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Linking Binary Gene Relationships 
to Drivers of Renal Cell Carcinoma 
Reveals Convergent Function in 
Alternate tumor progression paths
William L. poehlman1, James J. Hsieh  2 & F. Alex Feltus1

Renal cell carcinoma (RCC) subtypes are characterized by distinct molecular profiles. Using RNA 
expression profiles from 1,009 RCC samples, we constructed a condition-annotated gene coexpression 
network (GCN). The RCC GCN contains binary gene coexpression relationships (edges) specific to 
conditions including RCC subtype and tumor stage. As an application of this resource, we discovered 
RCC GCN edges and modules that were associated with genetic lesions in known RCC driver genes, 
including VHL, a common initiating clear cell RCC (ccRCC) genetic lesion, and PBRM1 and BAP1 which 
are early genetic lesions in the Braided Cancer River Model (BCRM). Since ccRCC tumors with PBRM1 
mutations respond to targeted therapy differently than tumors with BAP1 mutations, we focused on 
ccRCC-specific edges associated with tumors that exhibit alternate mutation profiles: VHL-PBRM1 or 
VHL-BAP1. We found specific blends molecular functions associated with these two mutation paths. 
Despite these mutation-associated edges having unique genes, they were enriched for the same 
immunological functions suggesting a convergent functional role for alternate gene sets consistent with 
the BCRM. The condition annotated RCC GCN described herein is a novel data mining resource for the 
assignment of polygenic biomarkers and their relationships to RCC tumors with specific molecular and 
mutational profiles.

Renal cell carcinoma (RCC) is a type of cancer that originates from tubular epithelial cells of the kidney. Subtypes 
of RCC – clear cell, papillary, and chromophobe– demonstrate unique molecular and histological profiles1. In 
recent years, hundreds of RCC tumors from The Cancer Genome Atlas (TCGA2,3) and other sources have been 
deeply analyzed for genes underlying tumor etiology and progression. While many biomarkers have been associ-
ated with RCC, there are few causal genes with consistent and stable genetic lesions driving RCC.

In the case of the most common RCC subtype, ccRCC, several biomarkers have been discovered with variable 
prevalence between individual tumors. The VHL gene is a common initiating mutation, leading to an accumula-
tion of lipids and glycogens in the tissue4. Loss of VHL function is insufficient to develop ccRCC. Epigenetic reg-
ulators such as PBRM1 and BAP1 – which act as tumor suppressors – are frequently mutated and associated with 
distinct clinical outcomes in ccRCC patients5. Loss of function of another chromatin-modifying gene – KDM5C 
– is also associated with unique clinical outcome6. BAP1 mutations occur at a near mutually exclusive manner 
from PBRM1 mutations, and tumors respond to standard of care molecularly-targeted drugs differently depend-
ing on which mutations they exhibit6,7. However, multiple clonal driver subtypes of ccRCC in which BAP1 and 
PBRM1 mutations co-occur are possible8. Other common ccRCC mutations include a histone methyltransferase 
– SETD2 – and the mTOR kinase which plays key roles in cell growth9. These biomarkers are clearly relevant 
to understanding ccRCC biology, but aberrations in these genes are not always consistent between tumors and 
probably do not fully explain ccRCC tumor progression.

Biomarker inconsistency, a prime motivation for personalized medicine, can partly be attributed to tumor het-
erogeneity which is a genotyping challenge given that certain regions of a tumor may contain mutations that are 
unique from other regions of the tumor. A Braided Cancer River Model (BCRM) has defined stages of mutation 
accumulation that lead to clear cell RCC (ccRCC)10: initiating, early, intermediate, and speedy mutations. A key 
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aspect of this model is that genetic pathways can operate in parallel to drive tumorigenesis, suggesting that muta-
tions in different genes at various stages of the model can result in convergent evolution of cancer cells7,10. Thus, 
targeting parallel genetic pathways with similar phenotypic outputs becomes a challenge in treating and prevent-
ing cancer. Polygenic biomarker discovery may provide insight on these parallel pathways and suggest possible 
therapeutic targets. Given that mutations in chromatin-modifying genes will greatly alter mRNA expression lev-
els4, identifying RCC-subtype specific gene expression patterns may pave the way for more robust drug targeting.

