
1Scientific RepoRts |          (2019) 9:2252  | https://doi.org/10.1038/s41598-019-38699-0

www.nature.com/scientificreports

Calculation of π and Classification 
of self-avoiding Lattices via DNA 
Configuration
Anshula tandon1, seungjae Kim1, Yongwoo song1, Hyunjae Cho1, saima Bashar1, 
Jihoon shin2, tai Hwan Ha  2,3 & sung Ha park  1

Numerical simulation (e.g. Monte Carlo simulation) is an efficient computational algorithm establishing 
an integral part in science to understand complex physical and biological phenomena related with 
stochastic problems. Aside from the typical numerical simulation applications, studies calculating 
numerical constants in mathematics, and estimation of growth behavior via a non-conventional 
self-assembly in connection with DNA nanotechnology, open a novel perspective to DNA related to 
computational physics. Here, a method to calculate the numerical value of π, and way to evaluate 
possible paths of self-avoiding walk with the aid of Monte Carlo simulation, are addressed. Additionally, 
experimentally obtained variation of the π as functions of DNA concentration and the total number 
of trials, and the behaviour of self-avoiding random DNA lattice growth evaluated through number of 
growth steps, are discussed. From observing experimental calculations of π (πexp) obtained by double 
crossover DNA lattices and DNA rings, fluctuation of πexp tends to decrease as either DNA concentration 
or the number of trials increases. Based upon experimental data of self-avoiding random lattices grown 
by the three-point star DNA motifs, various lattice configurations are examined and analyzed. This new 
kind of study inculcates a novel perspective for DNA nanostructures related to computational physics 
and provides clues to solve analytically intractable problems.

A multitude of analytically intractable problems in various disciplines are addressed by performing numeri-
cal simulations that employ a computational model of a system to describe its complex behaviour over a time 
period by incorporating given variables. One such commonly used model is Monte Carlo (MC) simulation1 that 
refers to an effective computational algorithm adopted to perform an underlying stochastic and random sampling 
experiment on a computer to calculate various outcomes. MC simulation is used in science and engineering to 
understand complex physical phenomena, generate useful mathematical functions, and predict complicated algo-
rithmic processes. Interestingly, the MC method has also been effectively used to understand complex biological 
process mechanisms such as the biological self-assembly behaviour, biomolecule dynamics, and the interaction 
between biomolecules and nanomaterials2–23.

Among typical MC simulation applications, there are two interesting ones; calculating π (one of most impor-
tant mathematical constants defined as the ratio of a circle’s circumference to its diameter), and interpreting a 
self-avoiding walk (an abstract model describing the behaviour of chain like entities where no two points can 
occupy the same place)24. Several approaches have been adapted to calculate π, among which the famously 
used one is Buffon’s needle approach25. The MC method is also used to enumerate the characteristics of the 
self-avoiding walk, to interpret the possibility to estimate proper paths.

The fabrication of various dimensional DNA nanostructures is well established due to the programmability of 
DNA base sequences and the stability of DNA molecules. Although these artificially designed DNA nanostruc-
tures find various applications as physical, chemical, or biomedical devices and sensors26–32, calculating mathe-
matical constants and incorporating abstract modeling via DNA nanostructures are rarely discussed.
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Here, we develop ways to calculate π and evaluate the applicable number of self-avoiding walk paths with the 
aid of the computational simulation. In addition, we experimentally demonstrate the calculation of π and eval-
uate applicable self-avoiding walk paths with two different DNA nanostructures (double crossover DNA lattices 
and DNA rings) and self-avoiding random DNA lattices (constructed by a three-point star DNA motif having a 
blunt-end), respectively. Finally, we analyze the trend of numerical π variations controlled by DNA concentration, 
the total number of trials, and the characteristic growth behaviour of self-avoiding random DNA lattices evalu-
ated through the total number of growth steps for the self-avoiding walk path.

Results
Calculation of π value. The representative schematics for π calculation with a different number of dots in a 
square having a quadrant of a circle are shown in Fig. 1a. For acquiring an calculated numerical value of π (=πest, 
where est stands for estimation), a random event needs to be considered which can be defined as drawing uni-
formly distributed dots (like throwing darts randomly at a board) over a square bounding box within the region 

