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Host taxon predictor - A tool for 
predicting taxon of the Host of a 
Newly Discovered Virus
Wojciech Gałan 1, Maciej Bąk1 & Małgorzata Jakubowska2

Recent advances in metagenomics provided a valuable alternative to culture-based approaches for 
better sampling viral diversity. However, some of newly identified viruses lack sequence similarity 
to any of previously sequenced ones, and cannot be easily assigned to their hosts. Here we present a 
bioinformatic approach to this problem. We developed classifiers capable of distinguishing eukaryotic 
viruses from the phages achieving almost 95% prediction accuracy. The classifiers are wrapped in Host 
taxon predictor (Htp) software written in python which is freely available at https://github.com/
wojciech-galan/viruses_classifier. Htp’s performance was later demonstrated on a collection of newly 
identified viral genomes and genome fragments. In summary, HTP is a culture- and alignment-free 
approach for distinction between phages and eukaryotic viruses. We have also shown that it is possible 
to further extend our method to go up the evolutionary tree and predict whether a virus can infect 
narrower taxa.

The rise of next generation sequencing (NGS) has made metagenomics a gold standard in microbial ecology. 
Despite its limitations, mainly lack of universal marker genes between viruses, viral metagenomics became the 
main tool for virus discovery1. Metagenomic approaches enabled virus discovery without the need of cultivation. 
On the other hand, the lack of well-specified host-virus cocultures hinder identification of the host of a newly 
discovered virus. To bypass this limitation several experimental methods have been elaborated. For example, lytic 
phages might be discovered and assigned to their host by the use of fosmids from natural communities2. Select 
phages could be associated with their hosts employing phageFISH, but this method requires prior knowledge of 
host gene marker sequences3. Another approach, viral tagging, links wild viruses with their host using staining 
with a fluorescent dye and flow-cytometric sorting but is limited to cultured hosts4.

The process of virus-host linkage is not only carried out with wet laboratory techniques but bioinformatic 
tools become more widely recognized and utilized for that purpose. Select tools focus on searching for prophages 
in bacterial genomes, for example Phaster5, PhiSpy6, Phage_Finder7, Prophinder8. Although in this instance the 
phage-host relationship is obvious, this approach is limited to phages whose genomes are, in some life cycle 
phases, incorporated into the host and whose host has been already sequenced. Therefore, many other compu-
tational approaches to predict the phage’s host exist. The computational methods to predict the host on phylum, 
class, order, family, genus, and species level have been reviewed and benchmarked extensively by Edwards et al.9 
The following subjects were covered in the assessment: host-phage abundance in metagenomes, sequence homol-
ogies resulting from acquisition by phages of some host genome fragments, signatures of previous viral infections 
in CRISPR system, and host’s and phage’s oligonucleotide profiles comparison. Later, Zhang et al.10 reported 
successful application of some machine learning approaches to predict phage’s host on genus level using oligo-
nucleotide frequencies as sequence features - including: logistic regression, support vector machines, random 
forest, Gaussian naive Bayes, and Bernoulli naive Bayes. Comparing phage’s and host’s oligonucleotide profiles 
was leveraged by application of more sophisticated similarity measures by Ahlgren et al.11 Besides investigation 
of phage-host relationship, tools for detection of viral signals in metagenomic data are available and progressively 
extended e.g. VirSorter12, VirFinder13, and MARVEL14.

The aforementioned approaches were applied to investigate host-phage relationship (in our study we use the 
term ‘phages’ to refer to viruses that infect Bacteria and Archaea), but the problem of inferring host of eukaryotic 
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viruses is less studied. In 2010 Kapoor et al. reported the discovery of three novel Picorna-like viruses, and 
announced a new method to infer the taxa of their hosts. The technique, which they named the nucleotide com-
position analysis (NCA), utilizes differences in the nucleotide composition between the viruses infecting distinct 
hosts. Viruses were represented by their mono- and dinucleotide frequencies as well as dinucleotide bias. The 
bias was assessed as a ratio between the observed frequency of a dinucleotide and its expected frequency deter-
mined by multiplying the frequencies of the two constituent mononucleotides. Using the discriminant analysis, 
the group was able to distinguish between the viruses infecting mammals, plants, and insects with 96% pre-
diction accuracy15. Although the application of the method was limited to one, albeit huge, group of viruses, 
it gained interest in the scientific community, and similar methodology was later applied to infer host of some 
(mainly ssRNA) eukaryotic viruses16–21. Unfortunately, the authors have not released any tool that could reinforce 
attempts to predict the taxon of the host of a newly sequenced virus. Some groups have investigated different 
machine learning, alignment, and alignment-free k-mer frequency dissimilarity – based approaches in predicting 
viral host, but their studies were limited only to some groups of viruses11,22–25.

In our study we first aimed to answer a more general question and develop classifiers capable of distinguishing 
between phages and non-phages. Viruses constituting the currently known taxa, to the authors’ best knowledge, 
infect either eukaryotes or Bacteria/Archaea but never both groups. Therefore, this task may seem straightfor-
ward with sole use of BLAST alignment26. However highly divergent viruses may lack sequence similarity to any 
previously sequenced virus27, and new viral genera are still discovered (for example Pandoravirus28). Moreover, 
various biological material, for example fecal samples, contain phages as well as eukaryotic viruses15, thus the 
origin of a sample does not help to determine whether a newly sequenced virus is a phage or not. Here we present 
a novel tool that helps in this respect. Host Taxon Predictor (HTP) is a versatile tool in sense of target group of 
viruses and is able to predict whether a virus infects eukaryotes or Bacteria/Archaea with very high accuracy. The 
source code of HTP is available on https://github.com/wojciech-galan/viruses_classifier.