One method to discover novel biomarkers is through gene coexpression network (GCN) analysis. A GCN 
is a graph of nodes and edges, where nodes are gene products (e.g. mRNA) and edges are binary relationships 
between genes (e.g. Spearman correlation). A network of significant edges can be extracted using random matrix 
theory (RMT)11,12 or a via soft thresholding to identify functional modules as per WGCNA13. Gene modules of 
tightly connected nodes are partitioned from the GCN using techniques such as link communities14. Modules 
are then tested for enrichment in known biochemical activity, allowing inference of novel gene function15,16. 
Knowledge Independent Network Construction (KINC) is a software package that builds GCNs and tracks the 
conditions under which significant edges exist17. Prior to performing correlation analysis for a given gene pair, 
KINC uses Gaussian Mixture Models (GMMs) to detect one or more sample clusters in the pairwise expression 
data. Each sample cluster in each pairwise gene comparison is tested for correlation. This procedure reduces 
extrinsic noise due to sample variation, and since the samples are tracked it is possible to test each edge for over-
representation of an attribute or condition (e.g. sex, tumor subtype, tumor stage). For example, Dunwoodie et al. 
used KINC to identify a gene coexpression module that is specific to glioblastoma, an aggressive form of brain 
cancer18. Thus, KINC is an appropriate method to discover condition specific gene relationships in a complex 
mixture of gene expression profiles.

The purpose of this study was to use KINC to identify RCC subtype-specific GCN edges. In addition, we 
searched for GCN edges specific to tumors with co-occurring mutations in known genes relevant to ccRCC. 
The GCN was constructed from 1,009 RCC RNAseq datasets from TCGA which included the three major RCC 
subtypes. These datasets span various tumor stages as well as clinical attributes such as gender and vital status. 
We assigned GCN edges to ccRCC tumor subsets that have accumulated specific sets of known driver mutations.

Results
We downloaded and parsed 1,021 gene expression quantification files representing clear cell renal cell carci-
noma (KIRC), papillary renal cell carcinoma (KIRP), and chromophobe renal cell carcinoma (KICH) into a 
1,021 × 60,483 gene expression matrix (GEM). The GEM contained 860 samples that are annotated for specific 
tumor stages and 128 samples that are annotated as “Solid Tissue Normal”. In addition, there are 33 primary 
tumor samples that were not annotated for a specific tumor stage. The matrix was log base 2 transformed and 
12 outlier samples were removed. Following quantile normalization of the GEM, we performed 1,000 iterations 
of t-distributed stochastic neighbor embedding (t-SNE)19 and circumscribed clusters using HDBSCAN20 and 
the Cluster Ensembles method21 (Fig. 1). Four clusters were identified: Cluster 1 (solid tissue normal enriched; 
FDR = 4.03E-67); Cluster 2 (KIRP enriched; FDR = 4.88E-83); Cluster 3 (KICH enriched; FDR = 6.84E-40); 
and Cluster 4 (KIRC enriched; FDR = 5.32E-70). The sample to cluster assignment is available in Supplemental 
Table 1.

Using the preprocessed GEM as input, a condition-annotated GCN was constructed using KINC. This RCC 
GCN contains 4,121 nodes, 10,451 edges, and demonstrates scale-free topology (R2 = 0.933; Fig. 2A). A heatmap 
presented in Fig. 2B provides a visual overview of expression patterns of these 4,121 genes between the cancer 
subtypes. Notably, two KIRC cancer subgroups can be seen. The GCN includes edges composed of genes neces-
sary for normal kidney development, such as the Wilms tumor protein (WT1) which was found to be coexpressed 
with genes such as LMX1B22. Edges in the GCN were tested for enrichment of attributes such as cancer type, 
tissue type, tumor stage, and vital status using a Fisher’s exact test (Table 1). The RCC GCN with enrichment 
p-values for every edge is available in Supplemental Table 2. Edges that were enriched (adj. p < 0.001) for “Solid 

