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Impact of Buffer Layer Process and 
Na on Shunt Paths of Monolithic 
Series-connected CIGSSe Thin Film 
Solar Cells
Chan Bin Mo1,2, Se Jin Park1, Soohyun Bae1, Mi-hwa Lim3, Junggyu Nam3, Dongseop Kim3, 
JungYup Yang4, Dongchul Suh5, Byoung Koun Min  6, Donghwan Kim1, Yoonmook Kang6, 
Young-Su Kim3 & Hae-seok Lee6

The illuminated current-voltage characteristics of Cu(In,Ga)(S,Se)2 (CIGSSe) thin film solar cells 
fabricated using two different buffer layer processes: chemical bath deposition (CBD) and atomic layer 
deposition (ALD) were investigated. The CIGSSe solar cell with the ALD buffer showed comparable 
conversion efficiency to the CIGSSe solar cell with CBD buffer but lower shunt resistance even though 
it showed lower point shunt defect density as measured in electroluminescence. The shunt paths were 
investigated in detail by capturing the high-resolution dark lock-in thermography images, resolving the 
shunt resistance contributions of the scribing patterns (P1, P3), and depth profiling of the constituent 
elements. It was found that the concentration of Na from the soda-lime glass substrate played a key 
role in controlling the shunt paths. In the ALD process, Na segregated at the surface of CIGSSe and 
contributed to the increase in the shunt current through P1 and P3, resulting in a reduction in the fill 
factor of the CIGSSe solar cells.

The quality and properties of buffer layers in Cu(In,Ga)(S,Se)2 (CIGSSe) solar cells are critical from the viewpoint 
of the diode junction quality, quantum efficiency, series resistance, and shunt resistance1–6. Various efforts have 
been made to develop materials and processes to improve the band alignment, coverage, and uniformities in 
the composition and thickness of buffer layers. Among the commonly used buffer layer materials, ZnS has been 
investigated extensively owing to its low cost, non-toxicity, and good transparency at short wavelengths. In addi-
tion, ZnS-based buffers show the highest cell efficiencies among CdS-free buffers. ZnS-based buffers are usually 
fabricated by chemical bath deposition (CBD) method. However, the CBD method has some limitations such as 
the difficulty in controlling the uniformity and repeatability and the wastage of a large amount of chemicals. In 
order to overcome these limitations, the atomic layer deposition (ALD) method, which offers conformal cover-
age, self-limiting surface reactions, and the ease of controlling the buffer layer composition, has been developed. 
Thus, the ALD method is a potential alternative to the CBD method for the in-line production of buffer layers. 
However, there are some limitations of this method. Solar cells with ZnS-based buffer layers developed by the 
ALD method show low fill factors because of their shunt resistance, which depends on the buffer layer composi-
tion. However, the shunt paths of such solar cells have not been investigated in detail3–5. Such a low shunt resist-
ance can be crucial in monolithic series-connected solar cells because of the inclusion of new shunt paths such as 
scribing lines, which are not necessarily observed in lab-scale solar cells. The first scribing pattern (P1) is a region 
where the electrode, Mo, is removed by a series of laser shots. Thus, any imperfections such as micro-bridging or 
debris of Mo can be primary source of the shunt paths in P1. In addition, Na from the soda-lime glass substrate 
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can diffuse into CIGSSe absorber layer on P1 more easily than that on Mo electrode layer. The Na concentration 
difference in CIGSSe absorber layer can affect level of the shunt resistance because it causes change in electrical 
properties of absorber layer including the carrier concentration. The third scribing pattern (P3) is a region where 
the TCO/Buffer/CIGSSe layers are removed by a needle. Thus, any residues or micro-bridging of TCO can be 
primary source of the shunt path in P3. In addition, the mechanical scribing using a needle can cause formation 
of many defects in the buffer layer which prevents shunting between the TCO and the CIGSSe absorber layer.

In this paper, we used the ALD method to deposit a conformal and uniform buffer layer, Zn(S,O) thin film on 
CIGSSe absorber layer. The characteristics of CIGSSe solar cell with ALD buffer were investigated and compared 
to CIGSSe solar cell with CBD buffer. In order to explain the difference in fill factor loss mechanism of the CIGSSe 
solar cells via two different buffer layer processes, the shunt paths were investigated in detail by capturing the 
high-resolution dark lock-in thermography (DLIT) images, resolving the shunt resistance contributions of the 
scribing patterns (P1, P3), and depth profiling of the constituent elements.

