
1Scientific RepoRts |          (2019) 9:3747  | https://doi.org/10.1038/s41598-019-39869-w

www.nature.com/scientificreports

self-organized criticality in 
geophysical turbulence
W. D. smyth  , J. D. Nash & J. N. Moum

Turbulence in geophysical flows tends to organize itself so that the mean flow remains close to a 
stability boundary in parameter space. that characteristic suggests self-organized criticality (soC), a 
statistical property that has been identified in a range of complex phenomena including earthquakes, 
forest fires and solar flares. This note explores the relationship between the properties of forced, 
sheared, stratified turbulence (as found in oceans, atmospheres and other geophysical fluids) and 
those of SOC. Self-organization to the critical state is demonstrated in a wide range of cases drawn 
mostly (but not entirely) from in situ observations of ocean turbulence. turbulent events in the ocean 
also exhibit a second characteristic associated with SOC: their sizes follow a power-law distribution 
indicating self-similarity. These results suggest SOC as a new conceptual foundation for the study of 
geophysical turbulence, an explanation for the mixing efficiency of ocean turbulence and a potential for 
cross-fertilization with other areas of geophysics.

Fluid turbulence has been a source of fascination for centuries, and typifies the highly complex phenomena 
that are common in nature but poorly described by classical physics. Geophysical fluids - the mantle, oceans, 
atmosphere and extraterrestrial plasmas - are invariably turbulent. Because turbulence dominates transports of 
flow properties, it is critical that we understand and predict its effects. Kolmogorov’s (1941) model of stationary, 
homogeneous, isotropic turbulence is simple enough that we can develop intuition and derive useful formulas 
e.g.1. In nature, however, turbulence is neither stationary, nor homogeneous, nor isotropic, and Kolmogorov’s 
results are correspondingly approximate. Despite this limitation, the theory provides a conceptual foundation 
from which to explore the real world, the most interesting aspects being the ways in which reality departs from 
Kolmogorov.

Two primary factors that underlie the differences between geophysical turbulence and Kolmogorov’s ideali-
zation are stratification and shear (i.e., vertical variations of density and horizontal velocity, respectively), both 
of which impose a preferred direction on the dynamics. To better understand geophysical turbulence it would 
be valuable to have a new point of departure, a theory that simplifies sheared, stratified turbulence the way that 
Kolmogorov did for isotropic turbulence.

This note explores the possibility that the new point of departure is to be found in the paradigm of 
self-organized criticality hereafter SOC2. In the canonical model of SOC, one imagines sand poured continuously 
at a point on a horizontal surface. Growing steeper at first, the sandpile eventually exceeds a critical slope and 
sporadic avalanches act to relieve the resulting instability. Called the ‘‘angle of repose”, the critical slope reflects the 
structure of the sand grains. Over time, the avalanches reach a metastable equilibrium with the sand source such 
that the slope is maintained, on average, at the angle of repose. Analogous behavior has been observed in a wide 
range of complex phenomena including earthquakes, forest fires, solar flares, stock market crashes and biological 
extinction events e.g.3–6. This ubiquity suggests a promise of cross-fertilization: an advance in understanding solar 
flares, for example, might furnish a clue to the prediction of earthquakes.

Stratified, parallel shear flows undergo a transition between stable and unstable states at a critical value of the 
gradient Richardson number, Ri, defined as
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where Bz  represents the vertical buoyancy gradient and U V{ , }z z  the shear of the horizontal current. Overbars 
indicate an averaging operator (typically defined over time or horizontal distance). If some external force acts 
continuously to increase the shear, thereby decreasing Ri, then the eventual decrease below the critical value will 
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be accompanied by instability and then by turbulence. Turbulence acts in turn to diffuse the shear and thus to 
redirect Ri back toward the critical value. This critical Ri is therefore analogous to the angle of repose in the sand-
pile example7,8. Its value is substantially independent of the forcing, and is usually not far from the inviscid upper 
bound for instability, namely 1/49,10. Here we will review an accumulation of evidence suggesting that the ten-
dency to maintain Ri near 1/4 is a generic property of forced, stratified, parallel shear flows on geophysical scales, 
and therefore that the SOC paradigm is relevant.

