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sending-or-not-sending twin-
field quantum key distribution in 
practice
Zong-Wen Yu1,2, Xiao-Long Hu1, Cong Jiang1, Hai Xu1 & Xiang-Bin Wang1,3,4,5

Recently, the twin field quantum key distribution (TF-QKD) protocols have been investigated 
extensively. In particular, an efficient protocol for TF-QKD with sending or not sending the coherent 
state has been given in. Here in this paper, we present results of practical sending-or-not-sending (SNS) 
twin field quantum key distribution. In real-life implementations, we need consider the following three 
requirements, a few different intensities rather than infinite number of different intensities, a phase 
slice of appropriate size rather than infinitely small size and the statistical fluctuations. We first show 
the decoy-state method with only a few different intensities and a phase slice of appropriate size. We 
then give a statistical fluctuation analysis for the decoy-state method. Numerical simulation shows 
that, the performance of our method is comparable to the asymptotic case for which the key size is 
large enough. Our method can beat the PLOB bound on secret key capacity. Our results show that 
practical implementations of the SNS quantum key distribution can be both secure and efficient.

Quantum key distribution (QKD) allows two parties, Alice and Bob, to share unconditional secret keys based on 
the laws of quantum physics1–6, even in the presence of an eavesdropper, Eve. However, in real-life implemen-
tations of QKD, its practical security is still questionable due to the device imperfections, such as the imperfect 
source7–9 and detectors. Fortunately, by using the decoy-state method10–25, it has been shown that the uncondi-
tional security of QKD can still be assured with an imperfect single-photon source. To avoid the detector side 
channel attacks, the measurement-device-independent QKD (MDI-QKD) was proposed26,27. The decoy-state 
MDI-QKD can remove all detector side-channel attacks with imperfect single-photon sources28–33.

With the developments10–44 in both theory and experiment, QKD is more and more hoped to be extensively 
applied in practice, though there are barriers for doing so. Among them, the transmission loss of photons for long 
distance QKD has become the major obstacle in practical implementations. Very recently, a milestone break-
through was made under the name of twin-field quantum key distribution (TF-QKD)45 for long distance QKD 
with a key rate scales in square root of channel transmittance. To offer the information-theoretic-security, a num-
ber of upgraded variants were then proposed1,46–48. In particular, an efficient protocol for TF-QKD with sending 
or not sending the coherent state has been given in ref.1. In the sending-or-not-sending (SNS) protocol1, Alice and 
Bob do not take post selection for the bits in Z basis (signal pulses) and hence the traditional calculation formulas 
directly apply. Also, it is fault tolerant to misalignment errors in the long distance single-photon interference.

In practice, we need consider the situations with a few different intensities rather than infinite number of 
different intensities, a phase slice of appropriate size and the statistical fluctuations. It should be interesting to 
see whether the advantage in the twin-field QKD still holds with these conditions in practice. In this paper, we 
proceed further and analyse the performance of the SNS TF-QKD under the above real-life assumptions and we 
show that the advantage in distance and key rate still holds..

First, we reveal the decoy-state method with only a few different intensities and a phase slice of appropriate 
size to estimate the lower bound of the yield and the upper bound of the phase-flip error rate for the single-photon 
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state. Furthermore, we also need to consider the statistical fluctuations. In order to improve the results, the 
instances for basis unmatched are also used to estimate the lower bound of the yield for the single-photon state, 
such as in Eq. (1).

Results
The decoy-state method with a few different intensities and a phase slice of appropriate 
size. In the four-intensity decoy-state SNS protocol, Alice and Bob randomly choose the X-window (decoy 
pulses) and Z-window (signal pulses) to send or not to send a phase-randomized coherent pulse to an untrusted 
party, Charlie, who is expected to perform interference measurement. The protocol is detailed below.

 1. Alice and Bob repeat Steps 2–3, N times. All the public announcements by the legitimate users Alice and 
Bob are done over an authenticated channel.