In the course of the study, viral nucleotide sequences were represented by simple sequence features (mono-, 
dinucleotide absolute frequencies and di-, trinucleotide relative frequencies, see Methods section) and nucleic 
acid type. Four supervised machine learning methods were used to predict taxon of viral hosts. These methods, 
when trained with [object, class] pairs, allow for assigning a class to a previously unseen object. Logistic regres-
sion (LR) looks for the best fitting model to describe the relationship between the class and features of an object, 
and transforms the model’s output using the sigmoid function to return class probabilities29, k-Nearest Neighbors 
(kNN) is an algorithm that classifies an object to a class by a majority vote of its k nearest neighbors30. Quadratic 
Discriminant Analysis (QDA) creates decision boundaries between classes based on a combination of object’s 
features. Then it assigns the object to a class depending on which side of the boundary the object falls31. Support 
Vector Classification (SVC) creates a hyperplane between object belonging to two classes in a way that maximizes 
the margin between the classes. Moreover, it is able to map input features into higher dimensional feature space32. 
SVC is considered one of the best classification methods but is computationally expensive, while LR, QDA, and 
kNN are computationally cheaper but less accurate. We also tested multiple subsets of viral sequence features in a 
search for ‘core’ features that are responsible for infecting a specific group of organisms. Since the very high accu-
racy of phage vs non-phage prediction we aimed to extend our study and create models that are able to distinguish 
viruses infecting seed plants, vertebrates, and arthropods and obtained well-predictive models in the first two 
cases. Further, we used several feature selection approaches to determine which sequence features are the most 
important for classification.

We have also checked HTP’s behaviour on a collection of newly discovered viruses. HTP performs well 
either on full-length sequence or subsequences that resemble the long contigs obtained in metagenomic studies. 
Unfortunately, HTP shows weak performance on shorter subsequences analogous to short contigs or sequence 
reads.

Results
Classifiers designed to discriminate between phages and eukaryotic viruses. Complete viral ref-
erence genomic sequences were downloaded from NCBI Nucleotide on October 11, 2017. For the classification 
purposes, we employed four machine learning techniques (SVC, kNN, LR, and QDA) which are able to assess 
the probability that given object belongs to a distinct class, in this case, Eukaryota-infecting or phage. When 
binarized, the probabilities are transformed to exact class. Performance of such classification techniques could 
be measured in many ways. Accuracy, a percentage of correct predictions relative to all predictions made is the 
simplest measure of classification performance. However, when the cardinality of classes differ significantly, clas-
sification accuracy may be misleading. Let us consider a collection containing 90 objects of type A, 10 object of 
type B and a dummy classifier predicting always A regardless of the object. Despite being completely impractical, 
the classifier would show 90% classification accuracy when assigning objects’ types. In the case of two-class clas-
sification, some methods devoid of this disadvantage exist. Two of them were employed in this study: Matthew’s 
Correlation Coefficient33 (MCC) that measures classification performance taking into account exact classes; thus, 
applicable after threshold-dependent binarization of the class probabilities, and area under the receiver operating 
characteristic curve34 (AUC) which is threshold-independent. Relying on these two parameters, we designed 
a ‘fitness’ measure that maximizes the classifier’s performance for a typical binarization threshold = 0.5 as well 
as classification in a threshold-independent manner, and which does not to vary too much depending on the 
training data (Equation (3), Methods section). AUC values were interpreted as in Roelen et al.35 (AUC = 0.9–1.0 
represents excellent, AUC = 0.8–0.9 good, AUC = 0.7–0.8 fair, and AUC = 0.6–0.7 poor classifier).

The classification task was performed based on the virus nucleotide sequence features (nucleic acid type and 
mono-, di-, and trinucleotide frequencies) only. All viruses were represented as 101 elemental feature vectors 
composed of sequence features. Performance of classifiers trained with various hyperparameter values and feature 
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sets was compared using cross-validation. The cross-validation allows us to select classifiers’ hyperparameters and 
feature subsets exhibiting optimal usability in our classification tasks.

We hypothesized that some of the initial features may introduce noise and lead to declined performance of 
the classifiers. To verify the hypothesis, we applied several techniques to select the features that allow for the best 
classifiers’ performances. In the case of logistic regression, we used Lasso regularization which forces regression 
coefficients corresponding to certain features to be set to zero36. Lasso regularization is not applicable to the three 
remaining machine learning methods. In the case of kNN and QDA, we used genetic algorithms as well as our 
own bottom-up approach. Since SVC is much more computationally expensive than the kNN and the QDA, we 
applied a different feature selection techniques in this case: selecting k best features (SelectKBest) according to the 
highest features’ scores37, recursive feature elimination (RFE)38 Smoothly Clipped Absolute Deviation39 (SCAD), 
and quick permutation test (QuiPT)40. The feature-selection approach possesses also additional benefits - it helps 
to determine ‘core’ features responsible for the ability to infect a specific host and survive inside the host’s body.

Feature sets and algorithm hyperparameters determined in the course of the feature selection step might have 
been fitted to the cross-validation data; therefore, their actual performance needed to be evaluated on the separate 
test set. This set comprised feature vectors that do not belong to the cross-validation data. As shown in the Table 1 
and Fig. 1, all of the mentioned classifiers exhibit excellent prediction capabilities, with AUC exceeding 0.95 
and prediction accuracy reaching up to 94.5%, as measured on the test set. Performance of LR classifier remains 
almost identical after feature selection, kNN’s and QDA’s increased, and SVC’s slightly decreased in terms of AUC. 
These observations supports our hypothesis that, in the case of kNN and QDA, some of the initial features impair 
the performance of the classifiers. Interestingly, in case of kNN, the two feature selection approaches that we 
applied, resulted in the same set of features. On the other hand, genetic algorithms selected features that improved 
classification with QDA in comparison to our bottom-up approach. All of the feature selection approaches that 
we applied to SVC turned up to pick features that show similar classification efficacy in terms of AUC, MCC, and 
accuracy.