There has been controversy over the most useful definition of SOC11, as may be expected when so many 
discipline boundaries are crossed. Aschwanden4 suggests the following: “… (SOC) is a critical state of a non-
linear energy dissipation system that is slowly and continuously driven towards a critical value of a system-wide 
instability threshold, producing scale-free, fractal-diffusive, and intermittent avalanches with powerlaw-like size 
distributions.” Here, “avalanches” is understood to mean sporadic, dissipative events that relieve instabilities and 
thereby direct the system back toward the critical state. To compare geophysical turbulence with SOC, we abstract 
from Aschwanden’s definition the following two criteria:

 1. The flow maintains itself near a critical state without external tuning.
 2. This self-regulation is due to intermittent events whose amplitude is distributed according to a power law.

Our main purpose here is to demonstrate these two properties in forced, geophysical stratified shear flow. 
We describe the mechanics of self-organization, and in the process gain insight into the efficiency of mixing by 
turbulence, another focus of controversy in recent years12. We close by discussing characteristics of geophysical 
turbulence whose relationship to SOC is less clear.

Threshold Behavior in the Equatorial Oceans and Elsewhere
It has long been known that, on the turbulent upper flank of the Pacific equatorial undercurrent, Ri remains near 
1/4 most of the time13–15. A vertically-sheared current is maintained by the trade winds, which force westward 
flow at the surface and eastward return flow at, typically, 100 m depth (Fig. 1a). The resulting turbulence is an 
important factor in the global climate system as it carries much of the tropical solar heat flux into the ocean inte-
rior (Fig. 1b). Stable stratification is maintained against turbulent diffusion by the combination of solar heating 
from above and upwelling of cold water from below due to the Earth’s rotation16.
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Figure 1. Mean flow and turbulence in the upper equatorial Pacific. Profiles show the median and the quartile 
range of 1-hour, 4 m bins from two weeks of shipboard measurements (cruise A in Table 1). (a) Eastward 
velocity, showing the sheared upper flank of the equatorial undercurrent. (b) Turbulent heat flux (positive 
downward). (c) Buoyancy gradient Bz (blue) and squared shear (red). (d) Gradient Richardson number with the 
vertical line at =Ri 1/4. See15 for further details.

Label Longitude Dates Reference Profiles Overturns

A 140 W 25 Oct.–8 Nov. 2008 51 2476 23,628

B 140 W 4 Nov.–24 Nov. 1991 52 3907 98,211

C 110 W 15 Nov.–3 Dec. 2014 53 3088 89,363

Table 1. Microstructure datasets from the equatorial Pacific used in Figs 4 and 5.
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Shear and stratification both vary considerably; their medians increase by an order of magnitude between the 
surface and undercurrent core (Fig. 1c). Their ratio, Ri (Fig. 1d), however, is remarkably uniform over a 60 m 
depth range coinciding with the strongest turbulence (cf. Fig. 1b), where the time median remains conspicuously 
close to 1/4. Figure 2a shows the Ri distribution in more detail. Depths from the base of the surface mixed layer 
down to 200 m are included, and the most strongly turbulent samples are distinguished by turbulent heat fluxes 
in the upper quartile. For those samples, the Ri distribution shows a single peak around 0.2–0.25.

Figure 2a represents highly energetic La Niña conditions. In contrast, Fig. 2b shows data from the same loca-
tion but a different time (boreal winter 1991–1992). An El Niño event was in progress, and the trade winds were 
therefore much weaker. Despite the difference in forcing, the Ri distributions are similar, in particular the mode 
near =Ri 1/4 that represents the strongest turbulence. Like Bak’s sandpile, therefore, the threshold state is inde-
pendent of the forcing.

