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Dynamic Imaging of Glucose and 
Lactate Metabolism by 13C-MRS 
without Hyperpolarization
Jeffrey R. Brender   1, Shun Kishimoto1, Hellmut Merkle2, Galen Reed3, Ralph E. Hurd3, 
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Metabolic reprogramming is one of the defining features of cancer and abnormal metabolism is 
associated with many other pathologies. Molecular imaging techniques capable of detecting such 
changes have become essential for cancer diagnosis, treatment planning, and surveillance. In particular, 
18F-FDG (fluorodeoxyglucose) PET has emerged as an essential imaging modality for cancer because of 
its unique ability to detect a disturbed molecular pathway through measurements of glucose uptake. 
However, FDG-PET has limitations that restrict its usefulness in certain situations and the information 
gained is limited to glucose uptake only.13C magnetic resonance spectroscopy theoretically has certain 
advantages over FDG-PET, but its inherent low sensitivity has restricted its use mostly to single 
voxel measurements unless dissolution dynamic nuclear polarization (dDNP) is used to increase the 
signal, which brings additional complications for clinical use. We show here a new method of imaging 
glucose metabolism in vivo by MRI chemical shift imaging (CSI) experiments that relies on a simple, 
but robust and efficient, post-processing procedure by the higher dimensional analog of singular value 
decomposition, tensor decomposition. Using this procedure, we achieve an order of magnitude increase 
in signal to noise in both dDNP and non-hyperpolarized non-localized experiments without sacrificing 
accuracy. In CSI experiments an approximately 30-fold increase was observed, enough that the glucose 
to lactate conversion indicative of the Warburg effect can be imaged without hyper-polarization with a 
time resolution of 12s and an overall spatial resolution that compares favorably to 18F-FDG PET.

Molecular imaging seeks to characterize the fundamental molecular pathways inside organisms in a non-invasive 
manner. Since the rapid growth of tumors requires an abnormal metabolism to sustain it, imaging metabolism offers 
the possibility of detecting the transformation of tumors to a more aggressive phenotype1 and of adapting treatment 
plans quickly in response to changes in cellular metabolic activity2. Relatively few tools exist for molecular imaging 
in vivo. Of these, PET using the glucose analog 18F-FDG is the most prominent. While 18F-FDG PET is an essential 
tool for cancer diagnosis, staging, and treatment management3, it also has its limitations. Specificity is limited in 
organs like the brain with a high normal glucose uptake4. Non-cancerous inflammation4 and benign neoplasms5 
can give false positives. The background anatomical image must be taken on a different scanner, which can give rise 
to mis-registration errors6. Resolution in commercial PET scanners is also limited to 4–10 mm, although there are 
efforts to increase this limit7. The radioactivity generated by PET requires careful planning to prevent overexposure 
and accidental spills8. Finally, the information from 18F-FDG PET is limited to glucose uptake and phosphorylation, 
which means downstream metabolites like lactate and TCA cycle intermediates are invisible to the technique.

Glucose imaging by CEST MRI was developed to overcome some of the limitations of 18F-FDG PET. In glu-
cose CEST MRI, glucose uptake is indirectly detected by saturation transfer from the exchangeable protons of 
glucose to water, which affords a large increase in sensitivity relative to direct detection9,10. Due to spectral overlap, 
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the excitation process is not entirely specific and analysis of glucose uptake is also complicated by the strong pH 
dependence of the exchange rate11. The imaging time can also be quite long if adequate spatial resolution is desired.

A more direct and specific way to track in vivo metabolism is to follow the metabolism of exogenous tracers by 
magnetic resonance spectroscopy or spectroscopic imaging (MRS/MRSI). The breakdown of labeled exogenous 
metabolic tracers can be tracked non-invasively and precisely by 13C MRS. This has the advantage over static 
techniques, which measure the equilibrium state that may stem from many processes. However, widespread use 
of 13C MR in the clinic has been limited by poor sensitivity stemming from three fundamental reasons. First, 
even in the best-case scenario, the effective concentration of an exogenous contrast agent is at least 1000 times 
lower than that of the water signal detected in conventional MRI. Further complicating the issue, 13C has a low 
gyromagnetic ratio, which translates into a relative sensitivity only ~2–6% that of 1H for an equivalent number of 
nuclei. Finally, metabolic processes are inherently transient. The usual approach to overcoming low sensitivity is 
to simply acquire the signal for longer and average the scans. Often, however it is the metabolic flux, which is of 
interest rather than the steady-state concentrations as enzymatic rates are a direct link to the activity of metabolic 
enzymes that are potential targets in cancer and other pathologies. Long signal averaging makes non-invasive 
interrogation of the rate impossible.

Dissolution dynamic nuclear polarization (dDNP) was developed to enhance signal to noise in 13C MR and 
make rapid dynamic imaging of 13C labeled substrates and their metabolic products possible. Dynamic nuclear 
polarization makes use of the fact that unpaired electrons in a paramagnetic molecule can be aligned to a mag-
netic field to a much greater extent than the atomic nuclei with spins detected by MRI. This alignment can then be 
transferred to the atomic nuclei for detection. Since the signal in MRI is proportional to the degree of alignment, 
this polarization transfer results in a very large increase in the MRI signal, >10,000 times in favorable circum-
stances12. This process occurs most efficiently at low temperatures near ~1 K. By rapidly dissolving the frozen 
tracer and bringing it quickly to room temperature, a polarization sufficient to conduct metabolic MRI can be 
realized. After dissolution, the polarization decays by the liquid state spin lattice relaxation time of the target 
nuclear spin.