 2. Alice and Bob randomly choose X-window and Z-window with probabilities pX and 1−pX respectively. 
Alice (Bob) prepares and sends the decoy pulses in her (his) X-window. Explicitly she (he) randomly 
choose one of three sources ραi

 with probability pi for i = 0, 1, 2, where ρ = | 〉〈 |α 0 0
0

 is the vacuum source, ρα1
 

and ρα2
 are two phase-randomized coherent sources with intensity μ1 and μ2 (μ1 < μ2) respectively. In 

Z-window, Alice (Bob) puts down a bit value 1 and prepares and sends the phase-randomized coherent 
state ραz

 with probability pz, or puts down a bit value 0 and sends nothing else, i.e., sends the vacuum pulse 
with probability 1−pz.

 3. Charlie measures the incoming signals and records which detector clicks. When the quantum communi-
cation is over, he publicly announces all the information about the detection event. The situation when one 
and only one detector (detector 0 or detector 1) makes a count is denoted as an effective event. Alice and 
Bob collect all the data with effective events and discard all the others.

 4. Alice and Bob announce the basis information (X-window or Z-window) firstly. Then they announce the 
bit values and phase information corresponding to the effective events when Alice or Bob choose X-win-
dow. With these information, Alice and Bob obtain the observable Njk(j, k = 0, 1, 2, z) being the number of 
instances when Alice and Bob send state ραj

 and ραk
 respectively. Correspondingly, the lowercases njk are 

used to denote the number of effective events. The yields can be defined as Sjk = njk/Njk. Explicitly, we have 
N11, N22 and Nzz are the number of instances when Alice and Bob send state ρα1

, ρα2
 and ραz

 respectively. 
Furthermore, In order to improve the results, the instances for basis unmatched are also considered and
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where p0 = 1−p1−p2 is the probability to send a vacuum pulse in X-window, =N p NX X
2  is the number of 

instances when both Alice and Bob choose X-window and NXZ = pX(1−pX)N is the number of instances 
when Alice chooses X-window and Bob chooses Z-window.

 5. Define two sets Δ+C  and Δ−C  that contain the instances when both Alice and Bob send ρα1
 in X-window with 

the phase information θA and θB falling into the slice |θA−θB| ≤ Δ/2 and |θA−θB−π| ≤ Δ/2 respectively. The 
number of instances in Δ±C  are =

π
Δ Δ±

N N11 2 11. The number of effective events corresponding to Δ±C  are 
denoted by Δ±

n11
0  and Δ±

n11
1  for detector 0 and detector 1 respectively.

 6. With these observables, Alice and Bob can estimate the lower bound of n1 and the upper bound of e ph
1  by 

using the decoy-state methods shown below. Then the post-processing can be performed and the final key 
length is

= − −N n H e fn H E[1 ( )] ( ), (2)f
ph

t Z1 1

where Nf is the number of final bits, n1 is the number of effective events caused by single-photon states in Z-basis 
when Alice decides sending while Bob decides not sending or Alice decides not sending while Bob decides send-
ing, e ph

1  is the phase-flip error rate for instances of n1, = − − − −H p p p p p( ) log ( ) (1 )log (1 )2 2  is the binary 
entropy function, f is the correction efficiency, nt is the number of effective events when both Alice and Bob 
choose Z-window and EZ is the corresponding bit-flip error rate.

Alternatively, we also have the equivalent formula for key rate per time window as shown in the section 
Methods.

In the above, for conciseness, we have omitted those mismatching time windows in a real protocol. For exam-
ple, when Alice commits to a decoy window and Bob commits to a signal window. Although the events of these 
windows cannot be used for the final key distillation, the data for heralded events from these time windows can 
be used in the decoy-state analysis. The bit value encoding is defined by Alice or Bob’s decision on sending or 
not-sending in a signal window. As shown in ref.1, we can relate the bit values with local ancillary states in the 
virtual protocol. Clearly, there isn’t any definition confusion47 in the SNS protocol1.

A tricky point in the SNS protocol is that the traditional decoy-state method can still work. In this protocol, 
the random phase information of Z-windows are never announced therefore we can regard pulses of Z-basis 
as classical mixture of different photon number states properly. Note that, very importantly, the random phase 
information in Z windows can never been announced because otherwise, the elementary concepts such as the 
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number of single-photon counts are illy defined. But, as shown in details in ref.1, the random phase information 
in X-windows can be post announced. Because we only want to verify the phase-flip error rate of Z windows. 
The phase-flip rate of Z windows is an objective fact, once it is verified, it is there. The post announced phase 
information does not change this objective facts because no matter how Eve takes action with the post announced 
information, the action is just Eve’s local action which can not make a difference to anything detectable to Alice 
and Bob.