Figure 1. Calculation of π using Monte Carlo simulation. (a) The representative schematics for π calculation 
with a different number of dots in a square. Calculated numerical value of π (=πest, where est stands for 
estimation) is defined as (ND-in/ND) × 4, where ND-in and ND stand for the number of dots inside a quadrant of 
a circle (with a radius of R) and the total number of dots in a square (with a length of R). By definition, πest with 
four different ND, i.e. 10, 50, 100, and 1000 are calculated to be 2.40 (=6/10 × 4), 2.72, 2.88 and 3.09 respectively, 
showing that roughly larger ND gives a more accurate known value of π (πknown ≈ 3.14). (b) A flow chart 
depicting algorithmic steps to obtain πest with various ND and total number of trials (nT). (c) πest as a function of 
nT at a given ND (e.g. 10, 50, 100, or 1000). In general, πest approaches to πknown with the increasing nT at relatively 
larger ND values, as expected. (d) πest as a function of ND at a fixed nT (e.g. 1, 5, 10, 50, or 100 marked as a dotted 
line in (c). From observation, πest approaches to πknown with the increasing ND at relatively smaller nT but πest is 
roughly independent with ND at relatively larger nT. (e) A representative graph of πest as a function of ND. As ND 
is increased, fluctuation of πest from πknown tends to decrease. Insets show tendencies of fluctuation of πest in the 
two different ranges of ND.
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whose area is to be determined. By considering a quadrant of a circle with a radius R bounded by a square with a 
length R, the ratio of the quadrant area to the square area is approximately equal to the ratio of the total number 
of dots falling inside the quadrant (ND-in, marked as blue) to the total number of dots inside the square (ND) due 
to the uniformly distributed dots within the square. Therefore, πest can be defined as (ND-in/ND) × 4. By definition, 
representative πest with four different ND (i.e. 10, 50, 100, and 1000) are calculated to be 2.40 (=6/10 × 4), 2.72, 
2.88 and 3.09 respectively. This shows that a roughly larger ND gives a relatively more accurate known value of π 
(πknown ≈ 3.14). Consequently, the magnitude (i.e. 0.060 = |3.2–3.14|, 0.020, 0.019, and 0.001) of the deviation of 
πest from πknown (∆πexp = |πest − πknown|) will be smaller as ND (10, 50, 100, and 1000) increases at a given optimum 
ND-in (i.e. 8, 39, 79, and 785, which provides the most accurate πest compared to πknown at a given ND).

Figure 1b shows a flowchart representing algorithmic steps in order to obtain πest as a function of either ND, 
or the total number of trials (nT). By assigning an initial input of ND with the unit-step increment of j, dots are 
randomly sampled in a square. Then, ND-in are counted until j reaches to ND followed by evaluation of πest calcu-
lated as (ND-in/ND) × 4. Similarly, when the unit-step increment of i reaches an initial input of nT, summed πest is 
divided by nT to get the average πest.

By using the algorithm for πest, numerical values of the πest as functions of ND and nT can be obtained and ana-
lyzed. πest as a function of nT at four different ND values (i.e. 10, 50, 100, and 1000) are obtained, which approaches 
πknown with the increasing nT at any given ND values, as expected (Fig. 1c). The πest with varying ND at a fixed nT 
(e.g. 1, 5, 10, 50, or 100 marked as a dotted line in Fig. 1c) are extracted in order to evaluate the trend of πest as a 
function of ND which shows that πest heavily relies on ND at relatively smaller nT but it is roughly independent of 
ND at larger nT (Fig. 1d). A representative graph of πest as a function of ND is shown in Fig. 1e. As ND is increased, 
the fluctuation of πest from πknown tends to decrease. Insets show the fluctuation tendency of πest in the two differ-
ent ranges of ND (i.e. between 0~20 and 980~1000), which clearly shows that fluctuation of πest from πknown tends 
to decrease with the increase in ND, as expected. In addition, the differentiation of πest per unit number of dots 
(=Δπest /ΔND) as a function of ND is shown in Supplementary Fig. 1. Differences in the πest per unit number of 
dots tend to decrease with the increase in ND because πest at a relatively larger ND has a greater chance to give an 
accurate value of π.

Experimental observation of π using DNA nanostructures. Experimental observation of π (πexp) is 
demonstrated by constructing two types of DNA nanostructures, i.e. double crossover (DX) DNA lattices33,34 and 
DNA rings35–37 (Fig. 2). Two sets of DX DNA motifs (i.e. PR and PS) are designed for construction of DX DNA lat-
tices. Here, P stands for Pi (π) and R/S indicate opposite helical directionalities of the duplexes within the motifs 
(See Supplementary Fig. 2, Supplementary Tables 1 and 2). Each set has two DX motifs, without and with hairpins 
marked as PR(S)0 and PR(S)1, respectively (Fig. 2a). A DX motif having hairpins ~3.5 nm long protruding up 
and down is called DXH (i.e. PR1 and PS1). DX and DXH motifs, having identical sets of sticky ends in each set 
with the equal probability of binding (two exemplified binding sites are indicated by question marks in Fig. 2b), 
can hybridize to form a DX lattice with the aid of complementary colour-coded and shape-coded sticky ends. 
In addition, DNA rings comprised of T motifs (non-crossover based DNA motifs having three double-stranded 
domains connected through single strands. See Fig. 2c, Supplementary Fig. 3, and Supplementary Tables 3 and 4)  
are fabricated in order to obtain πexp. A ring with inner and outer diameters of 13 nm and 29 nm is constituted 
through the complementary base-pairs of the sticky ends in T motifs (Fig. 2d).

