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Dynamic Concatenation of 
Quantum Error Correction in 
Integrated Quantum Computing 
Architecture
Ilkwon Sohn1,3, Jeongho Bang2 & Jun Heo1

Resource overhead problem caused by concatenation in quantum error correction (QEC) is of significant 
importance for the realization of fault-tolerant quantum computation (FTQC). To attack this problem, 
we propose a novel scheme by considering integrated FTQC architecture where the concatenation 
level is controlled dynamically; i.e., less (or more) concatenation levels are imposed by good (or poor) 
performance gates—we call this scheme “dynamic concatenation” in this sense. Such a dynamic 
concatenation is realizable in an integrated structure of FTQC, as the information of the concatenation 
can be communicated between classical system elements (e.g., compiler and system organizer) and 
the logical qubits in real-time. We derive the effective lower and upper bounds of the length of gate 
decomposition in order to achieve the practical advantage, namely of reduction of the overall operation 
time. By considering two non-trivial examples, it is shown that the aforementioned advantage can 
indeed be achieved in the presented scheme. Our result also provides an important scientific message, 
i.e., the interplay between “classical” and “quantum” can be helpful in QEC.

Recently, our forefront agenda of quantum computation is to establish efficient quantum error correction (QEC) 
schemes1–4. QEC is applied to correct various (quantum) errors for faithful quantum computation. To accom-
plish this, most QEC schemes require additional resources such as, ancillary qubits and gates for extracting and 
correcting the error without altering quantum properties on main computing qubits5–7. Such an overall register 
of qubits, including those for QEC, is usually called a logical qubit4. Typically, the ability to correct errors can be 
improved in a recursive way, particularly to achieve fault tolerance3. For example, a bundle of logical qubits can be 
defined as the second level of a logical qubit, hence any higher level of a logical qubit. This is called concatenation 
scheme2. However, this inevitably increases computational and/or time resources exponentially. Furthermore, 
non-transversal gates (e.g., for arbitrary phase rotation, or T gates) make the aforementioned problem worse8. 
Thus, it is crucial to solve such a resource-overhead problem toward realization of universal quantum computa-
tion (QC).

To solve the problem described above, many studies have been conducted in various perspectives. For exam-
ple, the quantum circuit for QEC can directly be optimized6,9–11. There have been many works on the overhead 
problem for magic-state distillation12–18. Conversion between QEC codes having different transversal gates has 
also been studied19,20. Quite recently, an idea to use different QEC codes in each concatenation has been sug-
gested21–24. However, such approaches have focused rather on quantum, although many classical elements should 
also be casted for universal QC25, as described later.

With such background, we start to design an integrated architecture for universal QC26–31, consisting of vari-
ous working layers, i.e., quantum compiler32–35, system organizer25, logical and physical qubits. Such an architec-
ture that covers both software and hardware has been commonly used in classical computation36. Considering 
this architecture, we suggested a scheme, named “dynamic concatenation (DC)”, for lower-overhead. The basic 
idea is to arrange concatenation level, dynamically, according to gate operation that the computer is trying to use. 
This scheme is intuitively understandable: i.e., with lower-performance (or higher-performance) gates, more (or 
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less) requirements of concatenation level would be imposed. Since the gate-performance would strongly depend 
on the operation to be realized, such an idea is quite natural and reasonable. For example, it is generally harder 
to implement multi-qubit gates, i.e., correlating gates, than single-qubit gates37–40. We derive the effective lower 
and upper bounds of the gate-decomposition length that allow us to achieve the practical advantage, namely 
of reduction of the overall operation time. We then apply our DC scheme to the nontrivial examples: quantum 
Fourier transformation and ground state estimation algorithm on five (logical) qubits. By using Steane code41, we 
show that the aforementioned advantage can indeed be achieved. We believe that our approach will bring forward 
practical advantages and provide intuition on how classical-quantum interplay can improve the QEC.

Results
Integrated QC architecture.  We will briefly describe our integrated architecture for QC consisting of the 
following working layers: (1) quantum compiler, (2) system organizer, (3) logical qubits, and (4) physical qubits 
(See Fig. 1a). In such an architecture, the process of QC runs as follows. Firstly, let us start with an operation or 
kernel (e.g., quantum Fourier transform) in a program. The information of the operation is delivered to the first 
working layer, i.e., quantum compiler. The main role of the quantum compiler is to decompose the delivered 
operation into a proper set of universal (logical) gates. The sequence of the decomposed gates is called “assembly 
code.” The quantum compiler also computes the so-called maximum tolerable error rate (MTER) ετ

34. Here, note 
that the error of every decomposed gate should be lower than ετ. The evaluated ετ and assembly code are stored 
in a classical memory M. Then, the system organizer manages the whole system and controls logical qubits using 
the aforementioned information. The concatenation level required to complete the operation is typically evalu-
ated in this working layer, system organizer. Conventionally, the evaluation of the required concatenation level is 
made, particularly depending on the lowest-performance gates in the whole decomposed set. However, the eval-
uation is done group-by-group in the set, i.e., dynamically, in our scheme (as described later). The block of logical 
qubits is responsible for implementing the logical gates assigned by the system organizer. This logical-qubit block 
also decomposes each logical gate again into native gates implemented at physical hardware level. Here, by “native 
gate” we mean that the gate is native to the physical hardware31. We note that every information used in each 