Sequence features that allow the distinction between phages and non-phages. The selected fea-
ture subsets are summarized in Supplementary Table ST1. Since two of the feature selection approaches resulted 
in identical feature subsets, the feature subsets were later treated as one. Each of the possible sequence feature 
appeared in at least one feature subset. Two of the features: molecule type (DNA/RNA) and relative GGA fre-
quency were present in all eight feature subsets, while relative frequencies of TG, TAT, TGT, TTA, and TTC in all 
but one subset. Features’ abundances among the selected subsets are summarized in Supplementary Table ST2. 
The probability, that the number of common features obtained by intersecting random feature subsets of the 
same lengths that the ones obtained by feature selection would be equal or greater than two, is ≈3 *10−3, which 
indicates non-random nature of the selected feature subsets (see also Supplementary Fig. SF1). Feature weights 
after feature selection are shown in Supplementary Table ST3. Molecule type, when DNA is encoded as positive 
and RNA as negative number, exhibits strong positive contribution to phages over all of the feature weights. 
Contrarily, relative CGA frequency shows positive contribution to eukaryotic viruses. Interestingly, feature 
weights obtained using various approaches show at least moderate positive correlation (Supplementary Fig. SF2).

Classifiers designed to identify plant-, vertebrate-, and arthropod-specific viruses. Considering 
very good results of applying machine learning approach to distinguish between phages and non-phages, we 
investigated whether the predictive characteristics of our models could be extended to the more distant 
branches of the evolutionary tree. Since the problem of phage-host relationship has been studied extensively (see 
Introduction) we aimed to look for the possibility of distinction between various groups of eukaryotic viruses. For 

Classifier and the method of feature 
selection

Classifier’s performance 
estimated using cross-validation

Classifier’s performance measured on the 
test set

Average 
accuracy

Average 
MCC

Average 
AUC Accuracy MCC AUC

Number of 
features

LR, no feature selection 0.897 0.805 0.946 0.945 0.889 0.984 101

LR, Lasso feature selection 0.909 0.826 0.960 0.945 0.89 0.983 49

kNN, k = 5, no feature selection 0.83 0.697 0.927 0.893 0.794 0.957 101

kNN, k = 9, bottom-up, genetic algorithms 0.935 0.878 0.980 0.936 0.874 0.981 17

QDA, no feature selection 0.920 0.853 0.970 0.887 0.778 0.954 101

QDA, bottom-up 0.972 0.945 0.986 0.918 0.838 0.966 37

QDA, genetic algorithms 0.978 0.957 0.986 0.928 0.858 0.970 28

SVC, no feature selection 0.895 0.801 0.939 0.943 0.885 0.983 101

SVC, RFE 0.921 0.847 0.965 0.926 0.852 0.981 32

SVC, SelectKBest 0.908 0.825 0.953 0.939 0.877 0.984 95

SVC, QuiPT 0.916 0.842 0.956 0.926 0.853 0.979 58

SVC, SCAD 0.918 0.843 0.959 0.934 0.869 0.982 60

Table 1. Comparison of the performance of the classifiers designed to distinguish between phages and 
Eukaryota-infecting viruses. When selecting features for kNN, both of the applied approaches returned the 
same feature set.
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that purpose we decided to use a simplified approach: only SVC and LR due to their optimal results when applied 
to distinguish between phages and non-phages, only two feature selection methods: RFE and Lasso, and average 
AUC instead of ‘fitness’ measure to achieve classifier performance in cross-validation. We performed three sepa-
rate binary classification tasks to identify viruses infecting seed plants, vertebrates, and arthropods. Our approach 
allowed to obtain predictors that exhibited good classification properties (AUC > 0.8) for viruses infecting seed 
plants and vertebrates (Fig. 2, Table 2). Unfortunately, we obtained only poor (AUC < 0.7) classification efficacy 
when we tried to identify arthropod-specific viruses.

Host taxon predictor software performance. We utilized four of our classifiers designed to distinguish 
between phages and non-phages (LR, kNN, QDA, and SVC trained with features selected with Lasso, bottom-up, 
genetic algorithms, and RFE approaches, respectively) to create a Python console application that we named Host 
Taxon Predictor (HTP). HTP’s performance was then evaluated on complete viral genomic sequences that were 
published in NCBI Nucleotide after October 11, 2017 (thus after we had downloaded the initial collection of 
sequences that the classifiers were trained on). Each of the sequences was analyzed to obtain class probabilities. 
Since the classes were highly imbalanced (number of phages was about 10x lower than eukaryotic viruses, see 
Methods), we used two different evaluation metrics: AUC and MCC. As demonstrated on Fig. 3 and Table 3, all of 
available classifiers show very good predictive capabilities, but much better in regard to AUC (>0.97) than MCC 
(>0.68), even considering different ranges of the two metrics.