Representative structural configurations of DX DNA lattices and DNA rings are shown in Fig. 2e,h, respec-
tively. Atomic force microscope (AFM) images of DX lattices with different concentrations of DXH (0, 25, 50, 
100, 150, and 200 nM symbolized as DXH0, DXH0.25, DXH0.5, DXH1.0, DXH1.5, and DXH2.0, respectively) were 
annealed in free solution. An arc (shown in blue) in each image is drawn representing the first quadrant in a 
circle. πexp (0.00, 3.26, 3.27, 3.50, 2.98, 3.32, and 3.13) through images in Fig. 2e are obtained by (NH-in/NH) × 4, 
where NH-in and NH represent the number of hairpins inside a quadrant of a circle and total number of hairpins in 
an image. Four circle quadrants can be assigned on a given image, which provide specific πexp. DXH concentration 
([DXH])-dependent NH values (roughly linearly dependent) obtained by theoretical calculation and analyzed 
by AFM images are displayed in Fig. 2g. Similarly, AFM images of DNA rings with different concentrations of a 
T motif (1, 2, 5, 8, 10, and 20 nM indicated as R1, R2, R5, R8, R10, and R20, respectively) were annealed through a 
mica-assisted growth method38–40 (Fig. 2h). Arcs are drawn in third quadrants and corresponding πexp (ranging 
between 2.75 and 3.20 measured by (NR-in/NR) × 4, where NR-in and NR indicate number of rings inside a quadrant 
and total number of rings in an image) are shown in the images. Lastly, a plot of NR as a function of [T] (roughly 
sigmoidal) analyzed by AFM images is shown in Fig. 2i.

Analysis of π using experimental observation. The analysis of πexp controlled by [DX] and nT are con-
ducted and results are displayed in Fig. 3. The histogram in Fig. 3a shows an average of πexp (〈πexp〉 obtained from 
more than four data sets at a given [DXH]) as a function of [DXH] (the concentration sum of DXHs in each set of 
motif, [DXPR1] + [DXPS1]) i.e. 25, 50, 75, 100, 150, and 200 nM at a fixed [DXPR] and [DXPS] of 100 nM. For exam-
ple, 150 nM of [DXH] indicates 150 nM of [DXPR1] + [DXPS1] with 50 nM of [DXPR0] + [DXPS0]. Although the 
standard deviation of an error bar generally decreases as [DXH] increases, the magnitude of the deviation of πexp 
from πknown (∆πexp ≡ |πexp - πknown|) is almost constant above 50 nM of [DXH]. A plot of πexp as a function of [DX] 
( = [DXPR(S)] with [DXPR(S)0] = [DXPR(S)1]) is shown in Fig. 3b. By observation, 100 nM of [DX] gives a more accu-
rate πexp (∆πexp of ~0.009) than 50 (~0.062) or 200 nM (~0.049) of [DX]. Figure 3c displays ∆πexp (arranged in a 
descending order) and 〈πexp〉 (defined as π∑ = n/ )n

n
exp n1 ,T  as a function of nT at a fixed [DX] of 100 nM which pro-

vide the general behaviour of πexp approaching πknown with increasing nT, as expected.
Similarly, πexp and ∆πexp as functions of [T] and nT analysed from DNA rings are discussed. As observed from 