Other examples of turbulent stratified shear flow in which Ri has been observed to remain near 1/4 include: 
the Atlantic equatorial undercurrent17, storm-driven turbulence in the North Sea18, a gravity current in the 
Mediterranean Outflow19, abyssal currents in the Romanche Fracture Zone20, stratified exchange flow in a ship 
canal21, a river plume22, a salt wedge estuary23 and clear air turbulence over Hong Kong International Airport24. A 
similar phenomenon in the stable atmospheric boundary layer is known as ‘‘global intermittency’’25. Examples 
found far from the equator indicate that the relatively parallel nature of the flow associated with the vanishing of 
the Coriolis effect is not critical to threshold behavior. The atmospheric example shows that fluid composition is 
not important. Finally, the phenomenon is not sensitive to the details of the external forcing that reduces Ri. Only 
in the Atlantic equatorial case does the forcing originate with wind stress as in the previous examples; in all other 
examples the forcing is different (as discussed below), but the tendency for Ri to fluctuate around 1/4 is 
unchanged. Exceptions should be expected if the forcing is too weak to reduce Ri below the critical value, or 
strong enough to erase the stratification entirely, or too intermittent for turbulence to have time to develop. 
Examples include unstable oceanic and atmospheric boundary layers.

the Critical state and its Maintenance
How should this tendency for Ri to fluctuate around 1/4 be interpreted? The observed distributions of Ri suggest 
that flow fluctuates between regimes of turbulence growth and decay separated, roughly, by ∼Ri 1/4, as would be 
expected if turbulence is driven by shear instability. Smyth et al.7,8 have hypothesized that such fluctuations are 
governed by a competition between (1) external forcing (e.g., the wind), which increases shear and thereby 
decreases Ri, leading eventually to instability and turbulence, and (2) turbulent diffusion which acts to increase 
Ri, relaxing the flow back to the stable state. We now describe this interplay between forcing and diffusion in 
detail, together with conditions under which turbulence is expected to grow or decay.

The process can be understood with the aid of the regime diagram in Fig. 3. Over time, the flow state moves 
counterclockwise through four quadrants in which different physical factors dominate its evolution. We now 
describe these factors in turn.

Forcing. At the equator, easterly trade winds force a steady westward surface current. As a result, water piles 
up near the western boundary, creating a pressure gradient and forcing a return current at depth, the equatorial 
undercurrent. The shear between these two currents appears in the denominator of Ri [cf. (1)] and is accelerated 
by the wind; hence, the forcing acts to reduce Ri.

Forcing can take different forms in different regimes of geophysical turbulence. In dense gravity currents 
e.g.19,23, gravity accelerates a dense layer adjacent to the bottom while viscous stress at the bottom creates shear 
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Figure 2. Probability density functions of Ri, subsampled to isolate the most turbulent time-depth regimes, 
showing the peak at =Ri 1/4. Multi-week datasets were subsampled to isolate the upper quartile of turbulent 
heat flux values (blue). Measurements were taken on the equator at 140 W longitude. Frames (a) and  
(b) represent strong (La Niña) and weak (El Niño) forcing conditions, respectively.
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within the flow. In internal waves, Ri is locally, often for long enough to develop turbulent events. This is a likely 
cause for the clear air turbulence observation24.

turbulence onset. Linear perturbation theory tells us that Ri must be reduced to values below 1/4 before 
normal mode instability can begin transferring energy from the mean flow to the disturbance (the Miles-Howard 
theorem9,10). The proof involves exacting assumptions that are implausible in geophysical turbulence: the initial 
flow must be inviscid, nondiffusive, steady and parallel. In fact, geophysical instabilities invariably grow in the 
presence of some degree of small-scale turbulence, so that the Miles-Howard assumptions are formally invalid. 
When reasonable assumptions are made about pre-existing turbulence, the upper bound on Ri varies by a few tens 
of percent26. From a pragmatic standpoint, though, the connection between <Ri 1/4 and the onset of 
shear-driven turbulence is well established e.g.27.

Turbulent diffusion. The diffusive action of sheared turbulence in stratified flow tends to reduce gradients 
of buoyancy and velocity, usually at similar rates. The result is an increase of Ri, a mathematical consequence of 
the fact that the numerator of Ri is a gradient while the denominator is a squared gradient [recall (1)]. As a simple 
example, consider a horizontal layer of turbulent fluid with uniform mean gradients Uz and Bz. Now suppose that, 
over time, turbulent entrainment thickens this layer by a factor a, so that Uz  and Bz  are decreased by the same 
factor. In that case, =Ri B U/z z

2 must also increase by the factor a.