Figure 1. Overview of TCGA RCC Expression Data. A total of 128 “solid tissue normal” kidney samples and 
860 “primary tumor” samples with were used in this study. Shown are four consensus clusters each with a 
unique color identified from 1000 t-SNE runs.
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Tissue Normal” were extracted to produce a “non-tumor” GCN (Supplemental Table 3). Edges that were enriched 
for “Primary Tumor” were extracted to produce a “tumor” GCN (Supplemental Table 4). The non-tumor GCN 
had 1416 nodes and 3605 edges. The tumor GCN had 623 nodes and 2361 edges (Supplemental Fig. 1). The num-
ber of condition-enriched edges in each of the three GCNs is shown in Table 1.

Link community modules (LCM)23 were identified for each GCN (Supplemental Table 5), and functional 
enrichment tests were performed on each module. Each GCN contains LCMs that were enriched for GO, 
Reactome, MIM, Pfam, and Interpro annotations. A full list of functionally enriched modules in the RCC GCN 
is available in Supplemental Table 6. Notably, the non-tumor GCN contains LCM modules that are enriched 
(Fisher’s Pval < 0.01) for terms related to MET signaling, which is absent in the RCC GCN. The RCC and 
non-tumor GCN both have modules enriched for VEGF and Notch signaling (Supplemental Tables 7 & 8).

To test if edges where specific to tumors with mutations in known RCC genes, we downloaded somatic muta-
tion profiles for 16 genes that are relevant to RCC24 and detected edges that were specific to patients with ccRCC 
driver mutations. Table 2 presents the number of edges that were specific to patients with mutations in these 
RCC-associated genes. In order to detect edges relevant to patients with common ccRCC mutation combinations, 

Figure 2. Renal cell carcinoma (RCC) gene coexpression network. (A) The RCC GCN demonstrates scale-free 
topology and contains 4,121 nodes and 10,451 edges. (B) A gene expression intensity heatmap of the 4,121 
genes is shown.

RCC-GCN Tumor-GCN Normal-GCN

Nodes 4121 623 1416

Edges 10451 2361 3605

<k> 5.066 7.576 5.089

R2 0.933 0.838 0.850

Patient KIRC 6288 1909 2362

Paitent KIRP 275 103 50

Patient KICH 1807 37 1651

Primary_Tumor 2361 2361 0

Solid_Tissue_Normal 3605 0 3605

Tumor_stage_i 54 16 20

Tumor_stage_ii 129 3 100

Tumor_stage_iii 432 22 385

Tumor_stage_iv 1770 24 1697

VitalStatus_alive 9 1 7

VitalStatus_dead 2620 280 1987

Table 1. GCN Topology & Attribute-Enriched Edges.
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we performed a Fisher’s exact test for co-occurring VHL and BAP1 mutations (Table 3). In addition, we identified 
edges in the tumor GCN that are specific to patients with co-occurring VHL and PBRM1 mutations (Table 4).

While some genes are common to the two edge lists in Tables 3 and 4 (CD96, SH2D1A SIRPG, SLA2, 
SLAMF6), each list contains unique genes that are members of the tumor GCN. Comparing the genes in Table 3 to 
the genes in Table 4 reveals similar biological function. Enrichment (Fisher’s Pval < 0.001) of GO terms related to 
T cell activation and immune response are shared between these lists: adaptive immune response (GO:0002250), 
T cell activation (GO:0042110), positive regulation of natural killer cell mediated cytotoxicity (GO:0045954), and 
regulation of immune response (GO:0050776).

Discussion
We constructed a condition-annotated RCC GCN and detected edges that are specific to cancer subtype, tissue 
type, tumor stage, and unique mutation profile. KINC software allowed us to construct a GCN from diverse 
kidney cancer samples and identify GCN edges that are specific to only a subset of the input samples. This GCN 
is a novel data-mining resource for polygenic biomarker assignment to clinically relevant RCC sub-types. To 
link novel genes to known drivers of ccRCC, we identified 8 edges that are specific to KIRC primary tumors that 
contain VHL and BAP1 mutations and compared these to 27 edges that are specific to KIRC primary tumors that 
contain VHL and PBRM1 mutations. These expanded ccRCC driver mutations represent two possible selection 
routes through the BCRM. Due to a small number of patients containing a combination of VHL, PBRM1, and 
BAP1 mutations, we were unable to detect edges specific to this multiple clonal driver. We demonstrate that the 
tumor GCN edges associated with VHL-BAP1 and VHL-PBRM1 mutations contain different genes with similar 