Results
Microstructures of the buffer layers. Figure 1 shows the cross-sectional scanning electron microscopy 
(SEM) image of the buffer layers after cleaving the completed CIGSSe solar cells with the transparent conductive 
oxide (TCO) layer and the top view of the buffer layers on the solar cells immediately after each buffer process. 
The thickness of the CBD buffer could not be accurately measured from the SEM image, while the thickness of the 
ALD buffer, as indicated by the arrow in Fig. 1(c), was continuous throughout the sample and was almost equal to 
the designed thickness (30 nm). From the top view images of the buffer layers, it can be observed that both of the 
CBD and ALD buffer layer showed a good coverage throughout the CIGSSe absorber layer. The sulfur to oxygen 
(S/(S + O)) atomic ratio and thickness of the ALD buffer layers was controlled by adjusting the gas pulsing ratio 
and cycle numbers, as reported previously by other researchers2–5. The S/(S + O) atomic ratio was about 0.27 and 
the thickness was 30 nm (Supplementary Fig. S1) when H2S/(H2S + H2O) gas pulse ratio was 1/4. The calibrated 
X-ray fluorescence (XRF) measurements revealed that the thickness of the CBD buffer was about 5 nm. The 
5G-scale (900 mm × 1600 mm) thickness uniformity of ALD buffer layers (20%) were slightly better than CBD 
layer (25%) (Supplementary Figs S1 and S2).

Illuminated I–V characteristics. At 5G scales, the uniformity issues of thin films always exist not only 
within the glass but also between the process batches. Thus, the CIGSSe solar cells were fabricated three times 
using the same process but in different batches in order to compare the characteristics of the CIGSSe solar cells 
with CBD and ALD buffer layers by means of statistical analysis. The illuminated I–V parameters of the CIGSSe 
solar cells (with the dimensions of 300 mm × 320 mm evenly cleaved from the corresponding 5G-size solar cells) 
were measured and calculated by using Sunshade method7. Figure 2 shows the box plots of the photo conversion 
efficiencies, open circuit voltages, short circuit currents, fill factors, shunt resistances, series resistances, and diode 
ideality factors for the CIGSSe solar cells with the CBD and ALD buffer layers.

Figure 1. SEM images of the CIGSSe solar cells with two different buffer layers, cross-sectional view images 
of (a) the CBD buffer and (b) the ALD buffer, top view images of (c) the CBD buffer and (d) the ALD buffer on 
CIGSSe.
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It is noteworthy that the CIGSSe solar cell with the ALD buffer showed lower shunt resistance and higher 
series resistance and diode ideality factor than the CIGSSe solar cell with the CBD buffer. The open circuit volt-
ages and short circuit currents of the two solar cells were similar. The CIGSSe solar cell with the ALD buffer 
showed higher series resistance because of its higher buffer thickness. This was confirmed by varying the thick-
ness of the ALD buffer layer from 5 to 40 nm (Supplementary Fig. S3). Lavrenko et al. reported that the series 
resistance of sputtered Zn(O,S) buffer layers increases with an increase in the sulfur content to about 40%6. In this 
study, the sulfur content of the ALD buffer was about 27%, and hence its effect on the series resistance was not sig-
nificant. However, the lower shunt resistance of the solar cell with the ALD buffer in spite of the higher thickness 
and better uniformity of the ALD layer than that of the CBD layer as shown in Fig. 1 and XRF measurement is dif-
ficult to explain. Kobayashi et al. reported values of shunt resistance (below 1,000 Ωcm2) at the H2S/(H2S + H2O)  