the bar graph of πexp in Fig. 3d, the standard deviation of an error bar roughly decreases as [T] increases and ∆πexp 
is approximately independent with [T], which might be due to the uniform distribution of the DNA rings on a 
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Figure 2. Experimental observation of π using DNA nanostructure configuration. (a,b) Cartoon representations 
of two sets ‒ PR and PS ‒ of DNA double-crossover (DX) motifs and corresponding DX lattice formed by 
complementary colour-coded sticky ends. Each set has two DX motifs, without and with hairpins marked as 
PR(S)0 and PR(S)1, respectively. Hairpins with a length of 3.5 nm protruding up and down on a DX motif called 
as a DXH. DX and DXH motifs having identical sets of sticky ends in each set can hybridize to form a DX lattice 
(two exemplified binding sites are indicated by question marks) with the equal probability of binding. (c,d) 
Schematics of unit building block (called as a T motif) and a DNA ring made of T motifs. The complementary-
counterparts are colour-coded with the same colours. (e,f) AFM images of DX lattices with different 
concentrations of DXH (0, 25, 50, 100, 150 and 200 nM represented as DXH0, DXH0.25, DXH0.5, DXH1.0, DXH1.5 
and DXH2.0 respectively) annealed in free solution. An arc (shown in blue) in each image is drawn representing 
first quadrant in a circle. Experimental observation of π through images (πexp) can be obtained by (NH-in/NH) × 4, 
where NH-in and NH represent the number of hairpins inside a quadrant of a circle and total number of hairpins 
in an image. A scan size of all images in (e,f) is 100 × 100 nm2 (200 × 200 nm2). (g) A graph of concentration of 
DXH ([DXH])-dependent NH analyzed by AFM images with the scan size of 100 × 100 nm2. Theoretical and 
experimental NH are plotted as red-dotted and black-solid lines, respectively. (h) AFM images of DNA rings with 
different concentrations of a T motif (2, 5, 8, 10 nM with the scan size of 3 × 3 μm2, 1 and 20 nM with 2 × 2 μm2, 
and 20 nM with 600 × 600 nm2 indicated as R2, R5, R8, R10, R1, R20 and R20, respectively) annealed through a mica-
assisted growth method. Arcs are drawn in third quadrants and corresponding πexp (measured by (NR-in/NR) × 4, 
where NR-in and NR represent number of rings inside a quadrant and the total number of rings in an image) are 
shown in images. (i) A plot of NR as a function of [T] analyzed by AFM images with scan size of 1 × 1 μm2.
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given substrate. Curves of ∆πexp arranged in a descending order as a function of nT at 2, 5, and 20 nM of [T] are 
displayed in Fig. 3e. Although 20 nM of [T] shows slightly less ∆πexp than other [T], roughly 〈πexp〉 are independ-
ent from [T] which is in good agreement with Fig. 3d. πexp against normalized [DXH] ([DXH]Norm = [DXH]/
[DXH]200) and normalized [T] ([T]Norm = [T]/[T]20) are shown in Fig. 3f in order to compare πexp with respect to 
either largest [DXH] or [T], as well as to understand comparison of πexp with the two different DNA nanostruc-
ture configurations, i.e. DNA lattices and DNA rings.

Self-avoiding random lattice growth. A self-avoiding random walk path (called a lattice configuration) 
constructed by a unit building block is demonstrated via MC simulation in order to understand the feasibility to 
predict proper paths. A self-avoiding random lattice has a growth path on a lattice configuration that does not 
visit the same place more than once. Schematics of various lattice configurations constructed by a three-point 
star motif having single blunt-end (3PSB) are represented in Fig. 4a. A blunt-end in a 3PSB, which is introduced 
to generate asymmetric self-avoiding random lattices, is marked with a black (serves as a seed), a red (grown to 
the left), or a green dot (grown to the right). Formation of a self-avoiding random lattice starts from a seed 3PSB 
(NS = 0, where NS indicates a step number) through the arrow facing of the incoming 3PSB from the next step. 
Lattice configurations are named as (a step number, NS)-(configuration number from the previous step)-(config-
uration number at the present step). For examples, 2-3-1 and 3-34-2 indicate 1st configuration of 2nd step obtained 
from 3rd configuration in 1st step for 2-3-1, and 2nd configuration of 3rd step obtained from 3rd configuration in 

Figure 3. The analysis of experimentally obtained π (πexp) controlled by DNA concentrations ([DNA]) and the 
number of trials (nT). (a) A histogram plot of πexp as a function of concentrations of a DX motif with the hairpin 
([DXH]) at a fixed concentration of each motif set ([DXPR] = [DXPS] = 100 nM). Here, [DXH] is defined as the 
concentration sum of DXHs in each set of motif (=[DXPR1] + [DXPS1]). For instance, 50 nM of [DXH] means 
50 nM of [DXPR1] + [DXPS1] with 150 nM of [DXPR0] + [DXPS0]. Average πexp is obtained from more than four 
data sets at a given [DXH]. The magnitude of the deviation of πexp from πknown (∆πexp = |πexp − πknown|) is almost 
constant above 50 nM of [DXH]. (b) A plot of πexp as a function of [DX] ( = [DXPR] or [DXPS] with the condition 
of [DXPR] = [DXPS]) with the equal amount of DX motifs without and with hairpins ([DXPR0] = [DXPR1] and 
[DXPS0] = [DXPS1]). As an example, 100 nM of [DX] indicates [DXPR] = [DXPS] = 100 nM having 50 nM of each 
[DXPS0] and [DXPS1] as well as 50 nM each of [DXPR0] and [DXPR1]. By observation, 100 nM of [DX] gives more 
accurate πexp (3.15) than 50 (3.08) or 200 nM (3.19) of [DX]. (c) Plots of the deviation of πexp (∆πexp) (arranged 
in a descending order) and average πexp (〈πexp〉 = π∑ = n/n

n
exp n1 ,T ) as a function of nT. Here, 100 nM of [DX] 

