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Time dynamics of quantum 
coherence and monogamy in  
a non-Markovian environment
Chandrashekar Radhakrishnan1,2, Po-Wen Chen3, Segar Jambulingam1,4, Tim Byrnes5,1,2,6,7 & 
Md. Manirul Ali   8,9

The time evolution of the distribution and shareability of quantum coherence of a tripartite system 
in a non-Markovian environment is examined. The total coherence can be decomposed into various 
contributions, ranging from local, global bipartite and global tripartite, which characterize the type of 
state. We identify coherence revivals for non-Markovian systems for all the contributions of coherence. 
The local coherence is found to be much more robust under the environmental coupling due to an 
effective smaller coupling to the reservoir. This allows us to devise a characterization of a quantum 
state in terms of a coherence tuple on a multipartite state simply by examining various combinations 
of reservoir couplings. The effect of the environment on the shareability of quantum coherence, as 
defined using the monogamy of coherence, is investigated and found that the sign of the monogamy 
is a preserved quantity under the decoherence. We conjecture that the monogamy of coherence is a 
conserved property under local incoherent processes.

Coherence has been a central concept in quantum physics since the introduction of wave-particle duality. For 
many years the study of quantum coherence was investigated in the context of phase space distributions1,2 and 
higher order correlation functions3. Recently coherence was quantified in a rigorous sense by Baumgratz, Cramer, 
and Plenio4, and improved upon through several works5–9. In the context of these works, coherence is now viewed 
as a quantum characteristic alongside other quantities such as discord, entanglement, steerability, and non-local 
correlations10. It has been investigated in a variety of different systems such as Bose-Einstein condensates11, cavity 
electrodynamics12,13, and spin systems14–17.

Coherence, alongside many of the other quantum properties, are often studied without explicitly specifying 
the effect of the external environment on the system. Under experimentally realistic situations, the environment 
will cause a time varying evolution towards a mixed state18. A system can exhibit Markovian or non-Markovian 
dynamics depending on whether it is weakly or strongly coupled to the environment. Entanglement was the first 
type of quantum correlation whose dynamics was explored in this context19–22. Several studies have shown23–26 
that the entanglement of a quantum system in a Markovian environment experiences an exponential decay with 
time. In a non-Markovian environment, the entanglement may reappear after a time period of complete disap-
pearance20,26–29, a feature referred to as entanglement revival. Later several studies investigated the dynamics of 
many other quantum correlations30–34.

Entanglement and discord are purely inter-particle in nature, hence require at least two subsystems, but quan-
tum coherence has the unique property35,36 that it can exist both at the inter-particle and intra-particle levels. 
The “intrinsic” or “global” coherence arises is inter-particle in nature and happens due to superposition between 
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two qubits. Meanwhile the superposition of the quantum levels within a single subsystem results in the local 
coherence. These two forms of coherence have a complementary nature and cannot exceed the total coherence in 
the system35–37. Extensions of this idea can be made to multiparticle systems, in particular for a tripartite system 
the coherence between two subsystems limits the amount of coherence the third subsystem can share with these 
systems. The monogamy of coherence then measures the shareability of coherence, and is the difference between 
the pair-wise and the multipartite intrinsic coherences35,36.

In this paper, we investigate the time dynamics of the distribution of coherence under a non-Markovian envi-
ronment. Our aim will be to examine the response of the various types of coherence, since as local and global, and 
see how susceptible they are under the incoherent operations induced by a reservoir. By changing our parameters 
we can equally study the Markovian limit of the environment, which will allow us to study a variety of different 
scenarios. We furthermore investigate the dynamics when the reservoir only partially couples to the state, on 
particular sites. This leads us to devise a method for understanding the nature of the coherence simply by exam-
ining the response of the total coherence by adding successive environmental couplings to the whole system. We 
also study the shareability of coherence by using the monogamy of coherence. This is another characteristic that 
occurs only for systems with at least three particles, and is a identifier of the type of correlations that are present 
in the system.