Mutation Gene Description
RCC-
GCN

Tumor-
GCN

Normal-
GCN

VHL von Hippel-Lindau tumor suppressor 5282 1755 2330

PBRM1 polybromo 1 4254 1362 2274

SETD2 SET domain containing 2 265 67 170

KDM5C lysine demethylase 5C 41 33 1

BAP1 BRCA1 associated protein 1 41 29 0

PTEN phosphatase and tensin homolog 1 0 0

MTOR mechanistic target of rapamycin kinase 441 31 386

TP53 tumor protein p53 154 4 121

PIK3CA PI3-kinase catalytic subunit alpha 3 2 0

MET MET proto-oncogene, RTK 16 1 9

FAT1 FAT atypical cadherin 1 0 0 0

NF2 neurofibromin 2 2 0 0

KDM6A lysine demethylase 6A 3 0 0

SMARCB1 SWI/SNF related 1 0 0

NFE2L2 nuclear factor, erythroid 2 like 2 2 0 1

STAG2 stromal antigen 2 0 0 0

Table 2. GCN Edge-RCC mutation Association.

GeneA GeneB GeneA Description GeneB Description Module Notes

ENSG00000183918;SH2D1A ENSG00000181847;TIGIT SH2 domain containing 1A T cell immunoreceptor with Ig 
and ITIM domains TM0006 &,‡,†,*

ENSG00000181847;TIGIT ENSG00000162739;SLAMF6 T cell immunoreceptor with Ig 
and ITIM domains SLAM family member 6 TM0006 &,‡,†,*

ENSG00000181847;TIGIT ENSG00000153283;CD96 T cell immunoreceptor with Ig 
and ITIM domains CD96 molecule TM0006 &,‡,†,*

ENSG00000181847;TIGIT ENSG00000101082;SLA2 T cell immunoreceptor with Ig 
and ITIM domains Src like adaptor 2 TM0006 &,‡,†,*

ENSG00000198846;TOX ENSG00000049249;TNFRSF9 thymocyte selection associated 
high mobility group box

TNF receptor superfamily 
member 9 NA &,‡,†,*

ENSG00000153563;CD8A ENSG00000049249;TNFRSF9 CD8a molecule TNF receptor superfamily 
member 9 NA &,‡,†,*

ENSG00000163508;EOMES ENSG00000049249;TNFRSF9 eomesodermin TNF receptor superfamily 
member 9 NA &,‡,†,*

ENSG00000181847;TIGIT ENSG00000089012;SIRPG T cell immunoreceptor with Ig 
and ITIM domains

signal regulatory protein 
gamma NA &,‡,†,*

Table 3. KIRC Tumor Edges Associated with Co-Occuring VHL and BAP1 Mutations. &Spearman 
Correlation > 0.80; ‡Padj KIRC Patient< 0.001; †Padj Primary Tumor < 0.001; *Padj VHL and BAP1 
Mutations < 0.001.
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biological function. Thus, two unique sets of genes can be regulated and selected for in different tumors yielding 
the same functional result.

Several of the GCN edges associated with mutated gene sets are associated with T cell activation and immune 
response. The genes in Tables 3 and 4 are both enriched for the following GO ontology terms: adaptive immune 
response (GO:0002250), T cell activation (GO:0042110), positive regulation of natural killer cell mediated cyto-
toxicity (GO:0045954), and regulation of immune response (GO:0050776). Identifying ccRCC edges associated 

GeneA GeneB GeneA Description GeneB Description Module Notes

ENSG00000160185;UBASH3A ENSG00000153283;CD96
ubiquitin associated and 
SH3 domain containing 
A