As a technique, dDNP is an impressive technical achievement and has demonstrated tremendous potential for 
metabolic imaging in vivo13,14 but it has its limitations, especially in a clinical setting. Hyperpolarization is limited 
to a small set of molecules whose relaxation time is long enough that the enhanced polarization is not lost before 
the kinetics can be determined. Many key metabolites, such as glucose, have short relaxation times, and are dif-
ficult, or impossible, to image with dDNP for this reason. Since one of the fundamental limitations of 13C MRI is 
noise, it is logical that a method that reduces noise can greatly extend the utility of the technique. We show here 
that by considering the natural sparsity of the signal matrix, it is possible to get an order of magnitude improve-
ment in SNR using rank reduction of the signal tensor by tensor factorization. The increase in signal to noise is 
large enough that it may be possible perform dynamic 13C tracer imaging of some 13C tracers without DNP.

SVD Based Low Rank Denoising for Dynamic Single Voxel Spectroscopy
We start by considering the simplest example, the dynamic non-localized pulse-acquire experiment (the same 
method can also be applied to dynamic localized spectroscopic imaging), as it can be described by basic concepts 
of linear algebra15. A key observation is that after the injection of a tracer, the intensities of peaks change as the 
tracer is broken down to its metabolites but the chemical shifts are largely invariant. The time independence of the 
chemical shifts suggests the spectral and kinetic information are separable; an n x m signal matrix M can therefore 
be written as a linear combination of a small number of vectors representing spectra (u) multiplied by an equal 
number of vectors representing kinetics (v):

σ σ σ Σ= + =M u v u v u v VU (1)n
T T

n n
T

1 2
T

1 1 2 2

The singular value decomposition (SVD) theorem guarantees any matrix can be reconstructed fully from n 
vectors (where n < m) in this manner and the weights σ are equal to the square roots of the eigenvalues of MTM. 
In reality, the true signal is corrupted by noise. Noise reduction is achieved by reducing the rank of M, which is 
the vector space spanned by the columns (spectra) of M. More intuitively, the rank of M is the number of inde-
pendent spectra n in Eq. 1. A rank of 1 implies the signal can be completely described as a single spectrum which 
decays with a single time profile. The spectra and time profile can be any arbitrary shape, but it is uniform in this 
case - no individual peak in the spectra decays at a different rate than any other. A signal matrix with a rank of 
2 can be described as a linear combination of two spectra, with two distinct time profiles. A rank 3 matrix is a 
linear combination of three spectra with three distinct time profiles and so on. It is easy to see from this definition 
that we expect the rank (r) of the noise free matrix to be approximately equal to the number of metabolites in the 
sample, since noise is random and not correlated in either frequency or time. To get an approximation to M of 
rank r, we simply set the lowest r-n diagonal entries in Σ in Eq. 1 equal to zero. This result is guaranteed by the 
Eckart–Young–Mirsky theorem to be the best low rank approximation in the least squares sense to the original 
signal matrix M16. Since the noise-free solution is inherently low rank by the biochemistry of the problem, this 
solution is also likely to be an excellent approximation to the noise-free signal.

This method was first tested on data obtained from 41 mice by following the metabolism of a hyperpolarized 
13C tracer in a single pulse (not spatially resolved) MRI experiment. A volume of 300 µL of a 98 mM solution 
of hyperpolarized [1-13C]pyruvate was injected into the tail vein of nude mice bearing tumor xenografts in the 
left leg. Cancer cells exhibit the Warburg effect and have higher lactate than the normal tissue. The dissolution 
process involved in making hyperpolarized pyruvic acid is not always perfect, resulting in spectra of varying 
quality. Under optimized conditions, the signal is strong enough after DNP that the main pyruvate (173 ppm) to 
lactate (185 ppm) conversion can be easily quantified without additional signal processing. In others, the signal 
is barely detectable. Since the biochemistry is the same in each of these cases, we know a priori the peak positions 
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and approximate kinetics in the noisy data. This property makes the pyruvate dDNP experiment an excellent test 
platform for the accuracy of signal reconstruction.

SVD Based Low Rank Denoising Gives an Order of Magnitude Improvement in SNR in 
DNP 13C Tracer Experiments
Figure 1A shows an example of noisy pyruvate and lactate peaks in a dDNP experiment. The smaller peaks corre-
sponding to alanine and pyruvate hydrate are completely buried within the noise. Even averaging 5 scans together 
is insufficient to accurately quantify the lactate or to detect the minor peaks. Averaging also results in a significant 
loss of time resolution (Fig. 1A). Rank reduction by SVD gives a substantial (9.3 fold) improvement in signal to 
noise (Fig. 1C). If we define signal to noise as the maximum value of the most intense peak divided by the stand-
ard deviation of the signal in a region of the where no peak is expected, signal to noise increased by nearly an 
order of magnitude (mean = 9.4, median = 7.3) after rank reduction to a rank of 5 (Fig. 1D).