Results
Description of the model.  We consider a system of three non-interacting parts, each consisting of a qubit 
interacting with a local bosonic reservoir (see Fig. 1(a)). The Hamiltonian of the qubits and reservoir reads
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j  are the raising and lowering operators of the two level atom and ω0 is the transition 

frequency of the two level system. The index k labels the field modes of the reservoir with frequencies ωk, †bjk (bjk) 
is the creation (annihilation) operator for the reservoir for the jth qubit, and gk is the coupling strength between 
the qubit and the kth mode of the environment. This model can be solved exactly at zero-temperature38. The 
dynamics of each non-interacting part can be represented by the reduced density matrix
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where h(t) is the time evolution given by
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The correlation function f τ−t( ) is related to the spectral density J ω( ) of the reservoir as τ− =f t( )
∫ ω ω ω ω τ− −d J e( ) i t( )( )0 . In this work we consider a Lorentzian spectral density
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Figure 1.  Coherence in a tripartite system. (a) The model examined in this paper. Three qubits are individually 
coupled to dissipative reservoirs which creates a decay from the | 〉1  to the | 〉0  state. The reservoirs can be coupled 
in a Markovian or non-Markovian way, depending upon the parameters of Hamiltonian (1). The initial state is 
generally considered to be a tripartite entangled state, of the form of a W, GHZ, or WW  state. (b) The coherence 
distribution in a tripartite system. The local coherence Cj, the bipartite global coherences Cj:k, and the tripartite 
global coherence C1:2:3 are as marked.
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for which the single qubit evolution h(t) is well known18,19,22
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where λ γ λΩ = − ∆ −i( ) 22
0 . The spectral width of the reservoir λ characterizes the reservoir correlation time 

via the relation τ λ= −
1

1. Meanwhile the microscopic system-reservoir coupling γ0 is the inverse of the relaxation 
time τ2. The Markovian and the non-Markovian regimes can be identified from the relationship between these 
time scales. When γ λ< /20  (τ τ> 22 1), the system is weakly coupled to the reservoir and the dynamics is 
Markovian. The non-Markovian effects due to the strong coupling regime arises when γ λ> /20  (τ τ< 22 1).

Local and global coherence.  We investigate a non-interacting three qubit system coupled to individual 
bosonic reservoirs as described in the previous section. The three qubits are initialized in various states and 
the subsequent time evolution is examined. To characterize the different types of coherence, we use the relative 
entropy4. The total coherence in the system is given by


ρ ρ σ ρ ρ= = −

σ∈
C S S S( ) min ( ) ( ) ( ), (5)d

where   is the set of incoherent state and ρd is the diagonal matrix of the density matrix. Here ρd is the diagonal 
matrix of ρ in the basis | 〉0  and | 〉1 . It is only logical to investigate the process in the σz-basis since the dynamics is 
entirely described in that basis as we notice through Eq. 2. The local coherence is then found using the relation37

π ρ π ρ= .C S( ( ) [ ( )] ) (6)L
d

where π ρ ρ ρ ρ= ⊗ ⊗( ) 1 2 3. From (5) and the (6) one can find the global coherence by simply taking the 
difference

= − .C C C (7)G L

In a tripartite system the global coherence can be further decomposed in to three-way and two-way global 
coherences. The expression for these coherences are

≡ = +C C C C , (8)TG 1:2:3 2:3 1:23

= + +C C C C , (9)BG 1:2 1:3 2:3

ρ= .C C ( ) (10)i j G ij:

Here C1:23 is the intrinsic coherence between the qubit ρ1 and the bipartite system ρ23. If the loss of any one of 
the qubits completely decoheres the system then it is said to have a three-way or purely tripartite global coherence 
(CTG). Conversely if the loss of any two qubits causes complete decoherence then we have a two way or bipartite 
global coherence (CBG).

Complete coupling with the Reservoir.  In the present section we investigate tripartite system in which 
all the three qubits are coupled to the environment. For the initial state we use the WW-state defined as

| 〉 =
| 〉 + | 〉WW W W

2 (11)

where
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| 〉 = | 〉 + | 〉 + | 〉 .

W
W

[ 001 010 100 ]/ 3
[ 011 101 110 ]/ 3 (12)

This is particularly interesting as it has all types of different coherences, both local and global, distributed in 
both a tripartite and bipartite manner. This is in contrast to either GHZ or W states, which have zero local coher-
ence, and are purely tripartite and bipartite entangled35. By examining a state with all types of coherences this 
gives a convenient way of examining the time dynamics of the various contributions.