(=[DXPR] = [DXPS]) with 50 nM of each [DXPR(S)0] and [DXPR(S)1] are used. (d) A histogram plot of πexp as a 
function of [T]. Accidentally, ∆πexp are roughly independent of [T]. (e) Plots of ∆πexp arranged in a descending 
order as a function of nT at 2, 5, and 20 nM of [T]. Although 20 nM of [T] shows slightly less ∆πexp than other 
[T], roughly 〈πexp〉 are independent with [T] which is in agreement with (d.f) A graph of πexp against 
normalized [DXH] ([DXH]Norm = [DXH]/[DXH]200) and normalized [T] ([T]Norm = [T]/[T]20). It shows 
comparison of πexp with the two different DNA nanostructure configurations (i.e. lattices and rings).
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1st step and 4th configuration in 2nd step for 3-34-2. All possible lattice configurations up to NS = 3 are shown in 
Supplementary Fig. 4. In order to predict applicable numbers of self-avoiding lattices, available lattice configura-
tions at a given NS are analyzed. There are two types of available lattice configurations, i.e. an open, marked as a 
hollow circle and a blocked lattice configuration marked as either a half-filled (with red for left-blocked or green 
for right-blocked configurations) or a fully-filled circle as shown in Fig. 4a. Open, half-blocked, and full-blocked 

Figure 4. Lattice configuration of self-avoiding random lattice growth demonstrated with the three-point star 
motif having a blunt-end. (a) Schematic representations of lattices constructed by a three-point star motif 
having a blunt-end (3PSB). A blunt-end is marked with either a black (served as a seed), a red (grown to the left), 
or a green dot (grown to the right). Lattice configurations are named as (step number, NS)-(configuration 
number from the previous step)-(configuration number at the present step). For instance, 2-3-1 represents 1st 
configuration of 2nd step obtained from 3rd configuration in 1st step. There are two types of available lattice 
configurations,.i.e. open and blocked (half- and full-blocked indicated by half- and fully-filled circles, 
respectively) lattice configurations. (b) A pedigree lattice configuration chart of self-avoiding random growth. 
32 blocked lattice configurations ‒ 10 (2) half-blocked happened on the left (right) side of the lattices, and 20 
full-blocked configurations ‒ out of 256 available configurations Ω =( 4 )N

N
S

s  after 4th step (NS = 4) of lattice 
growth are shown. Total number of the 3PSB (excluding a seed 3PSB) participated in that configuration is 
indicated by magenta. (c) A flow chart depicting algorithmic steps to obtain the total numbers of open (ΩO) and 
blocked (ΩB) lattice configurations at a given NS.
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lattice configurations are easily determined by counting available numbers of arrows (binding sites for the next 
step) in a lattice (i.e. 2, 1, and 0 arrows in the lattices indicate open, half-, and full-blocked lattice configurations, 
respectively).

Overall self-avoiding random lattice configurations are represented by a pedigree chart in Fig. 4b. Although 
all blocked lattice configurations (up to NS = 4) are fully displayed, some open configurations are skipped (indi-
cated by dots) for clarity. Total numbers of open (ΩO) and blocked (full- and half-blocked) (ΩB) lattice configura-
tions at NS = 3 are 60 and 4 (2 and 2) among 64 available configurations Ω =( 4 )N

3
S

. Similarly, there are 224 open 
and 32 blocked lattice configurations (20 full-blocked and 12 half-blocked configurations (10 happened on the left 
side of the lattice and 2 on the right)) out of 256 Ω =( 4 )N

3
S

 at the 4th step of lattice growth. The total number of 
3PSB (excluding a seed 3PSB) that participated in specific lattice configurations varied with (and even within) NS, 
which are indicated by magenta in the pedigree chart. Figure 4c shows a flowchart with algorithmic steps for 
acquiring ΩO and ΩB as a function of NS. By initially assigning the total number of trials (nT) and NS with i and j 
for the unit-step increments of the trial and the step respectively, ( 4 (n n )/nN

T B T
SΩ = × −Ο , where nB is the 

number of trials giving blocked lattice configurations) and ( 4 )B
N

O
SΩ = − Ω  at a given NS are counted until i 

reaches to nT.