Figure 3. Regime diagram for fluctuations that keep stratified shear flow near the critical state. Turbulence 
decays (grows) in the upper (lower) half. Forcing (diffusion) dominates in the left (right) half. Time increases 
counterclockwise. The Richardson numbers Ri and Rf  are related by (3,4).
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Figure 4. Probability density function P of the vertical scale L of turbulent overturns in the upper equatorial 
Pacific. Overturns were identified on the equator between the mixed layer base and 200 m depth using 
microstructure data from three equatorial cruises (Table 1). P is defined such that ∫ =

∞ PdL 1
0

. Straight line 
with slope w shows the maximum likelihood estimate of the exponent44, given numerically in the legend, and 
the range over which it was computed.
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Turbulence collapse and the efficiency of mixing. Under what conditions should we expect turbulence 
to decay? Because sheared, stratified turbulence is sustained by the transfer of kinetic energy from the mean flow, 
we might expect that turbulence will decay when that transfer becomes impossible. Based on what we’ve seen so 
far, a reasonable guess is that this happens when Ri increases to values exceeding ~1/49,10.

More generally, the decay of turbulence is predicted using a variant of Ri called the flux Richardson number:

=
′ ′

′ ′ + ′ ′
R b w

U u w V v w
,

(2)
f

z z

where primed lower-case letters denote departures from the mean state. Rf  may also be thought of as the mixing 
efficiency, i.e., the fraction of energy input from the mean flow [represented by the denominator of (2)] that goes 
into work against gravity (the numerator), e.g.28,29. An estimate of the critical value of Rf  follows from the intui-
tion that, if turbulence is required to do too much work against gravity, it cannot be sustained. Ellison30, based on 
a combination of energy conservation arguments and empirical observations, estimated the maximum Rf  for the 
maintenance of turbulence to be 0.15. Observational, numerical and lab-based estimates of Rf  are typically 0.15–
0.228,31–34, though values from zero to ~0.4 are found in specific cases12,35–37.

The collapse criterion can be related to the onset criterion via consideration of the turbulent Prandtl number 
=Pr K K/t m h, where where Km and Kh are eddy coefficients for momentum and heat such that ′ ′ = −w T K Th z, 

′ ′ = −u w K Um z and ′ ′ = −v w K Vm z. Substituting these definitions into (2) yields

= .R Ri
Pr (3)f

t

In unstratified turbulence, we know empirically that momentum and heat mix similarly, the so-called 
Reynolds analogy; hence ∼Pr 1t . Stratified turbulence, however, is a combination of classical, isotropic turbu-
lence and internal gravity waves38, and the latter component carries no heat. As a result we should expect Prt to 
increase. These notions have been confirmed and made quantitative in a variety of studies; e.g., Esau and 
Grachev39 collected data from diverse sources and showed that all were fit by

= . + . .Pr Ri0 8 3 0 (4)t

A similar but independent parameterization has been given by Venayagamoorthy et al.40.
At the beginning of this subsection we hypothesized that collapse occurs when Ri exceeds 1/4. In (4), =Ri 1/4 

corresponds to = .Pr 1 5t , and therefore via (3) to = .R 0 16f . (As a measure of the uncertainty, the 
Venayagamoorthy formula40 gives = .Pr 1 2t , and therefore = .R 0 2f ). These values, corresponding to the onset 
condition ∼ .Ri 0 25, are consistent with the theoretical/empirical estimates listed above12,27,30–36; hence the 
hypothesis that turbulence collapse begins when the transfer of energy from the mean flow stops is consistent 
with our existing understanding of mixing efficiency in oceanic turbulence.

Summary: fluctuations around the critical state. The preceding results suggest that ∼ .Ri 0 25, ∼ .R 0 16f  is a 
boundary between regimes of growing and decaying turbulence in forced stratified shear flow. One can easily 
imagine that turbulence near this boundary is highly intermittent. Moreover, the mixing action of turbulence can 
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Figure 5. Probability density function P of the vertical scale L of turbulent overturns in the upper equatorial 
Pacific. Overturns were subsampled by (a) cruise (details in Table 1) and (b) day (local time 06:00–18:00)/night 
(18:00–06:00). Straight lines show the maximum likelihood estimate of the exponent44, given numerically in the 
legend.
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cause the flow to remain near this regime over a wide range of forcing strengths. Referring to Fig. 3, this process of 
self-organization may be summarized as follows.