Figure 2. Illuminated I–V parameters of the CIGSSe solar cells with CBD and ALD buffers fabricated in three 
distinct process batches.
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ratio of 0.06 and 0.113. They mentioned that the recombination at the absorber/buffer interface can cause change 
in the shunt resistance but did not investigate the shunt paths and mechanisms in detail. Such low shunt resist-
ances can affect the fill factor loss of solar cells, which is calculated using the equations reported by Green et al.  
The fill factor loss by the shunt resistance increases with a decrease in the shunt resistance and the absolute value 
becomes larger than 1% when the shunt resistance is decreased to less than 1,000 Ωcm2, which is critical for 
obtaining high-efficiency solar cells8. The deviation becomes much larger than 2% when the shunt resistance 
becomes less than 500 Ωcm2 (Supplementary Table S1). In addition, such a low shunt resistance can cause over-
estimation of the diode ideality factor when they are measured by Sunshade method. This is because under shade 
conditions, the low shunt resistance of solar cells decreases their open circuit voltage, as reported by Park et al.7. 
Thus, high diode ideality factor of CIGSSe solar cell with ALD buffer is attributed not to junction recombination 
but to the measurement error caused by low shunt resistance.

Normally, it is believed that CIGS solar cells with thick buffer layers show high shunt resistances because of 
the formation of a large number of Ohmic shunt paths and a weak diode by the locally thin and blank buffer layer. 
This simple relationship between the thickness of a buffer layer and its shunt resistance is valid only when the 
contributions from the other shunt paths such as pinholes in absorber layer and scribing defects are negligible. 
However, in the case of monolithic series-connected solar cells, the imperfections in the scribing patterns such as 
P1 and P3 can cause low shunt resistance, resulting in a significant decrease in the fill factor.

Analysis of shunt paths by imaging technologies. Figure 3(a,b) show the electroluminescence (EL) 
images of the CIGSSe solar cells with the two different buffer layers. The CIGSSe solar cell with the CBD buffer 
layer (Fig. 4(a)) showed many point defects (dark spots in the inset). These point defects were mainly caused 
by the pinholes in the CIGSSe layer and the nodule-type defects (Fig. 4(c,d)), which have also been reported by 
other researchers9,10. Some of the defects originated from P1 and P3 could be distinguished as the crosstalk with 
the neighbouring cells in the EL image, as reported by Misic et al.11,12. The broad dark area in the EL image can 
be attributed to the inhomogeneities of the CIGSSe layer such as low band gap and lifetime or to the high series 
resistance. The EL of the solar cells was measured using a Si-based charge-coupled device as it is described in 
Method section. Thus, if the band gap of CIGSSe is lower than the Si the radiation photon energy is not enough 
to excite the Si CCD. The radiative recombination rate in a semiconductor is proportional to the recombination 
constant and the excess carrier density. However, other recombination mechanisms such as Shockley-Read-Hall 
(SRH) and Auger recombinations show much higher recombination rate than radiative recombination, which 
result in low carrier lifetime. Thus, the EL intensity depends on the carrier lifetime when SRH recombination 
dominates the radiative recombination due to high density of defects in CIGSSe absorber layer. However, the 
detailed analysis of this dark area is beyond the scope of this study.

On the other hand, in the case of the CIGSSe solar cell with the ALD buffer, there were only a few defects, 
which were very small as compared to those of the CBD buffer (Fig. 3(b)). It indicates that the conformal 

Figure 3. EL image of CIGSSe solar cells with the (a) CBD buffer, (b) ALD buffer and (c), (d) microstructures 
of the point defects in (a).
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30 nm-thick ALD buffer layer prevented the formation of point defects. Nevertheless, the shunt resistance of 
the CIGSSe solar cell with the ALD buffer layer was much lower than that of the CIGSSe solar cell with the CBD 
buffer layer.