The dynamics of the WW  state in the Markovian regime is illustrated in Fig. 2(a). We see that the local and 
global coherence exhibits exponential decay but at different rates. To find the decay rate we plot the coherence on 
a semi-logarithmic plot as a function of the dimensionless time γ0t as shown in Fig. 2(b). The gradient of the 
curve on the semi-logarithmic plot gives the decay rate at a particular time. We find that at any given time the 
local coherence has a lower decay rate than the global coherence. This is the expected result since by its very 
nature, local coherence is only present at each qubit site, which is coupled locally to the reservoir. Thus the local 
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coherence only experiences effectively one reservoir at a time, whereas the global coherence is distributed across 
the whole system. It is thus affected by all reservoirs at the same time, and should therefore decay at a faster rate.

We now consider the strongly non-Markovian limit, which gives richer dynamics to all types of coherence. 
The non-Markovian dynamics of the WW  state both with detuning and without detuning is given in Fig. 2(c). 
From the plots we observe that both the local and global coherence have different dynamical behavior. In particu-
lar we see the decay and revival of the coherence in an analogous way to that observed with entanglement20,26. We 
can accordingly call this phenomena “coherence revival”, since coherence spontaneously re-enters the system after 
being initially destroyed by the bath. For the case with zero detuning the coherence in fact is completely destroyed 
in all forms, and then spontaneously reappears. The general phenomenology of the coherence in the 
non-Markovian regime is that it oscillates with a decaying envelope. Thus the quantum coherence which is oscil-
latory at shorter time scale has an exponential decay at the longer time scale. To find the decay rate we trace this 
exponential envelope by performing a linear fit of the logarithm of the coherence at the maximum point as a 
function time. The slope of the semi-logarithmic plots in Fig. 2(d) then give the decay rate for the non-Markovian 
case. Here too we find that the local coherence has a slower decay compared with the global coherence, due to 
only a single reservoir acting on the local coherence, in comparison to multiple reservoirs acting on global 
coherence.

In Fig. 2(b,d) we compare the decay rate of the local coherence with the total bipartite global coherence CBG 
and the tripartite global coherence CTG. From the linear fit we observe that the local coherence has the lowest 
decay rate. Further we notice that the total coherence has a lower decay rate compared with any one of its indi-
vidual components. Also the total global coherence has a lower decay rate compared with the bipartite and the 
tripartite global coherence. Both these observations are along the expected lines since the individual components 
have a faster decay rate than their combined value.

It is well known that the total coherence in a GHZ state is entirely tripartite in nature, whereas in a W-state 
the coherence is distributed in a bipartite manner. Another example of a state which possesses different types of 
coherences is the linear superposition of GHZ and W states introduced in39 and defined as

μ μ| 〉 = | 〉 + − | 〉GW GHZ W(1 ) (13)

which exhibits the crossover of bipartite and tripartite coherences. In Fig. 3 the non-Markovian evolution of 
quantum coherence is described for two instances namely (a) μ = .0 25 where the W state dominates over the 
GHZ state and (b) μ = .0 60 where the GHZ state contributes more to the superposition. From the plots Fig. 3(a) 
we can see that the bipartite global coherence is more dominant for μ = .0 25 because the W-state contributes 

Figure 2.  Time dynamics of coherence for the WW  state. (a) The local coherence CL and global coherence CG in 
the Markovian regime. Parameters are λ = 1, ∆ = .0 5. (b) Semi-logarithmic plot for the same parameters as (a), 
including additionally the total coherence CT, bipartite coherence CBG, tripartite coherence CTG. (c) Various 
coherences as marked in the non-Markovian regime. Parameters are λ = 0.01 and ∆ = .0 5 (main figure), ∆ = 0 
(inset). (d) Semi-logarithmic plot for the non-Markovian regime for the same parameters as the main plot of (c) 
for the envelope function of the coherences as marked.
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more to the superposition. In the case of μ = .0 6 the tripartite global coherence is higher since the GHZ state has 
a higher contribution to the superposition. In Fig. 3(c,d) we compare the decay rate of the total, bipartite global 
and the tripartite global coherence of both the plots in Fig. 3(a,b). In both the situations μ = .0 25 and μ = .0 6 the 
bipartite global coherence has a lower decay rate compared with the tripartite global coherence. The total coher-
ence has a lower decay rate compared with both the bipartite global coherence and tripartite global coherence 
which is along the expected lines.