Figure 1.  Schematic picture of our integrated QC architecture and dynamic concatenation. (a) An integrated 
QC architecture. The quantum compiler decomposes a quantum algorithm into an assembly code. The assembly 
code and the maximum tolerable error rate ετ are stored in a classical memory. The system organizer manages 
and controls logical qubits. In particular, it evaluates the concatenation level required to run the algorithm. 
The block of the logical qubits performs QC according to a set of logical gate operations. The physical-qubit 
block is responsible for the control of native gates at physical level. (b) A simple illustration of our dynamic 
concatenation (DC) scheme. By using our DC scheme, we can reduce concatenation level of a (logical) qubit 
from l to l − s. Of course, the additional processes (denoted as red boxes) for decoding and encoding should 
be adopted to complete the DC and it imposes the extra cost. Nevertheless, it is expected to achieve practical 
advantage, reduction of the overall operation time, for a sequence within a length, say N, of single (logical) 
qubits. Here, the effective lower and upper bound of N, which enable us to achieve the aforementioned 
advantage, is derived theoretically (see the main text).
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working layer are communicated through classical channel , such as, I/O bus. Such an architecture is quite com-
mon in classical (and also quantum) computation36.

Dynamic concatenation (DC) scheme.  In a typical scheme of QEC, the level of concatenation would be 
evaluated excessively large sometimes, because the evaluation is made based on the lowest-performance gates in 
the entire process. This necessarily causes a waste of computational resources. For example, let us consider that 
we meet a long series of single-qubit (decomposed) gates and a few two-qubit gates in a compilation. Here, noting 
that in general the single-qubit gates have lower error rates compared to the multi-qubit gates, it seems unrea-
sonable to fix the concatenation levels based on the lowest-performance (mostly, two-qubit) gates. Thus, here we 
suggest a novel scheme, named dynamic concatenation (DC), that is to apply the concatenation group-by-group 
of the gates in the middle of the process. We expect that this DC scheme allows us to achieve a practical advantage 
and can be realized without spending too much extra cost, particularly when a long series, say N, of single-qubit 
gates is encountered in the assembly code.

Then, we derive the range of N in which the DC effectively works. Firstly, let us assume that a concatenation 
level is reduced from l to l − s. Here, s is the number of concatenations lowered by the DC. Then, by using the 
condition that the gate errors should be less then ετ, we can write the upper bound of N, such that
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Now, we turn to the lower bound of N. This lower bound can be obtained by assuming the reduction of the 
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where T1Q is the required time for single-qubit gate operation; TD and TE are the time to complete the additional 
decoding and encoding, which are also adopted for the analysis of the extra cost of the DC (in terms of the time 
delay), together with −FD
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 is close to 1. Consequently, we can derive the effective range of N enabling the practical advan-
tage, namely of the fidelity enhancement and/or reduction of the operation time:
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Analyzing further, we draw the graph of log N with respect to log ετ and −Flog Q
l s

1
( ) by using Eq. (7) (see Fig. 2). 

In particular, we specify the region of ετ
−F(log , log )Q

l
1
( 1)  which can bring the above-described advantages by the 

DC. Such a specification can offer a better intuition of how our DC works. For example, let us consider the hypo-
thetical values of single-qubit and two-qubit gate performances at l − 1 concatenation level: −
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1
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l( ) 11 (red point, denoted A). Here, let ετ to be −
10 8. In a conventional scheme, 

the level l of the concatenations required to complete a QC has been determined only for the lowest-performance 
gates, i.e., the point A. However, in our DC scheme, the system organizer controls the concatenations dynamically, 
when a series N of single-qubit gates is met in an assembly code and its length N is satisfied with Eq. (7). In this 
case, the concatenation is determined dynamically, moving between the points A and B. This allows the gain s to 
be achieved by our DC scheme.

Analysis for five-qubit quantum Fourier transform.  As an example, we consider five-qubit quantum 
Fourier transform (QFT). Firstly, we draw a circuit to run QFT at the program level (see Fig. 3a), where the 
Hadamard H and the conditional phase-rotation (i.e., π

2
, π

4
, π

8
, and π

16
) gates are employed. The last two gates are 

SWAP42. Here, we omit the parts of initial states ⊗0 5 and measurements at the end. These operations would be 
programmed as a set of commands by a user. The quantum compiler decompose these operations into the logical 
gates, i.e., H, S, T, RZ(ϕ) ϕ = ± ± ±π π π( ), ,

8 16 32
, and controlled-NOT (CNOT) gates (as in Fig. 3b), where RZ(ϕ) 

Figure 2.  A density-plot of the effective N with respect to −F Q
l

1
( 1) and ετ (on a log-log scale). A colored region 

indicates the length N that allows us to lower the concatenation level, satisfying Eq. (6). This graph also provides 
a useful intuition about how our DC scheme works. For instance, consider two points: −

F 10Q
l

1
( ) 13 (blue, 

denoted B) and −
F 10CNOT

l( ) 11 (red, denoted A) in the line of ετ
−

 10 8. The concatenation level is 
conventionally determined by the lowest performance gates, i.e., the point A. However, in our DC scheme, the 
concatenation can be controlled dynamically between from A to B, depending on the number N of decomposed 
gates, providing the advantage (see the main text).