In order to find the cause of the low shunt resistance of the CIGSSe solar cell with the ALD buffer layer, we 
captured the high-resolution dark lock-in thermography (DLIT) images of both the CIGSSe solar cells (Fig. 4). 
Figure 4(a) shows the location of P1 and P3 in the CIGSSe solar cells. The temperature change and joule heating 
caused by the shunting current through the active cell and scribing patterns (P1, P3) were observed at reverse 
bias. A reverse bias of −90 V was used for all the samples with 65 cells in a series connection. The peak tem-
perature of the CIGSSe solar cell with the CBD buffer was 12 mK, while that of the CIGSSe solar cell with the 
ALD buffer was 23 mK. This difference in the peak temperatures of the CIGSSe solar cells can be attributed to 
the difference in their shunt resistances. At a given bias, a low shunt resistance gives rise to a high current, thus 
enhancing the joule heating, which is proportional to the square of the current. In the case of the CIGSSe solar 
cell with the ALD buffer layer, the thermal heating through both P1 and P3 could be clearly seen. On the other 
hand, in the case of the CIGSSe solar cell with the CBD buffer layer, the thermal heating through P1 was not clear 
(Fig. 4(b,c)). Misic et al. reported experimental and simulated DLIT images with various shunting paths through 
P3 and P1, and bright spots and heat centres could be observed when the shunting paths were formed by bridging 
between the Mo or TCO layers11,12. However, the DLIT images obtained in this study did not match with any 
of the simulated cases, indicating that the shunt paths in this study were not formed by a direct Ohmic contact 
between the conductors (Mo, TCO).

When shunting was done through P1, the only remaining shunt path was CIGSSe itself if the Mo layer was 
well separated. The difference in the conductivity of CIGSSe at various compositions can result in different 
degrees of shunting at P1. The current paths through P1: 1) Mo(left cell)-CIGSSe(bottom)-Mo(right cell), 2) 
Mo-CIGSSe(top)-TCO are shown in Fig. 5(a). Both the paths did not have any buffer layer or electronic barrier 
to prevent shunting.

Quantitative measurement of shunt resistance contributions. It is not easy to quantitatively deter-
mine the shunt resistance contributions from P1 and P3 directly from the DLIT images. Thus, a new approach 
was needed to break down the shunt paths and their contributions. Allsop et al. reported that the fill factor of 
solar cells changes dramatically during the damp heat tests and recovers after rescribing by the removal of the 
damaged cell portions around the scribe line13. However, new scribing lines also can be new shunting paths. 
Hence, we used another approach to remove the current paths through the scribing lines.

In the case of shunting at P3, the current flowed through the TCO layer, and thus, the shunt path could be 
effectively eliminated by removing the TCO layer on P3. In the case of shunting at P1, the current flowed through 

Figure 4. CIGSSe solar cell coupon (a) and DLIT images at reverse bias for the CIGSSe solar cell with (b) 
the CBD buffer and (c) the ALD buffer. The bottom white lines are the horizontal line profiles of temperature 
throughout the samples.
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TCO and the series-connected Mo. Hence, the shunt path could be effectively eliminated by removing the TCO 
layer on P1 and probing the TCO layer at the centre of the solar cell, as shown in Fig. 5(b). The TCO layer (0.5 mm 
from the scribing line edge) on each pattern was etched out by HCl (5%, at room temperature) while the other 
regions were masked using Polyimide tape. The shunt resistance was measured by fitting the dark I–V curve using 
a one-diode model and the newly defined cell area. Using this approach, the contribution of each shunting path 
could be defined quantitatively (detailed calculations are described in Supplementary Table S2). The removed area 
of TCO includes active area of solar cell beside the scribing line which can results in errors in shunt resistance 
measurement. However, the width of thermal heating at P1 and P3 was less than 0.5 mm and the magnitude of the 
temperature is one order larger than that of the active area, as shown in the DLIT images. Thus, it can be assumed 
that the shunting current through the removed active area near the scribing line was almost negligible.

Figure 5(c,d) show the measured and calculated shunt resistance contributions of P1 and P3, respectively. The 
shunt resistances of the as-prepared CIGSSe solar cell coupons (10 mm in length) with the CBD and ALD buffer 
layers were 1,194 Ωcm2 and 759 Ωcm2, respectively. When the TCO layer on P3 was etched out (P3-removed 
Case), the shunt resistances of the CIGSSe solar cells with the CBD and ALD buffer layers were 4,476 Ωcm2 and 
3,224 Ωcm2, respectively. The shunt resistance contribution of P3 was calculated to be 1,569 Ωcm2 and 1,001 Ωcm2 
for the CIGSSe solar cells with the CBD and ALD buffer layers, respectively. When the TCO layers on both P3 
and P1 were etched out (P1 and P3-removed Case), the shunt resistances for the CIGSSe solar cells with the CBD 
and ALD buffer layers were 17,672 Ωcm2 and 95,646 Ωcm2, respectively. It is surprising that the CIGSSe solar cell 
with the ALD buffer layer showed a very high shunt resistance (almost five times higher than that of the CIGSSe 
solar cell with the CBD buffer layer). It means that the ALD buffer prevents any tunnelling and recombination 
effectively. The contribution from P1 was calculated be 6,984 Ωcm2 for the CIGSSe solar cell with the CBD buffer 
layer and 3,898 Ωcm2 for the CIGSSe solar cell with the ALD buffer layer. The contribution from both P1 and P3 
was calculated to be 1,274 Ωcm2 for the CIGSSe solar cell with the CBD buffer layer and 766 Ωcm2 for the CIGSSe 
solar cell with the ALD buffer layer. On the basis of these results, it can be said that the shunt resistance from the 
scribing patterns was more severe in the case of the ALD buffer than that in the case of the CBD buffer. Any com-
positional change in the solar cell layers can affect the parasitic current paths. Hence, depth profiling was carried 
out by secondary ion mass spectroscopy (SIMS).