•	 Throughout the upper half-plane, there is no normal mode growth (because > .Ri 0 25), and any turbulence 
that is present is decaying (because > .R 0 16f ). Turbulence decay moves the flow into quadrant 1 (upper left).

•	 In quadrant 1, diffusion is weak enough that forcing dominates, reducing Ri and Rf  and moving the flow to 
quadrant 2.

•	 In quadrant 2, normal mode instability creates new turbulence, while any turbulence already present can grow 
stronger by extracting energy from the mean flow.

•	 The growth of turbulence moves the flow into quadrant 3, where the mixing action of the turbulence over-
comes the forcing and thus increases Ri and Rf .

•	 Diffusion moves the flow to quadrant 4, where turbulence begins to decay and the cycle repeats.

This process is a close analogue of the Bak2 sandpile model. The forcing (e.g., the trade winds) corresponds to 
the sand source, and the sporadic mixing events to the avalanches. The “angle of repose” for stratified shear flow 
is the critical state ∼ .Ri 0 25. This process is evident over a wide range of forcing scenarios as reviewed above, i.e., 
no external tuning is needed to maintain the flow near the critical state. Criterion #1 for SOC is therefore 
satisfied.

Power-Law Scaling of Event Sizes
The power-law size distribution (criterion #2 above) is a standard characteristic of “avalanches” in SOC systems, 
e.g., the Gutenberg-Richter law of earthquake frequency41. Power laws are also familiar in Kolmogorov’s isotropic 
turbulence, e.g., the inertial and inertial-convective subranges of the kinetic energy and scalar variance spectra. 
These do not indicate SOC, however, because no critical state is involved.

To test for this characteristic, we assembled a database of 211,202 turbulent overturns observed between the 
base of the surface mixed layer and 200 m depth. To maximize both the number of events and the range of 
equatorial surface forcing and vertical ocean structure regimes, we combined 9471 profiles from three cruises 
(Table 1). Centimeter-resolving density profiles were searched for layers of static instability which were identified 
as overturns42,43 (see Supplementary Material for details). The overturn height L is used here as a measure of the 
“avalanche” size.

The probability density function P L( ) approximates the power-law form P~ −L w, where w is a constant, remark-
ably well over nearly three decades (Fig. 4). Events exceeding the thickness of the marginally unstable layer (about 
60 m in the case shown in Fig. 1) are rare, imposing a large-size cutoff on the intermediate range. The rolloff at 
small scales is due to the finite vertical resolution of the measurements, which are spaced at about 0.5 cm and do 
not resolve overturns smaller than about 2 cm. Inasmuch as P L( ) is linear between these extremes (Fig. 4), crite-
rion #2 for SOC is satisfied.

The power-law exponent, calculated using the maximum likelihood method44, is = . ± .w 1 67 0 01. While the 
similarity between w and the Obukhov-Corrsin slope for temperature variance in the inertial subrange −5/345,46, 
is striking, we suspect it is fortuitous. (Whereas a temperature spectrum describes a superposition of disturbances 
on all scales, a large overturns engulfs all smaller overturns within it so that they do not show up separately in this 
measurement).

To explore this behavior further, the dataset is subsampled in two ways (Fig. 5). First, power-law exponents for 
the three individual cruises are 1.37 ± 0.04 and 1.57 ± 0.02 and 1.66 ± 0.02. The power law form is observed over 
a smaller range of sizes in these subsamples. In contrast, dividing the diurnal cycle into daytime and nighttime 
hours (Fig. 5b) gives nearly identical w-values.

Sanchez and Newman47 have proposed a more specific constraint on the SOC paradigm, namely that there be 
no characteristic length scale (other than the smallest and largest scales at which the SOC physics operates). In all 
cases considered here, < <w0 2, indicating that the expectation value ∫〈 〉 =

∞L L P L dL( )
0

 diverges or, more 
precisely, would diverge if L were not limited by the precision of the measurements and the size of the system 
(~60 m). The scale-free constraint is therefore satisfied.