Figure 3.  (a) n = 5 QFT circuit. (Initial states (|0〉) are omitted. Time progresses from left to right.) A total of six 
controlled-T gates and controlled-RZ gates in this circuit, which generate 10 sequences of the single-qubit gates 
that cannot be processed in parallel. (b) Decomposed QFT circuit. RZ(ϕ) ϕ = ± ± ±π π π( ), ,

8 16 32
 will be 

decomposed into 250 single-qubit gates each in this circuit. Thus there are 18 sequences RZ(ϕ) of the single-
qubit gates. However, eight of them are processed in parallel and 10 sequences affect the total processing time.
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is the arbitrary ϕ-rotation gate; S = RZ (π/2) and T = RZ (π/4). Here, we note that RZ(ϕ) is decomposed into, 
approximately, more than 250 of H, T, and S gates again35,43. For simplicity of analysis, we do not consider the 
decomposition of the last two SWAPs. Actually, SWAP operation would be more primitive, e.g., in a quantum-dot 
system. The quantum compiler should also evaluate MTER ετ. In the evaluation, we assume ετ

−
 10 12 and the 

threshold value . × −
p 2 7390 10th

5 of Steane code34,44. We assume further that the performance of the 
single-qubit gate is better than that of the two-qubit controlled gate45,46. Lastly, we do not take into account the 
measurement and magic-state usage to calculate the gate operating time. Thus, our calculations has no influence 
on the generality of the results, because high-level gates require a longer time to create a magic-state17 and a 
higher level of logical qubit also requires more syndrome measurements.

On the basis of the analysis, it is found that three concatenation levels are required to complete the 5-qubit 
QFT in a conventional QEC. However, in the case of using our DC scheme, only two concatenations are sufficient 
for 0 < N ≤ 91. In particular, we can prove that the overall operation time can be reduced (more than 20 times), 
such that

. × ≥ . ×− −
 T T3 5331 10 1 4766 10 , (8)CC DC

2 3

where TCC and TDC are the operation time for conventional scheme and our DC scheme, respectively. This result 
is intuitively understandable, i.e., more (or less) concatenations are imposed for lower (or higher) performance gates, 
such as two-qubit controlled gates (or single-qubit gates). Therefore, we expect that such a speed-up will be more 
conspicuous for large-qubit QFT, which is decomposed into a huge number of single-qubit gates (H, T, and S).

Analysis for quantum ground state estimation.  We then consider the ground state estimation (GSE), 
which is an algorithm for finding the lowest energy (or state) of a Hamiltonian. The polynomial time quantum 
GSE runs based on the QFT and quantum phase estimation, where the energies are usually estimated for the 
number m of wave functions (called molecular weight) with b-bit of precision. Here, we consider a molecule 
having m = 40 with b = 3 bit of precision. Subsequently, we have ε . ×τ

−
 7 0353 10 12, which is evaluated by 

ScaffCC compiler34. In such a setting, the (logical) gate performance can be calculated on each level of concatena-
tion. The results are listed in Table 1. Based on these results, we can infer that, in a conventional QEC scheme, 
three concatenations are required to complete quantum GSE, because the error rate of the two-qubit gate cannot 
reach ε . ×τ

−
 7 0353 10 12 until level-3 of concatenation. However, if we consider only single-qubit gate, it is 

sufficient to adopt level-2 of concatenation. Thus, our DC scheme will bring speed-up, preventing waste of the 
computational time and resource. Actually, our results reveal that we could reduce one-level of concatenation.

Discussion
We have suggested a novel QEC concatenation scheme to reduce the overall operation time. Our main idea was 
to evaluate the concatenation, dynamically. The presented scheme was named “dynamic concatenation (DC)” in 
this sense. The presented scheme was expected to work effectively for a series N of decomposed single-qubit (log-
ical) gates, providing the aforementioned advantage. The effective range of N was derived theoretically. We then 
applied our DC scheme to the computation of quantum Fourier transform and quantum ground state estimation 
on five (logical) qubits. As a result, we explicitly showed the expected advantage. Indeed, such an advantage could 
be utilized and enabled by the integrated QC architecture that consists of quantum-classical hybridized working 
layers. In this sense, our work also implies an important scientific message, that is, a proper interplay between 
“classical” and “quantum” would be very important for the realization of the universal QC. We believe that the 
presented scheme could be improved more by incorporating other useful schemes.
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