Origin of low shunt resistance in the CIGSSe solar cell with the ALD buffer. Figure 6 shows the 
depth profile of CIGSSe solar cell focused on Na which is originated via diffusion from the soda-lime glass sub-
strate and affects electrical properties of CIGGSe absorber layer as mentioned in the introduction part. CIGSSe 
absorber layers for the CBD and ALD buffers were prepared in the same batch using the same glass, Mo, precursor, 
and selenization/sulfurization processes. Hence, the compositions of Cu, In, Ga, Se, and S were the same for both 

Figure 5. (a) Schematic for the shunt paths, (b) measurement of the shunt resistances by sequentially etching 
out TCO over P3 and P1, (c) the measured shunt resistance, and (d) calculated shunt resistance contributions of 
P1 and P3 (RSH(P1, P3), by only P3(RSH(P3) and by only P1(RSH(P1)).
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the layers. In Fig. 6(a) it can be seen clearly that at the concentration of Na at the surface of the CIGSSe layer was 
much higher than that in the bulk region. This is similar with the results reported previously14–17. Furthermore, 
the surface concentration of Na was higher in the ALD buffer than that in the CBD buffer. The thickness of the 
Na-rich CIGSSe layer (compared to CBD buffer) was almost 500 nm, which is about 1/3 of the total thickness of 
the CIGSSe layer. It was expected that the electrical properties of the CIGSSe layer can be affected significantly 
if the Na-rich surface layer has different electrical properties compared to normal layer. Theelen et al. reported 
that the degradation of Na-rich CIGSe2 solar cells affects their shunt resistance by the accumulation of Na+ at the 
depletion region, which results in the formation of shunt paths and a subsequent decrease in the shunt resistance 
from 2,505 Ω to 9 Ω17. Na-poor samples on the other hand, showed a small change from 1,787 Ω to 135 Ω. Rockett 
reported that in polycrystalline CIGS layers, Na tends to accumulate at the grain boundaries and reduces the 
compensating defects and usually enhances the carrier concentrations, resulting in a decrease in the resistivity 
of the grain boundaries14. Based on the SIMS profiles of the CIGSSe layers and the previous reports, it can be 
assumed that the shunt resistance through the P1 region was reduced by the low resistivity of the CIGSSe layer 
caused by reduction of the internal field in the depletion region or by an increase in the conductivity of the grain 
boundaries by Na.

Witte et al. reported that annealing at elevated temperatures (200 °C or 300 °C) induces the migration of Na 
to the absorber/Zn(O,S) buffer interface16. However, in this study, the temperature required for the ALD process 
was only 110–120 °C. Theelen et al. reported that the presence of water enables the release of Na+ ions through 
the hydrolysis of the bonds between CIGS and Na17. Rockett proposed that Na can be effectively removed from 
the surface of CIGS polycrystals by a water rinse14. However, there are no specific reports on this phenomenon. 
Thus, in order to investigate the origin of the difference in the Na concentration at the surface of CIGSSe with 
the two buffer layers, we introduced an additional step for the fabrication of the CIGSSe solar cell with the ALD 
layer (between the CIGSSe preparation and ALD). The CIGSSe layer was rinsed in deionized(DI) water (60 °C, 
8 minutes) and NH4OH(1 M, 60 °C, 8 minutes) baths, which were also used in the CBD process. Figure 6(b) shows 
the depth profile of Na for the CIGSSe solar cells with the ALD buffer after rinsing in DI water and NH4OH baths. 