Analysis of self-avoiding random lattice configurations. Physical configurations of self-avoiding ran-
dom lattices with the symbolic representations of configurations grown up to NS of 20 (50 and 100) generated 
by the self-avoiding walk algorithm are shown in Fig. 5a–d (Supplementary Figs 5 and 6). Two-dimensional 

Figure 5. Representative lattice configurations and analysis of self-avoiding random lattice growth generated by 
the self-avoiding walk algorithm. (a–d) Lattice configurations of self-avoiding random growth at a NS of 20. 
Open (a,b) and half-blocked configurations (growth blocked on either the right (c) or left (d) side of the lattices) 
are displayed. (e) Logarithmic numbers of lattice configurations ( Ωln  = S/k, where S is entropy and k is a 
constant) as a function of NS. Ωln  obtained from the total numbers of available, open, and blocked (including 
half- and full-blocked) lattice configurations (Ω = 4N

N
S

s, ΩO, and ΩB, respectively) at a given NS as well as from 
analytical evaluation of open lattice configuration (ΩA) are depicted. The intersection between ln ΩO and ln ΩB 
(occurred at 9.12 of NS) and the ratio of ΩB and ΩO are shown in the bottom and top insets, respectively. ΩO is 
larger and smaller than ΩB at below and above regions of the thin dotted line (marked at ΩB/ΩO = 1 in the graph 
of ΩB/ΩO), respectively. (f) A graph of difference of Ωln O and Ωln B ( ≡ Ω Ω–D ln lnO B) as a function of NS. As 
mentioned, D becomes 0 at NS of 9.12 and the magnitude of D increases noticeably as NS increases or decreases 
from 9.12.

https://doi.org/10.1038/s41598-019-38699-0


www.nature.com/scientificreports/

8Scientific RepoRts |          (2019) 9:2252  | https://doi.org/10.1038/s41598-019-38699-0

self-avoiding random lattices are self-assembled through the subsequent 3PSB bindings to a seed tile of 3PSB, 
which has two binding sites, left and right leading the paths of the red and green, respectively. Here, open, 
half-blocked (growth blocked on either the left (a red path) or right (a green) side of the lattice), and full-blocked 
configurations are symbolized by a hollow, half-filled and fully-filled circle, respectively.

Figure 5e and f show logarithmic numbers of lattice configurations ( Ω = S kln / , where S is entropy and k is a 
constant) and its difference for open and blocked self-avoiding random lattice configurations as a function of NS. 

Ωln NS
, Ωln O, and Ωln B are easily obtained from the total number of available, open, and blocked (including 

half-blocked and full-blocked) lattice configurations (i.e. Ω = 4N
N

S
s, ΩΟ , and ΩB ) respectively at a given NS. In 

addition, the total number of open lattice configurations (ΩA) for a 2-dimensional hexagonal lattice model can be 
analytically extracted Ω = . + ++· ·( )0 415 ( 2 2 ) (2N 1)A

2N 1
S

11
32S , as shown in Fig. 5e 24. Although Ωln O 

and Ωln A differ by ~3% at relatively smaller NS, they tend to overlap completely with the difference percentage 
ratio × Ω − Ω Ω(100 ln ln / ln )A O A  of ~10−2% at larger NS. The intersection between ln ΩO and ln ΩB 
(occurred at 9.12 of NS) and the ratio of ΩB and ΩO are shown in the bottom and top insets, respectively. ΩO is 
larger and smaller than ΩB at below and above regions of the thin dotted line (marked at ΩB/ΩO = 1 in the graph 
of ΩB/ΩO), respectively. In order to compare occurrences of open and blocked lattice configurations, difference 
(D) of ln ΩO and ln ΩB as a function of NS are discussed (Fig. 5f). As mentioned, D becomes 0 at NS of 9.12 and 
magnitude of D increases with increasing or decreasing NS from the cross point at NS = 9.12.

Experimental observation of self-avoiding random lattices. Three different DNA nanostructures 
(a honeycomb lattice, a hexagonal ring, and a three-point star dimer) are constructed by slightly modified 
three-point star DNA motifs in order to test their applicability in the growth of self-avoiding random lattices 
(See Fig. 6, Supplementary Fig. 7, and Supplementary Table 5). Figure 6a shows a schematic of a three-point star 
DNA motif (3PSHL) for construction of a honeycomb lattice (a simplified one shown at a right bottom) and its 
representative AFM image of a honeycomb lattice. A 3PSHL is comprised of 7 strands (marked as #1~#7) with 
palindromic self-complementary sticky-end sequences (indicated as S1, S2, and S3) located at the end of each 
arm41,42. Schematics and representative AFM images of three-point star DNA motifs with a single (3PSHR, for 
fabrication of a hexagonal ring) and double blunt ends (3PSD, for formation of a 3PS dimer) are shown in Fig. 6b 
and c. A 3PSHR (a black dot in simplified 3PSHR indicates a blunt end arm as shown in Fig. 6b) and a 3PSD (two 
black dots in simplified 3PSD represent the blunt end arms in Fig. 6c) need 6 strands (strand #7 removed from 
3PSHL) with two sets (S1 and S2) of palindromic self-complementary sticky-end sequences, and 5 strands (#6 
and #7 removed from 3PSHL) with a single set (S1) of palindromic self-complementary sticky-end sequences, 
respectively. From the observation of the AFM images, honeycomb lattices, hexagonal rings, and 3PS dimers are 
well formed in agreement with the design schemes with relatively higher production yields than cross-tile lattices 
made of four-point star motifs43.