Figure 1.  SNR improvement in noisy data using rank reduction. (A) Dynamic data from a 13C pyruvate tracer 
single pulse dynamic nuclear polarization experiment with low signal to noise. (B) Signal from A averaged over 
5 scans. Even with averaging, the signal is too weak to be quantified accurately. (C) Signal reconstruction using 
rank reduction to a rank of 5. The peaks corresponding to the two main metabolic products pyruvate and lactate 
are now clearly visible in the reconstructed spectra, along with two minor peaks corresponding to alanine and 
pyruvate hydrate side products. (D) Histogram of the SNR improvement using rank reduction (r = 3) over 41 
mice. SNR is defined here as the intensity of the maximum signal divided by the standard deviation in a 40 point 
region of the spectrum where signal is known not to be present. (E,F) Slice from A and C showing the 9 fold 
SNR enhancement after reconstruction.
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Previously Undetectable Peaks can be Quantified by Low Rank Denoising
This level of noise reduction enables some measurements that were previously considered difficult. The bicar-
bonate provides information on the balance between the glycolytic and oxidative metabolic pathways17,18 and in 
combination with the CO2 signal can serve as a measure of intracellular pH19. The bicarbonate signal is difficult 
to detect in the raw spectra even in hyperpolarized experiments (Fig. 2A,C)17. After rank reduction by SVD, 
the bicarbonate signal becomes evident (Fig. 2B,D) and breakdown of pyruvate through the citric acid cycle 
in the oxidative phosphorylation pathway can be followed (Fig. 2F). The detection of the bicarbonate peak at 
the expected position shows that rank reduction in the kinetic domain gives an actual increase in sensitivity, as 
opposed to the cosmetic improvement that eliminates both noise and true weak signals from some other noise 
suppression techniques20.

Higher SNR Translates to More Precise Kinetic Fitting
The performance seen in Figs 1 and 2 may not be universal as noise reduction algorithms are often sensitive to the 
characteristics of the signal. In particular, large dynamic ranges are often problematic for many noise reduction 
algorithms20. To confirm the generality of the method, we also tested the method using hyperpolarized [2-13C]
pyruvate. C-1 labeled pyruvate restricts analysis to the first steps of the TCA cycle as the 13C label is released as 
13C-bicarbonate. Hyperpolarized [2-13C]pyruvate allows tracking further downstream in the TCA cycle and into 
other metabolic pathways17,21. The data using hyperpolarized [2-13C]pyruvate shows a dominant C-2 pyruvate 
peak at 208 ppm and weak peaks near the noise level corresponding to the downstream metabolites 5-glutamate 
and 1-acetyl-carnitine at 184 ppm and 175 ppm, among other peaks (Fig. S1B). The downstream metabolite peaks 

Figure 2.  Detection and quantification of weak peaks using rank reduction Left Raw data from a pyruvic acid 
DNP experiment from Fig. 1 with high signal to noise. Pyruvate (173 ppm) is converted to lactate (185 ppm). 
Only the pyruvate, lactate, and pyruvate hydrate signals are quantifiable. Right Rank 5 reconstruction of the raw 
data. In the raw data (A,C), the bicarbonate peak at 162.5 ppm is not detectable even though the overall signal 
to noise is high. Using the low rank approximation (B,D) a kinetic profile of bicarbonate metabolism can be 
obtained (F). No prior information about the bicarbonate signal or kinetics was used.
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are less than 1% of the substrate signal. Rank reduction to a rank of 5 independent species substantially improves 
the signal to noise of later time points where the weaker downstream metabolite peaks are no longer visible in the 
raw signal (compare Figs S1C to S1E). The signal to noise increase translates to a corresponding increase in the 
accuracy of the kinetic reconstruction. The 8.3-fold increase in SNR translates to a 50 fold increase in the preci-
sion of the influx rate k1 corresponding to the conversion of pyruvate to glutamate through the TCA cycle and a 
200 fold increase in the precision of the loss rate k2 corresponding to signal loss through relaxation and transfor-
mation to other metabolites. (compare Figs S1H to S1G). The same data was also tested with another state of the 
art denoising technique, wavelet shrinkage. While wavelet shrinkage using soft thresholding on individual spectra 
was unsuccessful in significantly reducing the noise (Fig. S1D), SVD rank reduction (Fig. S1E) was able to detect 
and quantify the weak peaks by using the additional information present in the entire time course.

Denoising Does Not Bias Relative Intensities or Kinetics
Rank reduction could introduce bias into curve-fitting of the kinetics, limiting its usefulness as a noise reduction 
technique. One method to test bias is to simulate realistic spectra and time courses and test the accuracy of the 
method by kinetic modeling in the presence of increasing amounts of noise. The pyruvate DNP experiment of 
Fig. 1 is used as a test case. Nonlinear regression is sensitive to small levels of noise and curve fitting was impre-
cise with even modest noise levels (Fig. S2). Since potential bias was difficult to measure with curve-fitting when 
the measurements are so imprecise, we used an alternate technique, the Area Under the Curve (AUC) approach, 
which is more robust against noise as the kinetic constants are derived from a ratiometric sum over all time 
points. Any potential bias introduced by SVD can therefore be measured at high levels of noise by this method 
even when traditional curve-fitting fails. The drawback is that transporter uptake cannot be quantified and the 
method is difficult to apply to models more complicated than three site exchange.