Partial coupling to the reservoir.  In the investigations so far described, all three qubits were connected to 
an external reservoir. Now we would like to examine the situation where only some of the qubits are connected to 
the reservoir. This can be achieved by changing the decay time of the couplings on the different qubits. For exam-
ple, the single channel decay regime can be defined as when the decay time of qubit 1 is much less than the 
remaining qubits and also the observation time scale τ

τ< t t (14)1 2,3

where tj is the decay time of the jth qubit.
The states that we will examine here are the W and the GHZ states, defined as

| 〉 = | 〉 + | 〉 .GHZ [ 000 111 ]/ 2 (15)

These are known to have a different structure of entanglement, and therefore its coherence properties can be 
expected to be different. The GHZ state is considered to be a genuinely tripartite entangled system, whereas the W 
state is bipartite entangled, and are unrelated under local operations and classical communications. By changing 
the local couplings to the reservoir, it is reasonable to expect that these respond differently given the considera-
tions of the previous section.

In Fig. 4(a,b), we show the variation of quantum coherence for the one, two, and three channels for both 
the Markovian and the non-Markovian regimes with an initial GHZ state. We find that under the Markovian 
approximation the quantum coherence always vanishes to zero in the long-time limit. For the non-Markovian 
case we observe that the quantum coherence oscillates with time on the shorter time scale, while decaying in the 
long-time limit. The single channel coherence oscillations decays slower and rises faster in comparison with the 
two and the three channel cases. In the three channel case the coherence falls to zero and remains so for a par-
ticular length of time. This behavior is because in the single channel only one qubit is directly in contact with the 
environment and the other two qubits are influenced by the environment due to their coherent connection with 
the first one.

The behavior of W states is shown in Fig. 4(c,d) for the Markovian and the non-Markovian cases respectively. 
From the plots we observe that the three and the two channel coherence goes to zero but the single channel case 
attains a steady state value of C = 2/3 for the Markovian case. In the non-Markovian case the quantum coherence 
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Figure 3.  Time dynamics of quantum coherence for the superposition of GHZ and W states. (a) The total 
coherence CT, the bipartite global coherence CBG and the tripartite global coherence CTG in the non-Markovian 
regime. Parameters are μ = 0.25, λ = 0.01 and ∆ = 0. (b) The total coherence CT, the bipartite global coherence 
CBG and the tripartite global coherence CTG in the non-Markovian regime. Parameters are μ = 0.60, λ = 0.01 and 
∆ = 0. (c) Semi-logarithmic plot for the envelope of the same parameters as in (a). (d) Semi-logarithmic plot 
for the non-Markovian regime for the envelope of the same parameters as in (b).
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oscillates, but the oscillatory minimum is zero for the two and three channel cases but for the single channel case 
it is equal to C = 2/3. This is because the coherence in the W state is distributed in a bipartite manner and the 
environment is acting on a single qubit in the single channel case. In the long-time limit the W state evolves to 
the mixed state

∑ρ → ∞ = | 〉〈 |

= | 〉〈 | ⊗ 



+ | 〉〈 |

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where we have taken the measurement operators on the first qubit
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0

1

corresponding to a decay of a qubit. As we can see from (16) the decoherence of the single qubit does not com-
pletely destroy the total coherence in the system. The value C = 2/3 attained in the steady state limit for the 
Markovian situation and as the oscillatory minimum in the non-Markovian situation is the coherence between 
the two qubits which are not influenced by the environment in any way. The value C = 2/3 correspond to the prob-
ability of the Bell state in (16), which is the only contribution to the coherence in this case. For the two and three 
channel coherences, it is easy to see that further measurement of (16) will completely collapse the Bell state super-
position, hence eventually there is zero coherence in the long-time limit. We note that this is in stark contrast to 
the coherence in a GHZ state which is distributed in a completely tripartite manner such that the decoherence of 
a single qubit will always destroy the total coherence in the system.

From the above results we observe that by coupling the reservoir in different ways, information can be 
obtained about how coherence is distributed in a multipartite system. For tripartite systems the quantum coher-
ence can be characterized in the manner shown in Fig. 1(b). Firstly, there are three local coherences, one for each 
qubit. Next, there are the three bipartite global coherences C1:2, C1:3 and C2:3, according to the pairings of each 
qubit. Lastly, there is a genuinely tripartite global coherence C1:2:3. The total coherence can be distributed in only 
these seven different contributions. Hence we can construct a seven-tuple