Numerical simulation. In this section, we present some results of the numerical simulation. In order to 
show the efficiency of our method, without any loss of generality, we focus on the symmetric case where the two 
channel transmissions from Alice to Charlie and from Bob to Charlie are equal. We also assume that Charlie’s 
detectors are identical, i.e., they have the same dark count rates and detection efficiencies, and their detection 
efficiencies do not depend on the incoming signals. The results for the asymmetric case will be considered in the 
coming work. We shall estimate what values would be probably observed in the normal cases by the linear models 
as previously. The values of the experimental parameters used in the simulations are listed in Table 1.

We optimize all parameters, pX, p1, p2 pz, μ1, μ2, μz and Δ by the method of full optimization. The results of 
optimized key rate with different N by four-inensity decoy-state method and the result with theoretical PLOB 
bound49 are shown in Fig. 1. In it, we use the red solid line to denote the asymptotic results with infinite number 
of pulses. The optimal key rate with N = 1014, N = 1013 and N = 1012 are shown by the blue dotted line, the green 
dash-dot line and the black dashed line respectively. The result with theoretical PLOB bound is plotted by the 
thick magenta solid line. The numerical simulations show that the finite-size SNS protocol can overcome the 
PLOB bound. In Fig. 2, we plot the final key rates by the four-intensity and the three-intensity decoy-state meth-
ods with N = 1012. We can see that the optimal key rates for the three-intensity decoy-state method is nearly equal 
to the results for the four-intensity decoy-state method when we are aim for practically useable key-rates (such 
as 10−6 per-pulse). In Fig. 3, we plot the optimal value of Δ for different distances with N = 1012 by four-inensity 
decoy-state method. With this, we know that the optimal value of Δ are changed with different communication 
distance between Alice and Bob. The optimal value of Δ monotonically increases, to reduce the impact of statisti-
cal fluctuations, until it reaches a peak where the optimal key rate becomes decreasing dramatically and the error 
rate has a greater impact on the key rate than the statistical fluctuation.

Also, according to the observed data there36, we use a linear loss model to estimate the actual loss in the 
experiment for 404 km of ultralow-loss optical fiber (0.16 dB/km). Assuming the same device parameters 
(pd = 7.2 × 10−8, ηd = 0.5525, f = 1.16, ε = 10−10, ea = 2% and N = 6.0 × 1014), we make the optimization by using 
our SNS protocol with the four-intensity decoy-state method shown above. We obtain a final key rate of 141 bit 
per second (bps), which is more than 4.4 × 105 times higher than the reported experimental result, 3.2 × 10−4 
bps. Similarly, assuming the same device parameters (pd = 4.0 × 10−11, ηd = 0.5, f = 1.1, ε = 5.0 × 10−11, ea = 2% 

pd ηd f ε ea

1.0 × 10−10 50% 1.1 1.0 × 10−10 15%

Table 1. List of experimental parameters used in numerical simulations. pd: the dark count rate, ηd: the 
detection efficiency of all detectors, f: the error correction inefficiency, ε: the security bound considered in the 
statistical fluctuation analysis, ea: the misalignment error.
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Figure 1. Optimal key rate (bits per pulse) as a function of the distance by 4-inensity decoy-state method. 
The asymptotic result is shown in the red solid line. The blue dotted line, the green dash-dot line and the black 
dashed line are the results with N = 1014, N = 1013 and N = 1012, respectively. The solid magenta thick line 
illustrates the PLOB bound.
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and N = 2.178 × 1014) for 421 km of ultralow-loss optical fiber (0.17 dB/km) in ref.50, we obtain a final key rate of 
2.62 × 103 bit per second (bps), which is more than 1.05 × 104 times higher than the reported experimental result, 
0.25 bps.