The accuracy of SVD reconstruction depends on the SNR of the metabolite peak. When the noise level is 
significantly less than the metabolite peak (SNR of the metabolite peak >10), no bias is introduced by SVD; the 
kinetic constants of all metabolites can be recovered accurately by the AUC method when SVD is used with a 
rank of 5 or higher (Fig. S2). Since the SNR of the pyruvate and lactate peaks is almost always above 10 in DNP 
experiments, any effect of SVD on these metabolites will be minimal in most cases. The kinetics of bicarbonate 
can also be recovered without bias at all levels of noise (Fig. S3A). At higher levels of noise; however, there is a 
slight tendency for the alanine signal to drift towards the kinetics of the stronger pyruvate signal (Fig. S3B). The 
pyruvate to alanine conversion rate is overestimated by ~ 10% when SVD reconstruction. The origin of this error 
is that at low SNR the 4th and 5th kinetic eigenvectors that differentiate the kinetics of alanine from the other sig-
nals become indistinguishable from noise. While this suggests the error could be corrected by using a larger rank 
in the reconstruction, adding more eigenvectors decreases the precision to the point that the method becomes 
ineffective. However, the effect is modest and confined to the alanine signal under ordinary conditions. Overall, 
the simulations suggest rank reduction by SVD does not introduce a significant bias into measurements of either 
kinetics or intensities in DNP experiments under normal conditions.

Synthetic data is less reliable for testing denoising algorithms than actual data due to the assumed idealities 
in the simulation. Noise in real data may show a frequency or time dependence that may differ from an ideal 
Gaussian white noise distribution22, and kinetics often do not exactly follow simple models. To test the accuracy 
of rank reduction on a more realistic sample, we performed a 13C MRI DNP experiment using hyperpolarized 
[1-13C]pyruvate, with excitation pulses alternating between a 10° pulse on odd scans and 2° pulses on even scans 
to generate high and low noise datasets from the same sample (Fig. 3). SVD reduction of the low flip angle sig-
nal to a rank of five gave a 3-fold increase in signal to noise. The kinetic profiles of the reconstructed pyruvate, 
pyruvate hydrate, and lactate signals, which have relatively strong signals that could be accurately measured even 
at low flip angles, closely match the high flip angle signal when normalized for intensity (Fig. 3B–D). The recon-
structed signal of alanine also nearly exactly matches the high-power signal despite the significant noise in the 
low power signal (Fig. 3E). Only the very weak bicarbonate signal, which is completely unrecognizable in the raw 
signal (Fig. 3F), shows a slight error in reconstruction.

Dynamic Single Voxel Spectroscopy of Glucose Metabolism without DNP
The results from DNP experiments encouraged us to try the SVD processing on molecules less amenable to 
hyperpolarization than pyruvate. Increased glucose uptake to meet the increased energetic and synthetic 
demands of increased cell growth is common feature of many cancers23,24, which makes glucose a primary target 
for metabolic imaging through both PET25 and MRI techniques like CEST9,26. Unfortunately, the short T1 of 
glucose causes rapid relaxation of the hyperpolarized signal, meaning most of the signal is lost before 13C glucose 
enters the glycolytic pathway27. Figure S4 shows the results from a tail vein injection of 50 µL of 100 mM uni-
formly 13C labeled glucose, deuterated at all non-exchangeable protons to increase T1 (see Table S1), into a mouse 
with a leg xenograft from the Hs766t metastatic pancreatic carcinoma cell line. Even with deuteration, most of the 
hyperpolarized signal is lost within the first ten seconds and unavailable for detection of downstream metabolic 
products (Fig. S4). Nothing besides the glucose peak can be detected in the raw signal (Fig. S4). In the signal rank 
reduced by SVD; however, a very faint signal of approximately 0.5% the intensity of the glucose peak can be seen 
at 184 ppm corresponding to the 1- position of lactate. Like the glutamate and bicarbonate signals before, SVD 
brings the weak lactate signal up to detectability.

With hyperpolarized glucose, the DNP scans were of limited value due to the rapid signal decay. The success 
of SVD rank reduction in suppressing noise encouraged us to image uniformly labeled glucose solutions without 
hyperpolarization. The first studies were non-localized spectroscopy experiments similar to the ones described 
above. Figure 4 shows the results before and after SVD rank reduction from a tail vein injection of 350 µL of 
555 mM uniformly 13C labeled glucose into a mouse with a leg xenograft from the Hs766t cell line taken on a 9.4 T 
scanner (see Materials and Methods for details). The scans show a gradual uptake of glucose and a subsequent 
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breakdown to lactate and alanine, reflecting transport limited uptake and the primarily aerobic glycolysis in this 
particular cell line28. Every peak of both the α- and β anomers of glucose were in the expected positions and could 
be identified and quantified (Fig. 4D–F). Glucose-6-phosphate was identified as possible metabolite by a shoulder 
of the 6′ carbon of glucose with distinctly different kinetics29 (Fig. 4E,F). In addition to alanine, lactate, glucose, 
and glucose-6-phosphate, a weak peak belonging to glycogen at 99 ppm29 was identified in some of the samples 
with high signal to noise. As a control, the experiment was repeated in a mouse without a tumor xenograft. 
No glucose peaks could be seen in the absence of a tumor (Fig. S5), confirming the signal originates from the 
enhanced uptake and retention of glucose in tumors. The overall time-scale of glucose metabolism approximately 
matched previous 13C measurements but with greatly increased time resolution30. Previous measurements were 
limited by signal-to-noise to taking one spectra every 5 minutes, while a quantifiable signal can be acquired using 
rank reduction every 3.2 s. The increased temporal resolution allowed measurement of the rate of uptake of glu-
cose, which was challenging with the previous 13C measurements, and difficult even with PET imaging31,32. The 
experiments in Fig. 4 were made on a 9.4 T scanner, which is not clinically widely available. With an eye towards 
eventual clinical translation, we made corresponding measurements at 3 T (Fig. S6). Although the lactate signal 
was not resolved, possibly because decoupling was not implemented, both glucose uptake and metabolism could 
be clearly quantified.