 = C C C C C C C{ , , , , , , } (18)1 2 3 1:2 1:3 2:3 1:2:3

which contains all the information about the distribution of coherence in the system. Clearly the above procedure 
can be generalized in an analogous way for a multipartite system. If we do not have a knowledge of an initial 
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Figure 4.  Time dynamics of coherence for the GHZ and W states, for various reservoir couplings. (a) Non-
Markovian evolution for the GHZ state for the number of reservoir couplings as marked. Parameters used are 
λ = 0.01 and ∆ = 0. (b) Markovian evolution with parameters used λ = 1.0 and ∆ = 0. (c) Non-Markovian 
evolution for the W state. Parameters used are λ = 0.01 and ∆ = 0. (d) Markovian evolution with parameters 
used λ = 1.0 and ∆ = 0.
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quantum state, we can reverse engineer the state if we have the time evolution dynamics of the quantum coher-
ence which can provide us with this seven-tuple. For example, by coupling a reservoir to qubit 1 and looking at 
the steady state, the coherence with all terms involving qubit 1 will be destroyed, yielding

| =Π C C C{0, , , 0, 0, , 0}, (19)2 3 2:31


where Πj denotes a measurement on the jth qubit. Similarly the coherence involving qubit 2 can be destroyed by 
applying two reservoirs

| =Π Π C{0, 0, , 0, 0, 0, 0}, (20)31 2


which yields the local coherence on qubit 3 alone. By combining all possible measurement combinations I, Π1, Π2, 
Π3, Π Π1 2, Π Π1 3, Π Π2 3 we can deduce all the coherences within the system. The number of possible measurement 
combinations is always guaranteed to be the same as the number of different coherences because the coherences 
appear as all n-way groupings of the subsystems, which is the same as for the measurements. This allows a consist-
ent evaluation of coherence in any multipartite system.

Monogamy of coherence.  We have seen that in a multipartite system the global coherence can be fur-
ther decomposed into the bipartite contribution, tripartite contribution and so on up to the N-partite contribu-
tions35,37. Quantum systems thus have a unique way sharing coherence which is captured by the monogamy of 
coherence introduced in ref.35, in analogy with the monogamy of entanglement40,41. For a tripartite system the 
monogamy of coherence reads:

= + −M C C C (21)1:2 1:3 1:23

Here C1:2 (C1:3) denotes the global coherence between the qubits 1 & 2 (1 & 3) and C1:23 is the global coherence 
between qubit 1 and the bipartite block 23. In a genuinely tripartite coherent system, the system is described 
as being monogamous and we observe M ≤ 0. When M > 0, the bipartite coherence is more dominant and the 
system is polygamous. GHZ and W states are archetypal examples of a polygamous and monogamous state 
respectively.

In Fig. 5 we calculate the time evolution of the monogamy of coherence of the GHZ and W states under vari-
ous non-Markovian conditions. In all cases that we have calculated we observe that the monogamy of coherence 
does not change sign, and retains its initial character. In the strongly non-Markovian regime, the monogamy of 
coherence can become zero, particularly at points where the overall coherence, and hence its constituents vanish

= = = .C C C 0 (22)1:2 1:3 1:23

We have verified that there is no violation of the sign preservation by examining points where M is small and 
have not found any exceptions. This can be understood to be due to the fact that the quantum symmetries of the 
system regarding the spatial distribution do not change under time evolution. The form of the reservoir coupling 
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Figure 5.  The time evolution of the monogamy of coherence for (a) GHZ, (b) W states and a quantum state 
which is a linear superposition of GHZ and W state for (c) μ = 0.25 and (d) μ = 0.60, under various conditions 
as labeled.
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is strictly in a local fashion, and in a general sense corresponds to a local operation. Since the GHZ and W states 
are known to be either polygamous and monogamous under local operations35, and our reservoir model falls 
under the same category of operations. This means that M correctly characterizes the polygamous or monog-
amous nature of the state. We thus conjecture that a quantum state under a local time evolution process will 
preserve the monogamy of coherence in a multipartite system.

The time evolution of monogamy of quantum coherence for the state | 〉GW  is discussed in Fig. 5(c,d) under 
different non-Markovian conditions. The case of μ = 0.25 is given through Fig. 5(c) where the dynamics of share-
ability of coherence is discussed. We find that the state oscillates between monogamy and polygamy throughout 
the decay. In general the states are polygamous for μ .0 20 and it exhibits both monogamous and polygamous 
nature in the region  μ. .0 20 0 35 and completely monogamous when μ .0 35. The major reason is that the 
coherence between the bipartite partition between the qubit 1 and the joint system 23 namely C1:23 decays much 
slower than the total bipartite global coherence in the system which can be observed from Fig. 3(c). Hence the 
system is monogamous for most of the time though polygamous nature appears at few instances. In the case of 
μ = 0.6 from Fig. 5(d) we find that the state is monogamous through the entire evolution process.