Figure 6. Depth profile for (a) the CIGSSe solar cells with CBD and ALD buffers obtained by SIMS, (b) ALD 
buffer after rinsing in DI water and NH4OH baths.
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The figure shows that in both the baths, reduction in the Na concentrations at the CIGSSe surface was similar to 
that observed in the case of CBD.

As a result, the shunt resistance median of CIGSSe with the ALD buffer increased to more than 1,000 Ωcm2. 
This value is similar to the shunt resistance median of the solar cell with the CBD buffer (Fig. 7). In addition to 
the shunt resistance, the other parameters including the diode ideality factor, fill factor, open circuit voltage, short 
circuit current, and conversion efficiency were improved significantly.

Figure 7. Illuminated I–V parameters of the CIGSSe solar cells with CBD and ALD buffers and ALD buffer 
after cleaning in DI water and NH4OH baths.
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Discussion
The improved performance of the CIGSSe solar cell can be mainly attributed to the removal of shunt paths. 
Theelen et al. reported performance degradation due to the effect of Na+ ions on the internal electrical field of the 
depletion region and the shunt spots on the surface of TCO17. However, in this study, it was hard to find shunt 
paths which were observed as the formation of spots as they reported. Timmo et al. reported that NH4OH etches 
Cu and the detrimental secondary phases, which can affect the quality of heterojunctions18. However, in this 
study, rinsing with DI water which cannot etch Cu showed the same effect with rinsing at NH4OH. Thus, the 
etching of Cu and other secondary phases was likely not the main reason for the improved performance of the 
CIGSSe solar cell with the ALD buffer. On the basis of the results obtained from the quantitative measurement of 
the shunt resistances at each scribing pattern and Na profiles under different rinsing conditions, it can be stated 
that the dominant shunt paths of the CIGSSe solar cell with the ALD buffer layer were P1 and P3 scribing patterns 
because of the high concentration of Na at the CIGSSe surface. The other shunt paths such as the Ohmic point 
defects and weak diodes were effectively blocked by the 30 nm-thick conformal ALD buffer layer as shown in 
Fig. 3. Figure 5(a) shows the schematic of the shunt paths through P1. The CIGSSe surface region at P1 was the 
Mo-to-TCO current path. There was no buffer layer between the edge of the Na-rich CIGSSe layer and TCO 
because TCO was formed after P2 mechanical scribing, which removed the CIGSSe/buffer multilayer. 
Furthermore, the thickness of the Na-rich CIGSSe layer was almost 1/3 of the total CIGSSe thickness, as shown 
in the depth profiles. Thus, the effect of this layer was significant and the resistance of the CIGSSe layer at P1 
region, Rshunt

P1  could be almost halved (from 6,984 Ωcm2 to 3,898 Ωcm2), as shown in Fig. 5. Many defects existed 
in the P3 region because of the mechanical scribing of the CIGSSe/buffer/TCO multilayer, which resulted in the 
formation of cracks and residues and the intermixing of the layers. This resulted in the formation of parasitic 
currents paths such as weak diodes or tunneling9,19.

It is well known that the quality of ALD buffers depends on the surface conditions of the absorber. Hariskos 
et al. reported that the absorber storage history is crucial for device performance1. They reported that vacuum 
storage is the best method to obtain the optimal surface conditions for absorbers. On the other hand, Hong et al. 
etched the absorber layer, Cu2ZnSn(S,Se)4 by KCN just before the samples were transferred to the ALD chamber5.  
None of them reported the effects of the storage history and pre-treatment processes of absorbers (prior to the 
buffer layer deposition) on their Na profile. In this study, it was confirmed that Na concentration at the CIGSSe 
absorber surface is very sensitive to chemicals and it can affect electrical properties of CIGSSe solar cells. The 
effect of Na varies according to the concentration of Na in the absorber layer depending on the deposition pro-
cesses. Thus, both of ALD buffer quality and Na profile should be considered for the best performance of the 
CIGSSe solar cell with ALD buffer.