CD96 molecule TM0023 &,‡,†,*

ENSG00000183918;SH2D1A ENSG00000160185;UBASH3A SH2 domain containing 
1A

ubiquitin associated and SH3 domain 
containing A TM0023 %,‡,†,*

ENSG00000162739;SLAMF6 ENSG00000160185;UBASH3A SLAM family member 6 ubiquitin associated and SH3 domain 
containing A TM0023 &,‡,†,*

ENSG00000160185;UBASH3A ENSG00000101082;SLA2
ubiquitin associated and 
SH3 domain containing 
A

Src like adaptor 2 TM0023 &,‡,†,*

ENSG00000160185;UBASH3A ENSG00000116824;CD2
ubiquitin associated and 
SH3 domain containing 
A

CD2 molecule TM0021 &,‡,†,*

ENSG00000160185;UBASH3A ENSG00000089012;SIRPG
ubiquitin associated and 
SH3 domain containing 
A

signal regulatory protein gamma TM0021 &,‡,†,*

ENSG00000277734;TRAC ENSG00000160185;UBASH3A T cell receptor alpha 
constant

ubiquitin associated and SH3 domain 
containing A TM0021 &,‡,†,*

ENSG00000160185;UBASH3A ENSG00000137078;SIT1
ubiquitin associated and 
SH3 domain containing 
A

signaling threshold regulating 
transmembrane adaptor 1 TM0021 &,‡,†,*

ENSG00000160185;UBASH3A ENSG00000147168;IL2RG
ubiquitin associated and 
SH3 domain containing 
A

interleukin 2 receptor subunit gamma TM0021 &,‡,†,*

ENSG00000167286;CD3D ENSG00000160185;UBASH3A CD3d molecule ubiquitin associated and SH3 domain 
containing A TM0021 &,‡,†,*

ENSG00000182866;LCK ENSG00000160185;UBASH3A LCK proto-oncogene, Src 
family tyrosine kinase

ubiquitin associated and SH3 domain 
containing A TM0021 &,‡,†,*

ENSG00000198851;CD3E ENSG00000160185;UBASH3A CD3e molecule ubiquitin associated and SH3 domain 
containing A TM0021 &,‡,†,*

ENSG00000163564;PYHIN1 ENSG00000160185;UBASH3A pyrin and HIN domain 
family member 1

ubiquitin associated and SH3 domain 
containing A NA &,‡,†,*

ENSG00000231890;DARS-AS1 ENSG00000227191;TCRGC2 DARS antisense RNA 1 T Cell Receptor Gamma Constant 2 NA &,‡,†,*

ENSG00000281881;SPRY4-IT1 ENSG00000109920;FNBP4 SPRY4 intronic transcript 
1 formin binding protein 4 NA &,‡,†,*

ENSG00000161405;IKZF3 ENSG00000160185;UBASH3A IKAROS family zinc 
finger 3

ubiquitin associated and SH3 domain 
containing A NA &,‡,†,*

ENSG00000160185;UBASH3A ENSG00000143851;PTPN7
ubiquitin associated and 
SH3 domain containing 
A

protein tyrosine phosphatase, non-
receptor type 7 NA &,‡,†,*

ENSG00000160185;UBASH3A ENSG00000104814;MAP4K1
ubiquitin associated and 
SH3 domain containing 
A

mitogen-activated protein kinase kinase 
kinase kinase 1 NA &,‡,†,*

ENSG00000160185;UBASH3A ENSG00000005844;ITGAL
ubiquitin associated and 
SH3 domain containing 
A

integrin subunit alpha L NA &,‡,†,*

ENSG00000263970;RP11-789C17.5 ENSG00000054148;PHPT1 Antisense RNA phosphohistidine phosphatase 1 NA &,‡,†,*

ENSG00000272505;RP11-981G7.6 ENSG00000253641;LINCR-0001 lincRNA uncharacterized LINCR-0001 NA &,‡,†,*

ENSG00000234290;AC116366.6 ENSG00000197536;C5orf56 Antisense RNA chromosome 5 open reading frame 56 NA &,‡,†,*

ENSG00000237721;AF064858.3 ENSG00000235888;AF064858.1 lincRNA lincRNA NA &,‡,†,*

ENSG00000231233;CCDC147-AS1 ENSG00000184277;TM2D3 CCDC147 antisense 
RNA 1 TM2 domain containing 3 NA &,‡,†,*