Discussion
The time evolution of quantum coherence of a three qubit system each interacting with a local environment was 
been investigated in both the Markovian and non-Markovian limits. For the tripartite WW  system the total 
coherence can be decomposed into the local and the global components, according to whether the coherence are 
intra- or inter-qubit in nature. Due to the tripartite nature of the system, the global coherence can be decom-
posed into the bipartite global coherence and the tripartite global coherence. In analogy to entanglement reviv-
als, we observed coherence revivals in the non-Markovian case, where the coherence can return to the system 
from the reservoir. In several cases this was observed to occur even after the coherence collapsed to zero. The 
general observation from this is that the local coherence decays much slower in comparison with other forms of 
coherence. This behavior is irrespective of whether the dynamics is Markovian or non-Markovian. This points 
to the fact that local coherence is much more robust in the presence of decoherence than global coherence. 
Previous studies42–44 have shown that the robustness varies with the nature of a quantum state. Contrast to these 
works we show that the different contributions of coherence decay at different rates in the same quantum state. 
Therefore, localizing the coherence can be one effective strategy towards extending the life-time of a quantum 
state in physical systems. By temporarily storing it in this form, and converting it to global coherence according 
to the complementary nature of coherence, this can be an effective strategy towards preserving coherence in the 
system. It is interesting to note that recently experiments have been carried out in which the interconversion of 
quantum coherence in to other quantum correlations like discord and entanglement have been the main focus 
of the study. Particularly in45,46 the local coherence in a quantum system has been converted into discord which 
was again successfully steered into local coherence. This experiment establishes the feasibility of interconversion 
of local and global coherence which may help us to prolong the quantum correlations in a system. Further it has 
been shown that local resources are relevant for applications in quantum metrology47 and it has been shown that 
in some distributed quantum computation protocols, global coherence provides the necessary resource for a 
computational speed up compared to classical algorithms48,49. Hence a understanding of the dynamics of the 
different forms of coherence may be useful to choose the suitable quantum states for the relevant practical 
applications.

We also investigated the response of the system to changing the number of reservoir couplings throughout 
the system. For both the GHZ and W states, the three channel coherence decayed the state more rapidly in com-
parison with the single channel coherence. By changing the number of reservoir couplings to the system, it was 
found that various types of coherence could be selectively destroyed, giving a characterization of the coherence in 
the system. For example, with only one reservoir coupled to the system, the coherence does not go to zero for W 
state but it does so for a GHZ state. This is due to the way in which coherence is distributed among the qubits. This 
leads us to the characterization of the coherence in a multipartite system according to (18). By coupling reservoirs 
in various configurations one can selectively “turn off ” the coherence for various contributions. Since the number 
of ways of reservoir couplings is always guaranteed to be the same as the number of elements in the coherence 
tuple, this allows a powerful way of characterizing the coherence in a multipartite system. Finally from the time 
evolution of the monogamy of coherence we found that the system preserves it initial nature of either monogamy 
or polygamy. This can be explained due to the local couplings of the reservoirs, which can be viewed as incoherent 
local operations on the system. Such operations are known not to change the character of the system in term of 
monogamy or polygamy in the context of entanglement. We find that this is true also in the coherence case, and 
conjecture that the sign of the monogamy of coherence is a preserved quantity for local operations. We found no 
numerical violations to this, for all the parameters and states that were tried.

The extension of coherence to non-unitary evolution has shown that we can obtain several interesting charac-
terizations of the original quantum state. The rate of decay of the various coherences gives the robustness of the 
state under environmental influence. By examining its distribution one can directly observe that the state evolves 
in such a way that certain components of its coherence decay faster than others. Thus under partial decoher-
ence one might expect to find that the more robust types of coherence are predominantly left. By looking in the 
long-time limit one can even completely characterize the distribution of the coherence. Remarkably, the number 
of measurement combinations is equal to the number of coherences, which show that this is always possible using 
this prescription. One possible extension of our work is to look at more complex systems, which can be used as 
a method of characterizing many-body quantum states. This program has already been started in several works 
such as refs14–17 and could be used in contexts such as detecting quantum phase transitions.
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