In summary, we fabricated CIGSSe solar cells with buffer layers via two different processes: CBD and ALD. 
The CIGSSe solar cell with the ALD buffer showed a significantly lower shunt resistance, and hence a lower fill 
factor than the solar cell with the CBD buffer. The EL images showed that the CIGSSe solar cell with the ALD 
buffer had lesser number of point defects than the solar cell with the CBD buffer. In order to investigate the origin 
of shunt paths, high-resolution DLIT images of the solar cells were captured focusing on the scribing patterns (P1, 
P3), and the shunt paths were resolved to calculate for the first time, the quantitative contribution of each pattern. 
It was found that most of the shunt resistance originated from the scribing patterns and their contributions were 
more dominant in the CIGSSe solar cell with the ALD buffer. Further investigations on the depth profiles of the 
CIGSSe solar cells revealed that a relatively large amount of Na was segregated at the CIGSSe surface. The surface 
Na concentration decreased and the shunt resistance increased when the absorber layer was rinsed in DI water or 
NH4OH prior to the ALD process. On the basis of these results, it can be stated that presence of excess Na in the 
surface layer of the absorber can increase the conductivity of the CIGSSe layer, resulting in an enhanced shunt 
current through both P1 and P3 although ALD buffers are conformal and effective in preventing the formation of 
point shunt paths. Therefore, it is recommended to rinse out excess Na, especially in CIGSSe solar cells with ALD 
buffers and monolithic series-connected solar cells where the parasitic current through the scribing patterns can 
reduce the shunt resistance and fill factor significantly.

Methods
Fabrication of CIGSSe solar cells. The absorber layer, CIGSSe, was prepared as follows. First, the back 
contact Mo layer was deposited on a 5G-size (1600 mm × 900 mm) soda-lime glass substrate by DC magnetron 
sputtering. In order to obtain a monolithically integrated solar module, we scribed the Mo layer with a high-
power laser for the first pattern (P1). A stack of Cu/Ga/In thin films was deposited by DC magnetron sputtering 
and was placed in a reaction furnace for the subsequent selenization in a H2Se (99.99%) atmosphere and sulfuri-
zation in a H2S (99.99%) atmosphere with N2.

The buffer layers were grown on the CIGSSe layer by two different processes: CBD and ALD. The Zn(S, 
O,OH)-based buffer layer was deposited using chemicals such as ZnSO4, NH4OH, and Thiourea dissolved in DI 
water. The ALD buffer was deposited by pulsing diethyl zinc, H2S, H2O, N2 purge gases at 110–120 °C. The pulse 
ratio was controlled to maintain a S:O ratio of 1:4.

After the buffer processes, scribing for the second pattern (P2) was carried out in order to establish a series 
connection between the unit cells isolated by P1. Boron-doped ZnO, which is a TCO, was deposited on the buffer 
layer as a window layer via low-pressure chemical vapour deposition. As the final step, scribing for the third pat-
tern (P3) was carried out and the TCO/Buffer/CIGSSe layers were cut.

Measurements. The microstructures and morphologies of the thin films were observed by field emission 
scanning electron microscopy (FE-SEM, Hitachi SU8010). The composition and thickness of the thin films were 
monitored by In-line XRF at the 5G-scale. The depth profile of the thin film was obtained by SIMS. To evaluate 
the characteristics of the CIGSSe solar cells with the two buffer layers, their illuminated I–V characteristics were 
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measured using an AM 1.5 G solar simulator at 25 °C. The shunt resistance of the solar cells was defined by the 
Sunshade method7. Shunt resistances of coupon solar cells were measured by fitting the dark I–V curve using 
a one-diode model. The EL of the solar cells was measured using a Si-based charge-coupled device. The DLIT 
of the solar cells was measured using a mercury cadmium telluride sensor (ImageIR Series, 640 × 512 pixel, 
InfraTec) and a cooling stage, which maintained the temperature of the solar cells at 25 °C. The lock-in parameters 
such as the frequency (100 Hz to 1 KHz), duty (50%), and integration time (5 min) were adjusted to obtain the 
high-resolution image of the defects.

Data Availability
The datasets supporting the conclusions of this article are included within the article and the supplementary data file.
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