ENSG00000251320;AC011352.3 ENSG00000248362;AC011352.1 lncRNA lncRNA NA &,‡,†,*

ENSG00000218227;RPL19P9 ENSG00000204677;FAM153C Ribosomal Protein L19 
Pseudogene 9

family with sequence similarity 153 
member C NA &,‡,†,*

ENSG00000237471;AC073115.2 ENSG00000229628;AC073115.7 lincRNA lincRNA NA &,‡,†,*

Table 4. KIRC Tumor Edges Associated with Co-Occuring VHL and PBRM1 Mutations. &Spearman 
Correlation > 0.80; %Spearman Correlation < −0.80; ‡Padj KIRC Patient < 0.001; †Padj Primary Tumor < 0.001; 
*Padj VHL and PBRM1 Mutations < 0.001.
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with these functions supports the finding of Ricketts et al.24 that immune signatures related to T cell response are 
up-regulated in ccRCC compared to other RCC subtypes.

Regardless of whether the patient has co-occurring VHL and BAP1 mutations or co-occurring VHL and 
PBRM1 mutations, T cell activation genes form coordinated co-expression in the tumor (Fig. 3). It has been 
shown that T cell exhaustion occurs when T cells are chronically activated due to infection or inflammation25. 
Over time, the T cells lose their function due to increased expression of inhibitory receptors26,27. We present 
binary gene relationships in Table 3 that have been characterized for their role in T cell exhaustion in cancer. 
TIGIT is an inhibitory receptor that is expressed on the surface of T cells and is associated with poor prognosis 
in melanoma patients26,28. TIGIT is often co-expressed with LAG3, an inhibitory receptor that migrates to the 
surface of T cells during chronic inflammation, contributing to T cell dysfunction26,29. While LAG3 is not present 
in Tables 3 or 4, we detected seven KIRC-specific edges that contain LAG3 (Supplemental Table 2), implicating 
this gene in ccRCC regardless of tumor mutation path. We also found TIGIT to be coexpressed with SH2D1A 
and SLAMF6 in Table 3, which are coexpressed with UBASH3A in Table 4. SH2D1A is a lymphocyte-activating 
protein that interacts with SLAMF6 to stimulate natural killer (NK) and T cell activity30–32. SLA2 — a transcrip-
tion factor that controls expression of genes that regulate T cell development33 — is also present in Tables 3 and 4.

Further, Table 4 contains unique cancer biomarkers that are involved in T cell function. LCK is a tyrosine 
kinase that functions in normal T-cell development. When this gene becomes mutated and the protein becomes 
overexpressed, it becomes a proto-oncogene by promoting cellular proliferation and immortality34. UBASH3A is 
a T-cell ubiquitin ligand protein that disrupts T cell receptor signaling by promoting accumulation of inhibitory 
receptors and T cell apoptosis under certain conditions35. Overexpression of UBASH3A is associated with poor 
prognosis in metastatic breast cancer36, and the gene is also associated with autoimmune disorders such as Lupus 
Erythematosus37. UBASH3A is present in 14 of the 27 edges in Table 4, highlighting its importance in ccRCC 
patients with co-occurring VHL and PBRM1 mutations. It is coexpressed with CD96, an immune checkpoint 
receptor that plays inhibitory roles in NK cell activity38. As we found in Table 3, CD96 is expressed on the surface 
of T cells with TIGIT, which has also demonstrated inhibitory effects on NK cell function in addition to contrib-
uting to T cell exhaustion39,40. We also found UBASH3A to be coexpressed with a surface antigen expressed on 
the surface of T cells, CD2, which has been found to play key roles in NK cell stimulation41. Other T cell receptor 
proteins that we found to be coexpressed with UBASH3A include CD3D and CD3E, which play positive roles 
in lymphocyte production42. The tumorigenic role of UBASH3A should be further explored given its dominant 
presence in the edges of Table 4. Given that different sets of mutations are associated with unique edges in Tables 3 
and 4 that are related to T cell function, we have extended the BCRM to include GCN edges that demonstrate 
convergent function (Fig. 3).