Figure 6d–s show the representative experimental results and analysis of self-avoiding random lattices grown 
by the 3PS DNA motifs (3PSB). In 3PSB, a #6 strand from 3PSHL is removed and self-complementary sticky-end 
sequences in #7 are replaced from S3 to S1. A blunt-end in a simplified 3PSB shown in the right bottom of Fig. 6d 
is marked with either a black (served as a seed), a red (grown to the left), or a green dot (grown to the right) in 
order to easily evaluate the lattice configurations. Representative AFM images with the lattice configurations 
(either an open, a half-blocked or a full-blocked configuration at a given step number) of self-avoiding ran-
dom lattices comprised of 3PSB are displayed in Fig. 6e–p. Simplified 3PSB motifs are overlaid on AFM images 
to enhance the visibility of lattice configurations. Figure 6r,s display percentages of the total number of 3PSB 
motifs (α) in specific ranges (i.e. below 10, 11–20, 21–30, and above 30) and percentages of total number of open, 
half-blocked and full-blocked lattice configurations (β) obtained from the AFM data. Although it would be diffi-
cult to form relatively larger self-avoiding lattices due to the existence of a blunt end in a 3PSB, as we anticipated, 
interestingly we observe that lattices having more than 31 numbers of 3PSB are dominant (38.5% among all eval-
uated lattices). In addition, the percentages of lattice configurations in the range of 3 to 49 of NS are examined. 
Open (blocked) lattice configurations are dominant below (above) NS = 9.12, which agree well with the simula-
tion results discussed in Fig. 5e,f.

Discussion
We discuss methodologies to calculate the numerical value of π and to evaluate a possible number of self-avoiding 
walk paths with the aid of computational MC simulation. Additionally, we demonstrate the calculation of π and 
evaluation of applicable self-avoiding walk paths by distinct DNA nanostructures. Finally, we analyze the trend 
of numerical variations of π as functions of DNA concentration and the total number of trials for π calculation, 
and the behaviour of self-avoiding random DNA lattice growth evaluated through number of growth steps for the 
self-avoiding walk path. From observation of experimental calculations of π (πexp) demonstrated by constructing 
two different types of DNA nanostructures (i.e. double crossover DNA lattices and DNA rings), fluctuation of 
πexp from known π tends to decrease as either DNA concentration or the number of trials increases. Based upon 
experimental observation of self-avoiding random lattices grown by the three-point star DNA motifs, the per-
centage of lattice configurations is examined. Open (blocked) lattice configurations are dominant below (above) 
the step number of 9.12 (at this step number obtained by simulation, numbers of open and blocked configurations 
are the same). This in depth study of numerical calculation of mathematical constants and characteristic estima-
tion of abstract models via DNA provides a novel perspective for the applicability of DNA in the field of science 
and engineering.

https://doi.org/10.1038/s41598-019-38699-0


www.nature.com/scientificreports/

9Scientific RepoRts |          (2019) 9:2252  | https://doi.org/10.1038/s41598-019-38699-0