Encouraged by successful application of HTP’s on complete genomic sequences, we evaluated its performance 
on shorter sequence fragments also. We utilized the same collection of newly published viral sequences to gener-
ate subsequences of lengths 100, 250, 500, 1000, 3000, and 10000, which corresponded to the range of sequence 
read/contig lengths obtained by next generation sequencing and subsequent genome assembly techniques. Select 
viruses exhibit high mutation rate41 and numerous NGS platforms tend to generate reads with relatively high 
error rate42, both mutation and errors are represented in our study by substitutions. The probability of generating 
a subsequence from a sequence was proportional to the sequence length (see Methods). Since phages’ genomic 
sequences tend to be longer than most of the eukaryotic viruses’ ones, number of generated sequences belonging 
to both classes was similar.(Supplementary Table ST4). HTP exhibits good predictive capabilities for long sub-
sequences but fails for shorter ones (Fig. 4, Supplementary Table ST5 and Supplementary Fig. SF3). We did not 
observe any considerable effect of the analyzed substitution rate on HTP’s performance (respective AUC values 
varied by <0.005). LR and kNN tend to show fair (AUC > 0.7) predictive capabilities for at least 500 nucleotide 
long subsequences. SVC exhibits the fair predictive performance for at least 1000 nt but for longer sequences 

Figure 1. Receiver operating characteristics curves calculated on the test dataset for LR, QDA, kNN and SVC 
algorithms, respectively. The phages were treated as a positive class. True Positive Rate (TPR) and False Positive 
Rate (FPR) values essential to compute the AUCs are available in a serialized form at https://github.com/
wojciech-galan/supplementary_materials/blob/master/datasets/ROC_test_set_phages_vs_rest.dump.
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Figure 2. Receiver operating characteristics curves calculated on the test dataset consisting of eukaryotic 
viruses when detecting viruses infecting seed plants, vertebrates and arthropods, respectively. TPR and FPR 
values essential to compute the AUCs are available in a serialized form at https://github.com/wojciech-galan/
supplementary_materials/blob/master/datasets/eukaryotic_viruses_fpr_tpr.dump.

Group of viruses Classifier

Average AUC 
estimated using cross-
validation

AUC 
measured on 
the test set

Viruses infecting seed plants
LR, Lasso 0.744 0.824

SVC, RFE 0.738 0.754

Viruses infecting vertebrates
LR, Lasso 0.772 0.814

SVC, RFE 0.824 0.809

Viruses infecting arthropods
LR, Lasso 0.707 0.664

SVC, RFE 0.737 0.659

Table 2. Comparison of the performance of the classifiers designed to distinguish between different groups of 
eukaryotic viruses.
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outperforms both kNN and LR. QDA shows AUC > 0.7 only for 10000 nt long subsequences but for this fragment 
length outperforms both LR and kNN and also shows best prediction for complete sequences (Table 3). Good 
prediction (AUC > 0.8) is possible only for subsequence lengths ≥ 3000.

Discussion
To the authors’ best knowledge, our study is the first that attempts to distinguish between phages’ and eukaryotic 
viruses’ sequences in an alignment-independent manner. Our solution does not require prior knowledge of a 
host’s sequence. In our study, we aimed to create an application neither limited to any group of viruses nor any 
group of hosts. First, we created classifiers capable of such distinction. The classifiers use only simple sequence 
features (nucleic acid type, mono-, di-, trinucleotide abundances). Feature subsets and classifier hyperparameters, 
resulting in the best distinction, were selected using cross-validation set and final classifiers were later evaluated 
on a separate test set. The test set provided an unbiased evaluation of a final model fit on the training dataset. 
Obtained results indicate excellent prediction capabilities of our classifiers. Along with feature extraction code, 
the classifiers were wrapped in one Python console application that we named Host Taxon Predictor. We chose 
those classifiers’ hyperparameters and feature sets that performed best on cross-validation data.

We later evaluated HTP’s performance on a collection of complete viral genomes that were published in the 
NCBI Nucleotide database after we had created our cross-validation and test sets. The additional inspection con-
firmed that HTP is able to properly classify newly sequenced viruses. We also wanted to investigate, whether HTP 
can make correct predictions on short sequence fragments of different lengths that resemble contigs or reads 
obtained during metagenomic studies. We received good classification results for at least 3000 nt-long, fair for at 
least 500 nt-long, and poor for shorter subsequences.

Being encouraged by the satisfactory results of distinction between phages and eukaryotic viruses, we tested a 
similar approach on higher branches of the evolutionary tree. Since the problem of phage-host relationship is 
studied extensively, we aimed to distinguish between several groups of eukaryotic viruses. We succeeded in rec-
ognizing’ plant and vertebrate viruses, but fell short of identifying viruses that infect arthropodes. In summary, we 
created a proof of concept which functionalities can be potentially extended by machine learning experts through 
plugging new classifiers. To the authors’ best knowledge, our study is the first that manage to distinguish between 
eukaryotic viruses infecting various host taxa and is not limited to only a group or several groups of viruses. Other 
analysis considered only, for example, picorna-like viruses15, influenza virus25, or several groups of RNA 
viruses22,24. An important part of such extension should be not only training a novel classifier but also selection of 
the most appropriate feature sets. As we shown (Table 1), feature selection boosted classifiers’ performances on 

Figure 3. Receiver operating characteristics curves calculated for HTP’s performance evaluation on newly 
published viral genomic sequences. TPR and FPR values essential to compute the AUCs are available in a 
serialized form at https://github.com/wojciech-galan/supplementary_materials/blob/master/datasets/new_
viruses_fpr_tpr.dump.

Classifier AUC MCC

LR 0.977 0.701

SVM 0.988 0.812

kNN 0.986 0.685

QDA 0.995 0.913

Table 3. HTP’s classification performance on newly published viral genomic sequences. AUC and MCC were 
computed separately for all of the classifiers available in HTP.
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cross-validation data. When examined on test set, classifier’s performance slightly decreased for SVC but 
increased in half of the tested machine learning algorithms - kNN and QDA. These results indicate slight overfit-
ting when models were trained with all the available features. It is important to note that the feature selection 
techniques were necessary in our study. The number of feature combinations ∑ ≈ . ∗= ∗ −( )2 54 10k k k1

101 101 !
! (101 ) !