While we discovered specific edges that contain markers of T cell exhaustion, further studies are needed 
to understand how these functional clues relate to RCC biology. Because the samples analyzed in this study 
contained a mixture of T cells and tumor cells, it is not possible to know which cell types produced this result. 
Computational techniques such as gene set enrichment analysis of marker genes and deconvolution analysis 
could be used to quantify cell-type composition from gene expression data43. Intriguingly, functionally sig-
nificant interactions between immune cell types have been demonstrated in various cancer types44. Thus, the 
edges described in this report could represent interactions between immune cells and cancer cells in the tumor 
microenvironment.

Interestingly, Table 4 contains 11 non-coding RNA genes: DARS-AS1, RP11-789C17.5, AC116366.6, 
CCDC147-AS1, RP11-981G7.6, AF064858.3, AC073115.2, AF064858.1, AC073115.7, AC011352.3, and 
AC011352.1. Non-coding RNAs are thought to play key roles in cancer by altering gene expression levels through 
recruitment of chromatin-modifying enzymes or by directly targeting RNA-binding proteins45,46. Notably, the 
antisense RNA DARS-AS1 was found to be correlated with TCRGC2, a T cell receptor47 gene, suggesting that this 
non-coding RNA might play a role in suppressing healthy T cell function. We also detected four edges: RP11-
981G7.6- LINCR-0001, AF064858.3- AF064858.1, AC011352.3- AC011352.1, and AC073115.2- AC073115.7 
that are each comprised of two long non-coding RNAs that are correlated with each other. We speculate that 
these non-coding RNAs are targeting parallel genetic pathways during cancer development as per the BCRM. 
Identification of similar GCN edges can help tackle the challenge of tumor heterogeneity by identifying novel 
genes and pathways that synchronously contribute to the hallmarks of cancer.

Figure 3. Convergent Gene Coexpression Functions in the Braided Cancer River Model. The Braided Cancer 
River Model was expanded to include gene coexpression function. GCN edges specific to patients with common 
ccRCC mutation profiles are enriched for functional annotation terms associated with T cell activation and 
immune response.

https://doi.org/10.1038/s41598-019-39875-y


7Scientific RepoRts |          (2019) 9:2899  | https://doi.org/10.1038/s41598-019-39875-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

The condition-annotated GCNs described in this report provide a novel data-mining resource for discovering 
polygenic biomarkers of RCC. By linking edges to mutations in specific genes, we provide a framework for identi-
fying edges that are relevant to specific clinical subtypes of RCC. In addition, this provides a resource for patients 
who may have genotyped tumors – but no RNA expression data — to link somatic mutations with therapeutic tar-
gets developed from genes in this GCN. Interestingly, the non-tumor GCN is larger than the tumor GCN and has 
a larger number of condition-specific edges. It is possible that accumulation of driver mutations in the tumor lead 
to gene expression changes in adjacent normal tissue through epigenetic effects. These gene expression changes 
may lead to metastasis, tumor growth, or recurrence. Thus, in addition to edges in the tumor GCN, edges in the 
non-tumor GCN may be important biomarkers or potential therapeutic targets.

While this report focused on edges associated with ccRCC driver mutations, the ccRCC-specific edges that 
were not mutation-associated are worthy of further exploration. For example, one could model these edges in the 
context of tumor stages as a “time-series” to identify GCN edge patterns acquired or lost during tumor develop-
ment. With genome-wide mutation profiles, a deeper analysis could test for edge associations beyond the handful 
of known mutation drivers examined in this report. Finally, our GCN analysis focused on ccRCC but is applicable 
to other RCC subtypes. We detected 103 edges that are specific to KIRP tumors and 37 edges that are specific to 
KICH tumors. We suspect that fewer edges were detected for these RCC subtypes due to the smaller number of 
available TCGA samples relative to ccRCC patients. Regardless, exploration of these additional binary biomarkers 
is a valuable resource for characterizing the differential molecular and histological presentation of RCC subtypes.