Figure 6. Experimental observation of self-avoiding random lattice growth with the three-point star DNA 
motif. (a) A schematic of a three-point star DNA motif (3PSHL) for construction of a honeycomb lattice and its 
representative AFM image (scan size of 500 × 500 nm2) of a honeycomb lattice. Seven strands constituting 3PSHL 
are numbered as #1~#7, where palindromic self-complementary sticky-end sequences located at the end of each 
arm are indicated as S1, S2, and S3. A simplified 3PSHL and a magnified honeycomb lattice (100 × 100 nm2) are 
shown at the right bottom corners of them. (b) A schematic of a three-point star DNA motif with a single blunt 
end (3PSHR) for fabrication of a hexagonal ring and its AFM image. Six strands (strand #7 removed from 3PSHL) 
and two sets (S1 and S2) of palindromic self-complementary sticky-end sequences are required. A black dot in 
simplified 3PSHR indicates a blunt end arm. Inset in AFM image is 3-dimensional visualization of a hexagonal 
ring. (c) A schematic of a three-point star DNA motif with double blunt ends (3PSD) for formation of a 3PS 
dimer and its AFM image. Five strands (#6 and #7 removed from 3PSHL) and single set (S1) of palindromic 
self-complementary sticky-end sequences is required. Inset in AFM image is 3-dimensional visualization of 
3PS dimers. (d) A schematic of a three-point star DNA motif with a blunt end (3PSB) for demonstration of a 
self-avoiding random lattice. Strand #6 is removed from 3PSHL and self-complementary sticky-end sequences in 
#7 are modified. A blunt-end in a simplified 3PSB is marked with a black (served as a seed), a red (grown to the 
left), or a green dot (grown to the right) in order to easily analyze the lattice configurations. (e–q) Representative 
AFM images of self-avoiding random lattices comprised of 3PSB. Either an open, a half-blocked or a full-
blocked lattice configuration at a given step number is indicated in each image. In order to clarify the growth 
visualization of lattice configurations, simplified 3PSB are overlaid on AFM images. (r) A plot of percentage of 
total number of 3PSB motifs (α) in that specific range, i.e. below 10, 11–20, 21–30, and above 30. (s) A bar graph 
of percentages of the total number of open, half-blocked, and a full-blocked lattice configurations (β).
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Methods
DNA nanostructure fabrication. Synthetic oligonucleotides purified via high-performance liquid chro-
matography were purchased from Bioneer (Daejeon, Korea). Double-crossover (DX) DNA lattices were formed 
by the 2-step free solution annealing method. First, individual strands of either DX (without hairpins, PR0 and 
PS0) or DXH (with hairpins, PR1 and PS1) motif were mixed with equimolar concentration (800 nM) in 1 × TAE/
Mg2+ buffer solution (40 mM Tris, 20 mM Acetic acid, 1 mM EDTA (pH 8.0), and 12.5 mM magnesium acetate). 
These strand mixtures of each motif (i.e. PR0, PS0, PR1, and PS1) in the test tubes were then slowly cooled 
from 95 to 25 °C by placing them in a Styrofoam box containing 2 L of boiled water for about 2 days to facilitate 
hybridization. In succession, an appropriate amount of each motif was added into a new test tube to obtain DXH0 
DNA lattices (final concentrations of individual motifs were [PR0] = [PS0] = 100 nM, and [PR1] = [PS1] = 0 nM). 
Similarly, sets of motif concentrations ([PR0], [PS0], [PR1], and [PS1] = 75, 100, 25, and 0 nM; 50, 100, 50, and 
0 nM; 25, 100, 75, and 0 nM; 50, 50, 50, and 50 nM; 0, 50, 100, and 50 nM; 0, 0, 100, and 100 nM) were prepared to 
construct DXH0.25, DXH0.5, DXH0.75, DXH1.0, DXH1.5, and DXH2.0 DNA lattices, respectively. Second step anneal-
ing was performed by placing sample test tubes in a Styrofoam box containing 2 L of water (initial temperature, 
40 °C) and cooling them from 40 °C to 25 °C for about 24 hours to obtain DX DNA lattices. (Fig. 2, Supplementary 
Fig. 2, Supplementary Tables 1 and 2)

DNA rings were formed by mixing a stoichiometric quantity of each strand in a buffer containing a mica sub-
strate (size of 5 × 5 mm2). This strand mixture with mica was annealed in a test tube by slowly cooling from 95 to 
25 °C in a Styrofoam box. Eventually, DNA rings formed on the mica surface with different coverages depending 
upon the concentration of a T motif. DNA rings with a five different T motif concentrations of 2, 5, 8, 10 and 
20 nM were prepared and analyzed. (Fig. 2, Supplementary Fig. 3, Supplementary Tables 3 and 4)

Honeycomb lattices, hexagonal rings, 3PS dimers, as well as self-avoiding random lattices were constructed by 
specific three-point star motifs; 3PSHL, 3PSHR, 3PSD, and 3PSB motifs. They were formed by mixing stoichiometric 
quantities of each strand in the buffer by cooling from 95 °C to 25 °C in a Styrofoam box. Final concentrations 
of 3PS for all DNA nanostructure configurations were 200 nM. (Fig. 6, Supplementary Fig. 7, Supplementary 
Table 5)

AFM imaging. 5 μL of DNA nanostructures (i.e. DX lattices, honeycomb lattices, hexagonal rings, 3PS 
dimers, and self-avoiding random lattices) in buffer solution prepared via the free-solution annealing method 
were dropped on a freshly cleaved mica surface. A 30 μL of 1 × TAE/Mg2+ buffer solution was then placed onto 
the mica, and another 20 μL was placed onto the silicon nitride AFM tip (NP-S10, Veeco Inc., CA, USA). To image 
DNA rings fabricated through the MAG method, a mica substrate with preformed DNA rings was taken from 
a test tube and placed on a metal puck. Then, 30 μL of buffer was pipetted onto the mica substrate, and another 
20 μL was dispensed onto an AFM tip. Corresponding AFM images were then obtained using a Multimode 
Nanoscope (Veeco Inc., CA, USA) in the fluid-tapping mode (Figs 2 and 6).
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