30  
that rise from 101 features greatly exceeds our computational resources. Nevertheless, since two feature selection 
approaches resulted in exactly the same set of features we believe it is reasonable to assume that the utilized meth-
ods converged to a useful solution for this classification task. We also demonstrated moderate to high linear cor-
relation between feature weights for various classification algorithms and feature selection approaches. This 
indicates that generally feature weights are similar, and features discarded by one approach are frequently dis-
carded by another one. Further, the possibility of obtaining two features when intersecting random feature sets is 
very low, which is an evidence of our feature sets being selected in a non-random way.

Better prediction properties for longer oligonucleotides’ abundances have been already shown10 and our pre-
liminary results support this thesis (Supplementary Notes). However, we decided to limit our feature set to 
mono-, di-, and trinucleotides, because the number of features substantially increases for longer nucleotides. 
Inclusion of tetranucleotides to our feature set would increase the number of possible feature combinations to 
∑ ≈ . ∗= ∗ −

2 94 10k k k1
357 357 !

! (357 ) !
107. As a result, some of our feature selection approaches could converge to lower 

local maxima or would become impractical due to computational complexity. Inclusion of hexanucleotides would 
result in a greater number of features than a number of elements in our dataset, thus increase in the risk of 
overfitting.

Nucleic acid type is the most important sequence feature for distinction between phages and eukaryotic 
viruses as it appeared in all of the feature subsets. Having genetic information stored in the form of DNA strongly 
increases the probability of a virus to be classified as a phage. It is not surprising, because most of the known 
phages are actually DNA viruses (only 18 of 975 and 5 of 244 phages in our cross-validation and test set, respec-
tively, are RNA viruses). The underrepresentation of RNA phages is most probably an effect of undersampling of 
viral diversity, rather than a general tendency among Viridae. For example, most of metagenomic studies focused 
on DNA only and could not evaluate novel RNA bacteriophages43. We also checked predictive capabilities of 
nucleic acid type alone (Supplementary Figs SF4 and SF5), but except for the shortest subsequences (≤250 nt) the 
results were much worse compared to the best of our classifiers.

Another feature that appeared in all of the feature subsets was GGA relative frequency. It shows positive 
contribution on a virus to be classified as eukaryotic. We did not find clear explanation of this observation in 
the literature. It is important to note that mononucleotides tend to be less abundant than di- and trinucleotides 
(present in, on average, 2.25 subsets versus 3.94 and 3.64 subsets, respectively) and relative dinucleotide frequency 
more abundant than absolute frequency in the selected feature subsets (4.19 versus 3.89 subsets). TA as well as 
CG underrepresentation was previously reported to be characteristic for various groups of eukaryotic viruses (for 
example44–46) but frequencies of these dinucleotides did not match the most abundant (present in 7 or 8 feature 
sets) sequence features. TA absolute frequency was present in 6 of 8 selected feature subsets, and shows negative 
contribution on classification as a phage. Possible origins of TA underrepresentation across genomes have been 
summarized by Di Giallonardo et al.45, but the importance of this dinucleotide in predicting viruses infecting this 

Figure 4. AUC as a function of subsequence length for no substitution and substitution rate = 0.02. 
Substitution corresponds to mutations and/or sequencing errors. The substitution rate, that we have examined, 
almost does not change HTP’s performance. TPR and FPR values essential to compute the AUCs are available in 
json format at https://github.com/wojciech-galan/supplementary_materials/blob/master/datasets/results_for_
stimulated_metagenomics.json.
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particular group of hosts is yet to be discovered. TAT and TTA relative frequencies, in which TA is included, are 
present in 7 feature subsets, but the relative trinucleotide frequency was designed to be independent from constit-
uent dinucleotides (see Equation (2), Methods). CG relative frequency is present in 5 and absolute frequency only 
in 3 feature sets. These observations suggest that, when classifying viruses using multiple sequence features, indi-
vidual CG and TA frequencies might not be so important, as it was previously implied, and are consistent with 
more recent studies46,47. We did not discover any coded amino acid pattern between the most abundant features.

Although measuring computational performance of various feature selection approaches was out of scope 
of our study, we observed that QuiPT was much faster than other methods. Albeit binarization of the features 
required by QuiPT leads to loss of information, we obtained features similarly useful for classification as with 
other methods. Likewise, our bottom-up feature selection approach resulted in the same (kNN) or similarly per-
forming (QDA) feature sets in addition to being quicker.

Similarly to the authors of VirSorter and VirFinder, we investigated the performance of our software on viral 
genomes published after construction of our original dataset. Since the analysis included about 10 times more 
eukaryotic viruses than phages, MCC is an appropriate metric for classifier evaluation. In such case AUC metric 
may be too optimistic48. MCC and AUC are not directly comparable, because MCC returns values between −1 
and 1, while AUC between 0 and 1. When MCC values obtained during the classification are transformed to [0, 1] 
range, they give more conservative evaluation results than AUC but even in the worst case (kNN, 0.8425) indicate 
a good classifier. Moreover, the transformed MCC values for SVC and QDA indicate excellent classifier (0.906 and 
0.956, respectively) and confirms HTP’s applicability for phage versus non-phage classification.

When analyzing sequence fragments, both classes were similar in number, so the strong class imbalance was 
no longer an issue, and we used only AUC which is one of the most widely used measures for binary classifiers49. 
Similarly, we used only AUC metric when distinguishing between eukaryotic viruses infecting distinct groups of 
hosts.