Extending SVD into Higher Dimensions through Tensor Decomposition
SVD is a strictly two-dimensional matrix method and cannot be used directly on images of this type. In order to 
adapt this method to higher dimensional data typical of dynamic, volumetric, and spectroscopic medical imaging 
experiments, a different method is proposed. The individual voxels can be treated independently and denoised 
by SVD but the fewer time points are acquired for each voxel in an imaging experiment. Because noise reduction 
power of SVD varies with the matrix size by Q / r, where Q is the smallest matrix dimension and r is the predicted 
rank33, using SVD to denoise individual voxels is not powerful enough for imaging experiments (see below).

Figure 3.  Accuracy of low rank SVD reconstruction. (A) Pyruvate signal after the injection of hyperpolarized 
1-13C pyruvic acid using 2° or 10° flip angles on the odd and even pulses respectively. Even with a reduction to one 
fifth the original signal the kinetic profile of pyruvate (B), lactate (C), pyruvate hydrate (D), and alanine (E) are 
reconstructed almost exactly by SVD (colored lines). The bicarbonate signal (F) contains only a minor error in the 
breakdown constant, despite the pyruvate hydrate signal being almost undetectable in the raw data (grey dots).
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Treating voxels independently ignores the correlation between voxels and the low rank structure of the over-
all image34. A multidimensional analog of the SVD, the Tucker Decomposition, can be used to find a low rank 
reconstruction of the entire image. Similar to the SVD, the Tucker Decomposition factorizes an n-dimensional 
tensor X into a core tensor G of the same dimensions as the original data array and a set of n factor matrices {A, 
B, C,…}35:

∑∑ ∑= ⋅ ⋅ ⋅ = ⊗ ⊗
= = =

  g a b cX G A B C
i

I

j

J

k

K

ijk i j k
1 1 1

where ⊗ refers to the tensor outer product. While SVD decomposes a data matrix into a linear combination of 
vectors, the Tucker Decomposition decomposes a higher dimensional data tensor into a multilinear combination 
of matrices corresponding to images and time-dependent spectra (see Fig. 5). Like the SVD, the core tensor can 
be truncated to suppress noise while retaining as much of the signal as possible. The use of a more complex basis 
allows the underlying structure of the data to be represented in a more compact and natural way, which translates 
to more effective denoising when the distribution of signals is not random36.

Dynamic CSI Imaging of Glucose Metabolism without DNP by Tensor Decomposition 

Figure 4.  Dynamic Single Voxel Spectroscopy of Glucose Metabolism without DNP (A) Raw 13C signal 
after injecting 50 mg of uniformly 13C labeled glucose into the tail vein of a mouse with a MiaPaca xenograft 
without hyperpolarization. (B) The same signal after rank reduction by SVD to a rank 5. (C) Raw 13C signal 
after 1000 seconds. (D) The same signal as (C) after rank reduction by SVD. While only the lipid signal could 
be detected clearly in the raw signal, every peak of both the α- and β anomers of glucose can be identified 
and quantified in rank reduced signal. Peaks belonging to lactate, alanine, and glucose 6-phosphate can also 
be identified in the rank reduced signal. (E) Stacked plot showing the evolution of the glucose signal in an 
experiment with high SNR. Glucose-6-Phosphate (G6P) can be identified as a growing shoulder along some 
of the glucose peaks. (G) Kinetics of the metabolite peaks identified from (D). No prior information about the 
chemical shifts of any peaks or kinetics was used in the reconstruction.
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Rank Reduction
Figure 6 shows the results from dynamic chemical shift imaging of a 50 mg bolus of [U-13C]glucose injected into 
the tail vein of a mouse with a leg xenograft from the MiaPaca cell taken at 9.4 T before and after tensor decompo-
sition. One image was taken every 48 s. The raw image is predominantly noise (Fig. 6C) with no discernable signal 
detectable in the voxel (Fig. 6E,F). A very weak glucose signal can be detected in some voxels by using voxel by 
voxel SVD with a high threshold for rank reduction (Fig. 6G,H), a roughly 3-fold improvement in SNR compared 
to the raw signal (see Fig. 6M). More aggressive rank reduction distorts the image by suppressing the signal in 
some of the voxels. The multi-dimensional nature of the tensor decomposition is essential to its success, unfolding 
the data into a 2D matrix and then using SVD low rank reconstruction (similar to the initial step of the LORA 
technique (see methods)37, (Fig. 5B) resulted in a 3-fold less improvement in SNR on this data set (Fig. 6I,J). Only 
by tensor factorization is a clear glucose signal detectable in each of the time traces, giving on average a ~31 fold 
improvement in SNR (Fig. 6M). The improvement in SNR is large enough that the SNR for each time point is 
actually higher than the SNR obtained by averaging over the entire time course of 90 min (450 scans) and suffi-
cient to image the lactate signal in addition to the lipid and glucose signals. The time traces from the CSI images 
show relatively rapid uptake of glucose within the tumor that reaches a plateau within approximately 10 min, a 
similar time scale as the non-localized experiment. Glucose uptake is almost entirely localized within the tumor 
with a clear separation from lipid signal originating from the gluteal fat pad in the upper leg (Fig. 6A). 13C lactate 
builds up slowly as glucose is broken down (Fig. 6C,D). To our knowledge, this represents the first successful 
dynamic imaging of tracer metabolism in vivo through 13C MRSI without dynamic nuclear polarization27.