Methods
Input Data and Gene expression Matrix Construction. All available gene expression quantification 
(FPKM) files for TCGA-KIRC, TCGA-KIRP, and TCGA-KICH patients were downloaded in May 2018 using 
the CentOS7 binary distribution of the GDC Data Transfer Tool [https://gdc.cancer.gov/access-data/gdc-data-
transfer-tool]. 1,021 samples were downloaded – each containing measurement of 60,483 genes – and aggregated 
into a gene expression matrix (GEM). The preprocessCore R library was used to preprocess the input GEM48. 
Following log base 2 transformation of the data, outlier samples were detected using a Kolmogorov-Smirnov test 
(KS Dval > 0.15). A total of 12 outlier samples were removed, and the matrix was quantile normalized to reduce 
technical noise.

Clinical annotations were downloaded directly from the GDC website [https://portal.gdc.cancer.gov/]. 
Mutation profiles for 843 RCC patients were downloaded from Supplemental Table 1 of Ricketts et al.24. This table 
provides mutation profiles for the 16 genes listed in Table 2. All disruptive mutation types were converted to a 
simple “Mutation/No Mutation” attribute prior to edge enrichment. In the event that a sample in the RCC GEM 
was not present in this mutation table, all 16 genes were annotated as “No Mutation”. For co-occurring mutation 
tests, patients with VHL mutations and mutually exclusive mutations in PBRM1 and BAP1 were assigned the 
“Mutation” attribute.

sample Clustering. One thousand iterations of t-SNE were performed using the parallel Python imple-
mentation [https://github.com/DmitryUlyanov/Multicore-TSNE]. A perplexity of 30 was used. Clustering of 
each embedding was performed using the HDBSCAN Python library [https://pypi.python.org/pypi/hdbscan/]. 
Consensus clusters were identified using the Cluster_Ensembles Python library[https://pypi.org/project/Cluster_
Ensembles/], with a minimum cluster size of 10.

Gene Co-expression Network Construction. The OSG-KINC workflow [https://github.com/feltus/
OSG-KINC]49 was utilized to execute 50,000 KINC similarity jobs on the Open Science Grid with the following 
arguments: ‘./kinc similarity–method sc–clustering mixmod–criterion ICL–min_obs 30–th 0’. Output was trans-
ferred to Clemson University’s Palmetto Cluster and uncompressed. KINC threshold was executing using the 
following arguments: ‘./kinc threshold–min_csize 30–clustering mixmod–method sc–th_method sc–th 0.95–max_
modes 5’. A significance threshold of 0.819100 was identified and the GCN was extracted using the following 
KINC extract arguments: ‘./kinc extract–min_csize 30–clustering mixmod–method sc–th_method sc–th 0.819100–
max_modes 5’. A representative GCN edge can be found in Supplemental Fig. 2.

edge enrichment Analysis. Edge enrichment for mutations and clinical attributes was performed using 
the KINC.R package [https://github.com/SystemsGenetics/KINC.R]. Mutations were coded as present or absent 
in a tumor according to annotations found in24. For co-occurring mutation enrichment, a “Mutation” tumor had 
to have both VHL-PBRM1 (but no BAP1) or VHL-BAP1 (but no PBRM1) mutations. A Fisher’s exact test with 
a Hochberg p-value correction was used as the default arguments to the analyzeNetCat function. Edges were 
considered to be significantly enriched for a given attribute or set of attributes if the adjusted p value was less than 
0.001. Due to the low number of tumors with co-occurring mutation groups (106 VHL/PBRM1, 28 VHL/BAP1), 
only edges with a cluster size of 250 or smaller were considered for Tables 3 and 4.

Module Detection and enrichment Analysis. Link Community Modules50 were detected using the link-
comm R package23. The “single” hcmethod was used with a minimum module size of 3 edges. Functional enrich-
ment of LCM modules as performed using the FUNC-E package [https://github.com/SystemsGenetics/FUNC-E], 
which uses a Fisher’s exact test similar to the David method of functional enrichment51. For cross-module com-
parisons, enriched terms were considered significant if the Fisher’s P value was less than 0.001.
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Data Availability
All raw data is available from The Cancer Genome Atlas. Analyzed data including networks are available in Sup-
plementary Information.
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