Popular short-read NGS platforms produce 35–700 base long reads, while the long-read ones - many kilobases 
long42. The reads are later assembled into longer contigs. Unfortunately, HTP cannot be applied to short reads/
contigs, below 500 bases. For longer, 500–1000 base long reads/contigs, we suggest applying HTP with LR and for 
1000–3000 base long ones kNN classifier, but results obtained for <3000 bases should be taken with caution. 3000 
base long reads/contigs allow reliable classification with SVM and QDA classifier but the latter shows slightly 
worse results. Taking into consideration also the results obtained for complete sequences, we suggest using QDA 
classifier for complete or almost complete genomes. When sequencing error rate is expected to be higher than 2%, 
HTP’s result also should be taken with caution. HTP’s weak performance on short sequences may be a result of 
our training procedure. VirFinder’s authors demonstrated relationship between length of the training sequences 
and classification performance when distinguishing between phages’ and hosts’ sequences of different lengths13. 
Classification performance was the highest when the query sequence length matched the sequence length on 
which the model was trained. Our classification task is different, but future training our models on shorter 
sequences may also improve HTP’s classification of short ones. We also consider application of neural networks 
as an interesting direction of research. Application of deep learning architectures in biology receives increasingly 
growing interest and dramatically improved the state-of-the-art in many fields. Prediction of a viral host may 
particularly benefit from use of recurrent neural networks, designed for utilizing sequential data50.

Our application does not detect and remove non-viral sequences. When a researcher expects presence of such 
sequences, they should be filtered out prior to the application of HTP. Some tools capable of performing such 
analysis (VirSorter, VirFinder, MARVEL) exist, but their application is limited to distinction between bacteria 
and phages. VirFinder may potentially misclassify eukaryotic sequences as viral13. Nevertheless, as VirFinder’s 
authors stated, their tool could potentially be trained to distinguish also eukaryotic viruses.

Compositional similarities between viruses’ and their host’s genomes have been reported among phages and, 
to some extent, eukaryotic viruses51–53. The similarities were also confirmed by Roux et al. when analyzing viral 
sequences mined from bacterial and archaeal genomic data54. Ahlgren et al. examined possibility of application 
of different oligonucleotide- based distance/dissimilarity measures to predict the host of a bacteriophage and 
obtained accuracies of 33% at the genus to 75% at the phylum level11. Contrary to the studies, Di Giallonardo et 
al. demonstrated that dinucleotide composition has better predictive power when inferring family of an animal 
virus than its host45. VirFinder’s authors reported successful application of oligonucleotide frequency and logistic 
regression to distinguish between phages and their hosts. Taken together with machine learning approaches to 
predict a host of a virus, that we mentioned in the Introduction section, these results lead to conclusion that viral 
genomic sequences can contain various signals specific for a host and/or a viral family.

Some viruses are not easily culturable, so they could not be discovered in the pre-metagenomic era55, and 
many of the sequences discovered using metagenomic approaches could not be identified as viral, because of 
being distant and unalignable to the already known viruses27. Thus, databases of viral sequences may be biased 
and so our cross-validation and test sets as well as additional collection of newly sequenced viruses. Despite being 
alignment-independent, machine learning approaches to classify viral sequences assume that viruses infecting 
distinct host taxa share certain (oligo-)nucleotide usage pattern concealed at first glance. As new taxons of viruses 
are being discovered it may turn out that the patterns utilized by our classifiers are not shared among large groups 
of newly identified viruses and, therefore, the classifiers would need update.

summary
Constant reduction of sequencing costs has accelerated the pace of viral discovery. Today, new viruses are iden-
tified in environmental samples (water, air, sewage), as well as feces and body fluids. These samples could poten-
tially contain viruses infecting a broad range of hosts. For example, human feces contain viruses infecting humans 
as well as recently eaten plants and animals, and bacteria inhabiting human gut56. In the case of an outbreak of a 
previously unknown disease, it might be very important to distinguish the viruses that could actually infect an 
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organism of interest from contaminants. This applies not only to humans but plants and farm animals as well. At 
their current state, our classifiers are able to distinguish the phages, thus consequently can facilitate elimination 
of vast majority of targets when searching for gut pathogens (the most of human gut viruses are phages57). They 
could also be applied to search for therapeutic phages in human excretions.

Methods
Data collection and determination of host’s lineage. Viral nucleotide reference sequences were 
retrieved from the NCBI Nucleotide database on October 11, 2017. Besides the sequence itself, the files in XML 
format often contain information about viral lineage, natural hosts, nucleic acid type (DNA/RNA), number of 
strands, etc. In the process of metadata verification, the naming convention of hosts was verified and supple-
mented with Latin names in case of a common name usage. In certain cases, if a user submitted a common name 
of the host that appeared ambiguous (e.g. ‘sugarcane’) or was not present in the NCBI Taxonomy (‘mulberry’), the 
proper Latin name was supplied manually. We have developed a script that utilizes the host’s name to extract its 
full lineage from the NCBI Taxonomy database. The host lineage subsequently served to assign a virus to a class 
(‘phage’, ‘eukaryote-infecting’, ‘vertebrates-infecting’, etc.).

Feature extraction. Each sequence was transformed into a vector of viral sequence features: mono- and 
dinucleotide frequencies, relative di- and trinucleotide frequencies (all of which calculated for a single strand) 
and nucleic acid type. To compute relative di- and trinucleotide frequencies we applied the formulas developed by 
Burge et al.58 excluding components related to reverse strands. Thus, relative frequency of XY dinucleotide (ρXY) is 
a ratio between its absolute frequency (fXY) and frequencies of its components, fX and fY:

ρ =
∗

f
f f (1)XY

XY

X Y

while relative trinucleotide frequency γXYZ is built to account for all first- and second order effects:

γ
ρ ρ ρ

=
∗ ∗ ∗ ∗ ∗

=
∗ ∗ ∗

∗ ∗

f
f f f

f f f f
f f f (2)

XYZ
XYZ

XY YZ XNZ X Y Z

XYZ X Y Z

XY YZ XNZ

where XNZ is a trinucleotide, and N in fXNZ and ρXNZ represents any nucleotide. The features were extracted using 
our original script and standardized in order for each feature to have zero-mean and unit-variance.