Discussion
In real setups of QKD, the practical situations with a few different intensities rather than infinite number of differ-
ent intensities, a phase slice of appropriate size rather than infinitely small size and the statistical fluctuations must 
be considered. We first present the decoy-state method with a few different intensities and a phase slice of appro-
priate size. Then we show that the SNS protocol is a highly practical scheme even when the statistical fluctuations 
are considered. Numerical simulation shows that, the finite-size SNS protocol can exceed the PLOB bound. Our 
results show that practical implementations of the SNS TF-QKD can be both secure and efficient.

Methods
Decoy-state method analysis. In the protocol, Alice and Bob prepare and send the coherent pulses with 
randomized phase. The traditional formulas of decoy-state method can be applied directly. The coherent state 
whose phase is selected uniformly at random can be regard as a mixture of photon number states
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Figure 2. Optimal key rate (bits per pulse) as a function of the distance. The asymptotic result is shown in the 
red solid line. The blue dashed line and the green dash-dot line are the results for 4-intensity and 3-intensity 
decoy-state methods with N = 1012, respectively.

Figure 3. Optimal value of Δ (radians) corresponding to the optimal key rate by 4-intensity decoy-state 
method with N = 1012.
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where μj = |αj|2 is the intensity of the coherent state |αj〉. Then the state when Alice decides not sending and Bob 
decides to send ραk

 is ρ μ= ∑ | 〉〈 |α α
μ−

=
∞e n n n/ ! 0 0n k

n
0k

k
0

. With these convex forms, the lower bound of the yield of 
the state ρ = | 〉〈 |01 01z01

 can be written into the following form30

μ μ μ μ

μ μ μ μ
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where S0k are the yield of the sources ρα αk0
 for k = 1, 2, S00 is the yield when both Alice and Bob send the vacuum 

state. Similarly, the lower bound of the yield of the state ρ = | 〉〈 |10 10z10
 can be written as

μ μ μ μ

μ μ μ μ
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s s
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where Sj0 are the yield of the sources ρα αj 0
 for j = 1, 2. With Eqs (4) and (5), the lower bound of the yield of 

single-photon state in Z-basis, i.e., the state ρ ρ ρ= +( )Z
z z1

1
2 01 10

, has the following form

≥ = + .( )s s s s1
2 (6)

Z Z
z
L

z
L

1 1 01 10

Note: Replacing the source ρ2 used in Eqs (4–6) with the source ρz, we obtain the other lower bound of s Z
1 . 

With this replacement, source ρ2 is not used actually, then the four-intensity decoy-state method can be simplified 
to a three-intensity decoy-state method by taking p2 = 0. On the one hand, the three-intensity decoy-state method 
can be carried out easily in experiment. On the other hand, interested more in terms of practical key-rates instead 
of achieving the longest distance QKD possible (such as 10−6 per-pulse), the key rate of the three-intensity 
decoy-state method is only a little lower than (less than one percent for the cases discussed in the numerical sim-
ulation) the results for the four-intensity decoy-state method.

In the rest of this section, we show the formula to estimate the upper bound of e ph
1  in Eq. (2) with the observ-

able. The state of pulse pair when Alice sends the coherent state α μ= θeA i
1 1

A  and Bob sends the coherent state 
α μ= θeB i

1 1
B  is
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Similarly, we also have

∑α α
μ

ψ| 〉| − 〉 =
−
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In Eqs (7) and (8), the n-photon twin-field state ψδ±

n  is defined as follows

∑ψ =
−

| 〉| − 〉δ
δ

=

+ n e
m n m

m n m1
2

!
!( )!

,
(9)

n n
m

n im

0

∑ψ =
−

−
| 〉| − 〉δ

δ
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− n e
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2

( 1) !
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,
(10)

n n
m
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where δ = θA−θB. For the state in set Δ+C , the phase is selected uniformly at random in the slice with |θA−θB| ≤ Δ/2. 
Equivalently, in set Δ+C , the phase θB chosen by Bob in α α| 〉| 〉A B

1 1  can be regarded as uniformly distributed in [0, 
2π) and the phase θA chosen by Alice satisfies the condition |δ| ≤ Δ/2. For any fixed value δ, we have
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Similarly, we also have
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Considering the single-photon twin-field states in ∪=Δ Δ Δ+ −C C C  for a fixed δ, we have

ρ ψ ψ ψ ψ ρ= + = .δ δ δ δ δ+ + − −1
2 ( ) (13)

