Pegasus BT TOF (time of flight) mass 
spectrometer (Leco, USA). Separation was performed on HP-5 MS column (30 m × 0,25 mm, 0,25 µm, Agilent, 
USA). Injection 1 μl splitless, injector temperature 250 °C. Oven program was as follows: 50 °C (1 min.) to 300 °C 
(10 °C/min.) 5 min. The carrier gas was helium, constant flow 1 mL/min. Transfer line temperature was 250 °C. 
Mass spectrometer parameters was as follows: source temperature 250 °C, mass range 40–650 m/z and acquisition 
rate 20 spectra/s.

The constant rate calculation.  According to the literature data, levofloxacin’s decomposition obeys the 
first-order kinetics25. The changes in the concentration of levofloxacin are given in a Table 3. The constant rate 
(slope of the curve) was calculated according to the first-order kinetics linear equation. The time when 10% of the 
drug decomposes was calculated by the Equation 1:

= ..t (0 1054/slope) (1)0 1

The samples for analysis were collected at the following days - 0, 7, 14, 21, 28, 42, 56 and 84.
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