Power law scaling expresses the absence of a characteristic length scale, a property of turbulence that bedevils 
parameterization efforts. In most geophysical turbulence, there is no controlling length scale except for the size of 
the domain in which the phenomenon is observed (~60 m in the case of the equatorial undercurrent).

Differences Between Geophysical Turbulence and SOC
Many SOC systems exhibit power law behavior not only in space but in time, and therefore have no intrinsic time 
scale. That is not the case with geophysical turbulence, whose intrinsic time scale can be chosen as + −U V( )z z

2 2 1/2 
or −Bz

1/2. (These choices are nearly equivalent since their ratio, Ri1/2, does not vary much).
In the present investigation we have not considered the temporal aspect of geophysical turbulence. In the 

equatorial case, besides the existence of an intrinsic time scale, the diurnal cycle imposes its own time scale: con-
ditions for SOC exist mainly at night. In addition, the driving may be insufficiently “slow” in the sense that event 
durations are not much shorter than the wait times between events8,47.

The appearance of turbulence when Ri drops below 1/4 is not instantaneous; the instability grows exponen-
tially at a rate which becomes positive when <Ri 1/4 (approximately) and continues to increase as Ri decreases 
further. This lack of sharpness in the boundary between turbulence growth and decay might lead to a significant 
difference in behavior between forced, stratified shear flows and canonical models of SOC.

https://doi.org/10.1038/s41598-019-39869-w


7Scientific RepoRts |          (2019) 9:3747  | https://doi.org/10.1038/s41598-019-39869-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussion
We have seen that forced, stratified shear flows, such as are found in the oceans and atmosphere, resemble SOC 
by virtue of the instability that sets in at a critical value of the gradient Richardson number. (This contrasts with 
Kolmogorov’s isotropic turbulence, which does not fit the SOC paradigm because the flow is not attracted to a 
critical state). We have also seen that probability density functions of turbulent overturn sizes approximate a 
power law, a second defining characteristic of SOC.

Salehipour et al.48 have shown via direct simulations that events initiated by Holmboe instability exhibit char-
acteristics of SOC internally, organizing the flow so that Ri remains near 1/4 throughout the volume enclosed by 
the event. This does not happen when KH instability initiates the turbulence. The measurements described here 
do not distinguish between those two mechanisms, but Salehipour et al.’s finding suggests that the Holmboe 
mechanism is more important than we have recognized e.g.49, as it could account for the observed SOC 
behavior.

Examination of the “avalanche” mechanism has yielded a side benefit - an explanation for the observed mixing 
efficiency of ocean turbulence. From theoretical considerations, if Ri fluctuates around 1/4, Rf  must fluctuate 
around a somewhat smaller value which empirical observations identify as 0.16 (to within a few tens of percent). 
The more familiar form of the mixing efficiency, Γ = −R R/(1 )f f  is then 0.2. This value is observed over a large 
majority of measured oceanic regimes, an observation that has eluded explanation. We now see that Γ = .0 2 is 
the expected outcome of a threshold mechanism mediated by KH-type instabilities of stratified shear flow.

The connection with SOC suggests two major avenues for future exploration. First, like Kolmogorov’s iso-
tropic turbulence, SOC may provide a useful conceptual picture of sheared, stratified turbulence, in the sense that 
important insights may be gained by looking at departures from the theory. For example, the presence of a time 
scale may reveal a new variant of SOC behaviour. A more complete accounting of turbulent oceanic and atmos-
pheric flows that do and do not exhibit SOC-like characteristics, and why, could be revealing.

Second is the possibility of cross-fertilization. Any advance in earthquake prediction, for example, may sug-
gest a corresponding advance in turbulence parameterization. Schorlemmer et al.50 have shown that, in tectonic 
fault systems, a difference in exponents of the Gutenberg-Richter earthquake distribution41 indicates a difference 
in the stress across the fault. Similarly, the difference between the exponents shown in Fig. 5a may represent a 
difference in forcing regimes. In the future we may describe turbulence in a forced, stratified shear flow as a sto-
chastic ensemble of shear-driven overturns whose size distribution is determined by the influence of the forcing 
on the exponent w.

Data Availability
All data is available by request from the authors.
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