Noise Reduction Without a Spectral Dimension
Spectroscopic imaging is difficult in hyperpolarization experiments due to the irreversible loss of hyperpolariza-
tion, which sets a limit on how many scans can be acquired before the signal becomes undetectable. One method 
of rapidly acquiring a metabolite specific image is to use a fast imaging sequence like EPI in combination with 
spectrally selective pulses switching the excitation profile on alternate scans to center on different metabolites. 
The result is a series of images that correspond to the distribution of the metabolite in time.

To test the usefulness of the low rank approximation on these types of experiments, as well as other dynamic 
MRI experiments where spectral information is not available, we tested low rank reconstruction on spectrally 
selective EPI images of lactate metabolism after the delivery of a bolus of hyperpolarized 13C-1-pyruvate. In 
the raw data, only the kidneys and part of the liver can be seen in the individual time points making the goal of 
following pyruvate metabolism at the organism level difficult. Using tensor reconstruction, the signal to noise is 
improved by a factor of ~3 (Fig. 7). With the increase in signal to noise, the heart became visible and the liver and 

Figure 5.  Methods of data reduction for a data tensor. For simplicity, the data tensor is shown here as a three 
dimensional object. The actual data tensor in the dynamic CSI experiment is four dimensional. (A) SVD 
of individual voxels. Each voxel is treated independently and rank reduced by SVD. (B) Matricization. The 
I × J × K × L four dimensional data tensor is unfolded into a two dimensional (I + J + K) × L matrix. The 
resulting matrix is then rank reduced by SVD and then refolded to the original dimensions of the data tensor 
(C) Tensor Decomposition. The I × J × K × L data tensor is factorized into a set of factor matrices multiplied by 
a sparse tensor with the same dimensions as the original data set. Rank reduction is obtained by truncating the 
values along each dimension.
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kidneys were more clearly defined. With the reconstructed model, it is possible to trace the production of lactate 
through the body, detected in the heart by frame 3 and being retained in the liver and kidneys until frame 12. 
While the increase in signal to noise is less impressive than in spectral images, it does show that tensor factoriza-
tion may be a viable technique for increasing the SNR in low signal, low complexity images.

Discussion
The possibility of using 13C MRI for molecular imaging was investigated early on in the history of MRI but is 
not used routinely once it became apparent that the SNR was insufficient for imaging. If this limitation can be 
overcome, 13C MRI with uniformly labeled 13C glucose may become an alternative/complementary technique 
to 18F-FDG PET. We show here that this limitation is not as formidable as may have once seemed. The key to 
this development is a relatively simple but efficient and robust post-processing noise suppression technique that 
takes advantage of the common underlying structure in metabolic imaging experiments, particularly those with 
a kinetic component. There have been a number of attempts at denoising individual magnetic resonance spec-
tra, either specifically in the context of MRSI or more generally throughout the NMR field. The methods can be 
divided into those that attempt to denoise the free induction decay (FID) signal in the time domain (Cadzow 
reduction38,39 aka HLSVD39,40, HTLS41–43 and Pade transform methods) and those that attempt to directly 
denoise the MR spectrum in the frequency domain. Time domain methods make the assumption that the signal 

Figure 6.  Dynamic 13C CSI Imaging of Glucose Metabolism without DNP. CSI imaging of a mouse leg Hs766t 
xenograft after a 50 mg glucose injection. An 8 × 8 image of the tumor bearing mouse leg was acquired by 
chemical shift imaging every 48 seconds for 90 minutes. The final image was zero-filled to 16 × 16. Each voxel is 
0.15 cm × 0.15 cm × 1.6 cm in size. (A) The glucose region of the spectra for scan 44 overlaid on the anatomical 
image after tensor decomposition. (B) The kinetics. (C,D) Contour maps created from the peak maximums 
of the glucose and lactate C signals at the time points indicated. While the raw images are uninterpretable, the 
images after tensor decomposition closely conforms to the boundaries of the tumor and a clear difference in 
the between the kinetics of glucose and lactate can be detected. Effect of signal processing on SNR. (E–L) The 
spectrum of central voxel at the indicated time points using different processing techniques. (E,F) No peaks 
are evident in the raw signal. (G,H) Using SVD on each voxel independently slightly improves SNR, enough 
to detect a very weak glucose signal (I,J) Introducing global correlations by matricizing the data tensor and 
using a single SVD simultaneously on all the data yields a detectable but still noisy glucose signal. (K,L) Tensor 
decomposition allows a more natural representation of the dour dimensional signal, which translates into 
greatly improved signal to noise (SNR = 27). (M) Histogram of the SNR with each technique over 14 mice. 
Tensor factorization yields a 31 fold improvement in SNR, approximately 3 times better than matricization. 
Error bars represent 95% confidence intervals. No prior information about the position of the peaks, the spatial 
distribution of the tumor, or the kinetics was assumed.
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originates from a small set of ideal Lorentzian peaks with well-defined frequencies, intensities, and line widths44. 
From this assumption, a variant of the rank reduction through SVD procedure is employed to distinguish true 
peaks from false noise peaks, using a sliding window to convert the FID signal into a matrix. In ideal conditions, 
this results in a perfect, noise-free spectrum. However, the true rank of the noise-free signal is difficult to estimate 
a priori from the FID. Imperfect shimming, magnetic susceptibility artifacts, or chemical exchange processes can 
cause a deviation from ideal line-shapes. Any peak with a non-ideal line-shape manifests as multiple Lorentzian 
peaks in the fitting procedure. For example, the residual water peak in 1H MR can only be modeled by at least 4 
Lorentzian peaks45. In many cases, weak peaks like the bicarbonate peak in Fig. 2 are suppressed by this proce-
dure in the presence of strong peaks since most of the degrees of freedom are used in modeling more accurately 
the line-shape unless the rank is set to a fairly large number, which has the undesirable consequence of creating 
spurious peaks. Quantitation may also be difficult in many cases unless the spectrum is largely noise free37. To 
surmount these problems, one variant of the LORA technique37,46–51 uses a low rank approximation in the spatial 
domain before attempting to denoise the FID of individual spectra. The method is not perfect in suppressing 
artifact peaks and necessarily results in a loss of spatial resolution.