As a result of the previous procedures, we obtained 5275 feature vectors that could be easily split by lineage 
into two subsets: viruses infecting eukaryotes and those infecting prokaryotes and Archaea, comprising 4056 and 
1219 viruses, respectively. Each vector consisted of 101 elements (4 mononucleotide frequencies, 16 dinucleotide 
frequencies, 16 relative dinucleotide frequencies, 64 trinucleotide frequencies and nucleic acid type).

Data partitioning. For further analysis, a balanced set composed of all non-Eukaryota-infecting viruses and 
an equal number of viruses that infect eukaryotes were prepared. 80% of data (975 viruses from each groups) was 
later used for cross-validation to select best models’ hyperparameters, while the remaining 244 viruses from each 
group were utilized as an independent test set. The goal was to partition the viruses between cross-validation and 
test set so that both sets would contain dsDNA, dsRNA, ssRNA+, ssRNA−, dsRNA viruses as well as retroviruses 
while preventing redundancy between the sets (similar viruses should not appear in both sets). The partitioning 
was performed automatically in regard to viral lineage. The process is described in detail in Supplementary Notes.

Partitioning viruses between cross-validation groups was performed separately for phages and viruses infecting 
eukaryotes. Phages were sorted alphabetically along their lineages and then divided into 5 subsets. The sorting along 
viruses’ lineages prevents redundancy between the subsets of the cross-validation set. The initial dataset contained 
larger number of Eukaryota-infecting viruses. Thus, in order to balance virus categories, a different strategy to select 
a virus to one of the cross-validation splits was employed. The viruses were arranged according to their lineages, and 
a random sample of viruses of a given lineage were selected to the cross-validation set. The probability of picking an 
i-th virus of the given lineage to the cross-validation set P(vi) is determined by the equation = − .

P v e( )i
i0 217

. The 
number 0.217 was earlier determined using the minimize function from scipy.optimize59 to ensure that the number 
of Eukaryota-infecting viruses assigned to the cross-validation set is close to the number of phages assigned to this 
set. Eventually, 975 viruses were picked and divided into 5 subsets just as in the case of phages.

Machine learning – general approach. The cross-validation set, comprising 1950 (80%) viruses, was 
applied to select features and/or model hyperparameters, while the test set (488 viruses) used for model eval-
uation. The 5-fold stratified cross-validation was applied to obtain mean AUC and MCC along with a standard 
deviation of these parameters. The best classifier was then determined as the one with maximal value of ‘fitness’ 
measure

σ σ= + − −fitness MCC AUC /4 /4 (3)MCC AUC

where MCC and AUC stand for mean MCC and AUC, while σMCC and σAUC for their standard deviations. In this 
study, MCC was always computed at 0.5 threshold.

Four machine learning algorithm implementations were employed for classification purposes: logistic regres-
sion, SVC with linear kernel, kNN, and QDA from Python scikit-learn (sklearn) package. For the classification 
without feature selection, default sklearn parameters except for linear kernel in SVC were used (for details, please 
refer to Supplementary Notes).
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Feature selection: logistic regression. Numerous strategies were tried for the selection of the set of fea-
tures that maximizes classifier’s performance. Eventually, the Lasso regularization was used to select best features 
when applying logistic regression. The regularization parameter C ranged from 2^−5 to 2^5 as consecutive pow-
ers of two.

Feature selection: kNN and QDA. In the bottom-up approach, all possible feature combinations of length 
one to three were evaluated. The resulting initial feature sets were sorted according to their ‘fitness’ value. In the 
next step, one of the highest-scoring 100 feature sets was quasi-randomly determined as the basis for appending 
subsequent features. Our preliminary studies demonstrated that randomness was essential for the algorithm not 
to converge too early to a local ‘fitness’ maximum. Assuming l is the length of the feature set, in the next step all 
possible feature sets of length l + 1 were generated, and their ‘fitnesses’ were evaluated. For each of new feature 
sets (length l + 1), if any of its subsets of length l had not already been evaluated, it was also appraised during this 
step. Then, again, all sets were sorted according to their ‘fitness’ value, and the process was repeated, starting with 
the second step until no new feature set appears in the 100 highest-scoring ones during consecutive 1000 rounds. 
The algorithm along with more detailed description is illustrated in the Supplementary Fig. SF6. In the case of 
kNN feature selection with bottom-up approach was performed independently for k = 1, 3, 5, 7, and 9.

In second approach, genetic algorithms (GA) with tournament selection implemented in the Python DEAP 
package60 were used. Each feature set was represented as an ordered vector of 101 binary attributes, while each 
attribute corresponds to the presence/absence of a given feature in the feature set. The grid search strategy was 
adopted to run the feature selection on a small population of 100 individuals (binary vectors) to choose best GA 
settings. Following an analysis of initial run results, the grid of GA settings was extended in the most promising 
directions. Finally, the best settings to run GA on bigger population of 500 individuals was chosen. In each case, 
evolution was terminated after 200 generations or when all individuals were identical. Each analysis was repeated 
five times, and the individual that maximizes the ‘fitness’ measure was selected for further analysis. GA setup is 
described in detail in Supplementary Notes.