Z
1 1 1 1 1 1

So we know that the single-photon states in set CΔ and in Z-basis have the same density matrices. The probability 
to emit a single-photon pulse from CΔ is μ= μ−q e21 1

2 1. With this relations, we know that the bit-flip error rate of 
single-photon state in set CΔ is equal to the phase-flip error rate e ph

1  asymptotically. The bit-flip error yield for all 
instances in set CΔ is

= + = + .Δ Δ Δ
Δ Δ Δ Δ
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2

( ) 1
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where Tk, k = Δ, Δ+, Δ− is the proportion of wrong effective events in Ck, e.g. in N k
11. Attribute all the error to the 

single-photon state and the vacuum state, the upper bound of phase-flip error rate e ph
1  can be estimated by
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where s Z
1  is the lower bound of s Z

1  given in Eq. (6). Then the final key rate of per pulse can be calculated with

= − − − −R p p p a s H e fS H E(1 ) {2 (1 ) [1 ( )] ( )}, (16)X z z
ph

Z Z
2
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where R is the final key rate, μ= μ−a ez1 z is the probability to emit a single-photon state from source ρz, s1 is the 
yield of the single-photon state in Z-window when one party from Alice and Bob decides to send a signal states, 
e ph

1  is the phase-flip error rate for those instance of s1, SZ and EZ are the yield and bit-flip error rate for instances 
when both Alice and Bob choose Z-window.

Statistical fluctuation analysis. In the real protocol with finite data size, in order to extract the secure final 
key, we have to consider the effect of statistical fluctuations. To obtain the lower bound value for s1 and the upper 
bound value for e ph

1  in the real protocol with finite N, one can implement the idea of ref.25, i.e., treating the aver-
aged yield. Accordingly, define 〈S〉 as the mean value of yield S. Note that even though Sjk(j, k = 0, 1, 2, z) are 
known values directly observed in the experiment, the mean values 〈Sjk〉 are not. However, given the observed 
values Sjk and the corresponding number of pulse pairs, the confidence lower and upper limits of 〈Sjk〉 can be 
calculated.

In order to obtain a tighter lower bound of 〈 〉s Z
1 , we need introduce the following two yields
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Replacing the observed yields with their mean values in Eqs (6) and (15), we can formulate the lower bound 
of 〈 〉s Z

1  and the upper bound of 〈 〉e ph
1  respectively. Explicitly, we have
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   δ δ= + = − ′/(1 ), /(1 ), (21)k k k k k k

for  = S T,  and k = 00, 1, 2 and Δ. By using the multiplicative form of the Chernoff bound29,33, with a fixed 
failure probability ε, we can give an interval of 〈Sk〉 with the observable Sk, S S[ , ]k k , which can bound the value of 
〈 S k 〉  w i t h  a  p r o b a b i l i t y  o f  a t  l e a s t  1 − ε .  E x p l i c i t l y ,  w i t h  t h e  f u n c t i o n 

= − + −δf x y y y y x x( , ) [ ln( /2) (ln( /2)) 8 ln( /2) ]/(2 )2 , we have δ00 = fδ(N00S00, ε), δj = fδ((N0j + Nj0)Sj,ε), j = 1, 
2 and δ ε= +δΔ

Δ Δ
Δ

+ −
f N N T(( ) , )11 11 .

With the mean values 〈 〉s Z
1  and 〈 〉e ph

1  defined in Eqs (19) and (20), the lower bound of the yield s1 and the upper 
bound of the phase-flip error rata e ph

1  corresponding to s1 in Eq. (16) can be estimated by29,33

δ δ= 〈 〉 − = 〈 〉 + ′s s e e(1 ), (1 ), (22)Z c ph ph c
1 1 1 1 1 1

where δ ε= 〈 〉δf a N s( , )c
zz
c Z

1 1 1  and δ ε′ = 〈 〉δf a N s e( , )c
zz
c ph

1 1 1 1  with = −N p p N2 (1 )zz
c

z z zz and μ= μ−a ez1 z being the 
probability to emit a single-photon state from source ρz.

With the lower bound of s1 and the upper bound of e ph
1  in Eq. (22), the final key rate can be calculated with Eq. 

(16).
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