Other methods denoise the MR spectrum directly. The total variation approach uses a smoothing operator 
to dampen sharp discontinuities that likely reflect noise52. Wavelet methods seek to decompose the signal into 
sub-signals of increasing complexity, with the highest complexity signals, which likely represent noise, thrown 
out53,54. Maximum entropy methods take a similar approach form the perspective of information theory. These 
methods have the disadvantage of low sensitivity in the sense that they tend to flatten weak peaks20 and may elim-
inate other fine details of the spectra.

Despite their differences, all of these methods operate in the level of individual spectra. Low rank denoising 
methods use the collective information in the entire image to achieve a higher SNR than denoising individual 
spectra alone37,46–51,55–57. By considering rank reduction in the kinetic domain specifically, where the signal matrix 
is particularly sparse and possesses a natural connection to the underlying chemistry, it is possible to achieve an 
order of magnitude or more improvements in SNR without sacrificing resolution or accuracy. This level of 
enhancement can detect dynamic signals in the presence of large amounts of noise (Fig. 1) and quantify weak 
signals even in the presence of much stronger signals (Fig. 2). For dDNP experiments, this opens up the possibil-
ity of using lower flip angles and doses than are currently being used. Since the transverse magnetization after the 

Figure 7.  Denoising of Image Data Using Tensor Decomposition. Top Left One slice from a 20 time point 
image set of lactate production following the injection of hyperpolarized pyruvate centered on the heart. The 
data was acquired using a spectral selective pulse sequence that yields a series of images for each metabolite, 
one image for each time point. Top Right The same data using the Tensor Decomposition; reducing the rank 
from [32, 32, 10, 20] to [16, 12, 8, 4]. Bottom The corresponding images from a slice centered on the liver and 
kidneys. In both cases a roughly 3 fold improvement in signal to noise is observed.
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ith pulse in dDNP depends on the flip angle α according to α α−sin( )cos ( ),i 1  improvements in SNR coupled with 
low flip angles may enable the detection of metabolites further downstream than is currently possible. Higher 
signal-to-noise is also useful in expanding the range of chemical probes amenable to DNP. Substrates with low 
polarization efficiencies or short T1 relaxation times like glucose (Figs 4 and 6) can be quantified more easily 
using SVD or tensor factorization. Finally, higher SNR may open up the possibility of off-site hyperpolarization 
through the brute force approach58,59, which would eliminate the largest barrier for clinical use.

Some challenges associated with the translation of 13C glucose imaging into a clinical technique remain to be 
overcome. The 2 g/kg dose used in this study is about three times larger than the maximum tolerated IV dose60. 
Whole body imaging as done in 18F-FDG PET/CT will be difficult with the technique. To get adequate resolution 
in humans, the number of k-space points will need to be larger, around 64 × 64 for a brain scan with a FOV of 
approximately 190 mm and 3 mm voxels, for example. This will result in unacceptably long acquisition time for 
each scan if conventional CSI imaging is used since each k-space point is phase encoded and requires a separate 
RF excitation and data acquisition. These are not insurmountable difficulties and could possibly be addressed 
with a faster imaging sequence, improved 1H decoupling, and parallel imaging.

Materials and Methods
Mouse Models.  The animal experiments were conducted according to a protocol approved by the Animal 
Research Advisory Committee of the NIH (RBB-159-2SA) in accordance with the National Institutes of Health 
Guidelines for Animal Research. Female athymic nude mice weighing approximately 26 g were supplied by the 
Frederick Cancer Research Center, Animal Production (Frederick, MD) and housed with ad libitum access to 
NIH Rodent Diet #31 Open Formula (Envigo) and water on a 12-hour light/dark cycle. Xenografts were gener-
ated by the subcutaneous injection of 3 × 106 MiaPaCa-2 (America Type Cell Collection (ATCC), Manassas, VA, 
USA) or Hs766t (Threshold Pharmaceuticals, Redwood City, CA, USA) pancreatic ductal adenocarcinoma cells. 
Both cell lines were tested in May 2013 and authenticated by IDEXX RADIL (Columbia, MO) using a panel of 
microsatellite markers

13C MRS with Dynamic Nuclear Polarization.  [1-13C]pyruvic acid (30 μL), containing 15 mM TAM 
and 2.5 mM gadolinium chelate ProHance (Bracco Diagnostics, Milano, Italy), was hyperpolarized at 3.35 T and 
1.4 K using the Hypersense DNP polarizer (Oxford Instruments, Abingdon, UK) according to the manufacturer’s 
instructions. Typical polarization efficiencies were around 20%. After 40–60 min, the hyperpolarized sample was 
rapidly dissolved in 4.5 mL of a superheated HEPES based alkaline buffer. The dissolution buffer was neutralized 
with NaOH to pH 7.4. The hyperpolarized [1-13C]pyruvate solution (96 mM) was intravenously injected through 
a catheter placed in the tail vein of the mouse (12 μL/g body weight). Hyperpolarized 13C MRI studies were per-
formed on a 3 T scanner (MR Solutions, Guildford, UK) using a home-built 13C solenoid leg coil. After the rapid 
injection of hyperpolarized [1-13C]pyruvate, spectra were acquired every second for 240 s using a single pulse 
acquire sequence with a sweep width of 3.3 kHz and 256 FID points.