Feature selection: sVC. In the case of SVC, different feature selection techniques were applied: selecting k 
best features (SelectKBest from scikit-learn) - according to the highest values for the ANOVA F-value between a 
label and a feature with k ranging from 1 to 101, RFE from scikit-learn61, SCAD from penalizedSVM R-package62, 
and QuiPT from biogram R-package40. All of analyses were performed using SVC with linear kernel and equal 
range of C parameter values, as in the case of logistic regression with Lasso regularization. In process of selecting 
features with biogram, only those with p-value < 0.01 were considered.

Evaluation of the final models. Following the selection of the best model hyperparameters and/or the 
best feature sets using cross-validation, the final model was trained with all data from the cross-validation set and 
evaluated on the test set. To be implementation-independent, the evaluation was performed exclusively using 
sklearn61. For the tested models, we computed MCC, classification accuracy and AUC, along with a false positive 
rate (FPR) and a true positive rate (TPR) for given thresholds.

Comparing our feature selection approaches with selecting random features. A simple set inter-
section was made to determine common features among selected feature vectors. To confirm that common fea-
tures did not originate from random selection, feature subsets comprising of arbitrary features were generated 
and an intersection of subsets made. Numbers of features in these subsets were equal to the cardinalities of the 
original feature subsets. This action was repeated 106 times and, as a result, a distribution of numbers of common 
elements in the intersections was obtained. The way of creating the distribution imply full independence between 
contents of particular subsets.

Pearson correlation coefficients between features weights along with 2-tailed p-values were computed with 
scipy59.

Distinction between viruses infecting seed plants, vertebrates, and arthropods. To check 
whether it is possible to distinguish between several groups of eukaryotic viruses utilizing the same sequence 
features as in the previous analyses, a following approach was used. The set of 4056 eukaryotic viruses was 
divided into four groups: those infecting seed plants, vertebrates, arthropods, and other viruses (infecting 
fungi, simple deuterostomes, etc.), consisting of 1147, 1175, 1143, and 591 viruses, respectively. Subsequently, 
viruses were partitioned between cross-validation and test sets similarly as in previous analyses. No balancing of 
classes was implemented, i.e. every eukaryotic virus was certainly assigned to either cross-validation or test set. 
Finally, the test set consisted of about 23% viruses (270, 371, and 208 viruses infecting seed plants, vertebrates, 
arthropods, respectively and 78 other eukaryotic viruses, in total 927). The partitioning is described in detail 
in Supplementary Notes.

The host prediction was transformed to three binary classification tasks, and we checked separately for virus’ 
target group (seed plants, arthropods, vertebrates) or lack of it. Feature selection with Lasso regularization (logis-
tic regression) and recursive feature elimination (linear SVC) was performed similarly as for distinction between 
eukaryotic viruses and phages with the use of AUC in place of ‘fitness’ measure.

Viral Feature extractor and Host taxon predictor software. Scripts for downloading viral genomic 
sequences, extracting viral and host lineage, and transforming sequences into features, written in Python 2.7, 
were merged together in one package named Viral Feature Extractor.

For all of machine learning algorithms (LR, QDA, kNN, SVC), hyperparameters and feature sets exhibiting the 
highest ‘fitness’ on cross-validation data were adopted to train the final classifiers using all the feature vectors from 
cross-validation as well as test set. The classifiers were wrapped with feature extraction functions in one Python 
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console application called Host Taxon Predictor. The application accepts algorithm name, nucleic acid type, and 
raw or fasta-formatted viral genomic sequence and returns either the exact class of virus (Eukaryota-infecting or 
phage) or class probabilities.

Host taxon predictor evaluation on new viruses. A new collection of viral nucleotide reference 
sequences was downloaded on August 27, 2018 and hosts’ lineages were determined as described in Data collec-
tion and determination of host’s lineage sections. Host’s lineages for 837 new viruses were determined, of which 
756, 72, and 9 infects Eukaryota, Bacteria, and Archaea, respectively. The viral sequences were later analyzed by 
HTP to obtain class probabilities and compute AUC and MCC. Identifiers of the viral sequences are available at 
https://github.com/wojciech-galan/supplementary_materials/blob/master/datasets/new_viruses_ids.

Host taxon predictor evaluation on sequence fragments. The newly downloaded sequence collec-
tion was used to evaluate HTP’s performance on sequence fragments. The generation of sequence fragments 
datasets was attempted with WGSIM simulator (https://github.com/lh3/wgsim) which crashed with fragment 
length > 1000 nt. The challenge was addressed by creation of authors’ own script which is available at https://
github.com/wojciech-galan/supplementary_materials/blob/master/code/my_read_simulator.py. The script was 
applied to produce sequence fragments of lengths s and base substitution rate r, where s equals to 100, 250, 500, 
1000, 3000 or 10000, and r equals to 0 or 0.02. The sequence fragments were generated randomly. Probability of 
generating a subsequence from a sequence of length S was proportional to S-s + 1 for S-s ≥ 0, so a subsequence 
could be generated only if the subsequence is supposed to be no longer than the original sequence. Next, sequence 
fragments were analyzed with HTP as described above.

Data Availability
Viral Feature Extractor and Host Taxon Predictor are available as git repositories at https://github.com/wo-
jciech-galan/Viral_feature_extractor and https://github.com/wojciech-galan/viruses_classifier, respectively. To 
support the idea of transparency in science and allow everyone to reproduce our results we have released also 
our datasets as well as scripts that we used to obtain particular results. They are available on https://github.com/
wojciech-galan/supplementary_materials. Stable versions of these repositories are accessible on zenodo under 
https://doi.org/10.5281/zenodo.2531529, https://doi.org/10.5281/zenodo.2531545, and https://doi.org/10.5281/
zenodo.2531541, respectively.
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