Dynamic 13C Glucose MRS without DNP.  Magnetic resonance spectroscopy was performed on either 
a 9.4 T Biospec 94/30 horizontal scanner or a MR Solutions 3 T horizontal scanner. The coil assembly for the 
mouse leg consists of 3 16 mm independent wire loops that are each terminated with a double balanced tune/
match network to the 50 Ohm characteristic impedance of the coaxial cable. The two 13C coils are geometrically 
decoupled because they have their radiofrequency field orthogonally oriented. Those coils are fed with radiofre-
quency currents with a 90° phase difference. One of the coils has a solenoidal shape and the other is constructed 
by two saddle loops with 120° arcs (quasi-Helmholtz pair), arranged coaxially to the solenoidal coil. The 1H coil is 
a double sized surface coil coaxially arranged to the solenoidal coil. The proton coil has integrated 13C frequency 
traps and the 13C coils have integrated 1H frequency traps to minimize coupling between them. A bandpass filter 
was used to minimize contamination of the 13C signal by the 1H decoupling pulse.

Each mouse was anesthetized during imaging with isoflurane 1.5–2.0% administered as a gaseous mixture of 
70% N2 and 30% and kept warm using a circulating hot water bath. Both respiration and temperature were mon-
itored continuously through the experiment and the degree of anesthesia adjusted to keep respiration and body 
temperature within a normal physiological range of 35–37 °C and 60–90 breaths per min. Anatomical images 
were acquired with a RARE fast spin echo sequence61 with 15 256 × 256 slices of 24 mm × 24 mm × 1 mm size 
with 8 echoes per acquisition, a 3 s repetition time, and an effective sweep width of 50,000 Hz. Samples were 
shimmed to 20 Hz on the 9.4 T with first and second order shims using the FASTMAP procedure62. Non-localized 
spectra of glucose without DNP at 9.4 T were acquired with the NSPECT pulse-acquire sequence using maximum 
receiver gain, a repetition time of 50 ms, Ernst Angle excitation of 12°, 256 FID points, a sweep width of 198.6 
ppm, 16 averages per scan, and 4500 scans for a total acquisition time of 1 hour. MLEV16 decoupling63,64 was 
applied during acquisition using -20 dB of decoupling power and a 0.2 ms decoupling element. The decoupling 
pulse was centered on the main proton lipid resonance at 1.3 ppm. Data at 3 T was acquired similarly except 
decoupling could not be applied efficiently on this scanner and was omitted.

Signal processing.  For non-localized (two dimensional) experiments, the first 67 points of the FID in the 
time dimension were removed to eliminate the distortion from the group delay corresponding to the 13 ms dead 
time of the Bruker 9.4 T65. The FID was Fourier transformed and the phase estimated by the entropy minimi-
zation method of Chen et al.66, as implemented in MatNMR67. The baseline was estimated by a modification of 
the Dietrich first derivative method to generate a binary mask of baseline points68, followed by spline interpo-
lation using the Whittaker smoother69 to generate a smooth baseline curve70. The final correction adjusts for 
the limited number of points in the frequency dimension by continuation of the FID by linear prediction. The 
189 points of the FID remaining after truncation in the first step were extrapolated to 1024 points using the 
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“forward-backward” linear prediction method of Zhu and Bax71. Fourier transforming the FID of the transients 
from each voxel individually generated the final spectrum. The method proved difficult to apply to the chemical 
shift imaging experiments and no preprocessing was applied. Spectra for chemical shift imaging experiments are 
shown in magnitude mode. Wavelet shrinkage was tested using using Daubechies S8 wavelets72 with soft minimax 
thresholding73 on individual spectra.

Low Rank Reconstruction.  For the two-dimensional signal matrices generated by non-localized pulse 
acquire experiments, SVD was applied to the FID in the time domain after the removal of the group delay artifact. 
The rank reduced signal was generated from the domain by truncating the SVD by setting the N-r diagonal values 
of the singular value matrix S to 0, where N is the number of rows in S and r is the predicted rank. The predicted 
rank was set to 5 unless otherwise specified, which is equal to the number of independent species in the pyru-
vate DNP experiment. For the four-dimensional imaging experiments, three methods were tried as described in 
Fig. 5. The magnitude signal was used in each case. (1) Applying truncated SVD to each voxel independently (2) 
Unfolding the four-dimensional tensor into a two-dimensional matrix and applying truncated SVD (a simplified 
version of LORA37) (3) Factorizing the four-dimensional tensor by tensor decomposition. The predicted rank was 
set to 10 for voxel-by-voxel SVD and 16 for the matricization technique, which is the smallest rank which does 
not introduce substantial distortions in the time averaged image (for example, the inappropriate bleed through 
of the lipid signal into the tumor mass) as measured by a comparison of the reconstructed and raw time averaged 
signals. Tensor decomposition was achieved through higher order orthogonal iteration74 in the Matlab NWay 
package75. A tensor rank of 8 in the temporal and spatial dimensions and 6 in each spatial dimension was used 
for the glucose and CSI images.
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