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Time-resolved decoding of 
metabolic signatures of in vitro 
growth of the hemibiotrophic 
pathogen Colletotrichum 
sublineolum
Fidele Tugizimana   1, Arnaud T. Djami-Tchatchou1, Johannes F. Fahrmann2, 
Paul A. Steenkamp1, Lizelle A. Piater1 & Ian A. Dubery   1

Metabolomics has emerged as a powerful approach to comprehensively interrogate cellular 
biochemistry. As such, we applied an untargeted liquid chromatography-mass spectrometry 
metabolomic strategy to elucidate metabolome changes in the anthracnose-causing hemibiotrophic 
sorghum pathogen, Colletotrichum sublineolum. An in vitro batch culture study model with different 
carbon sources, glucose, arabinose and rhamnose, were used to support fungal growth over a period 
of twelve days. Metabolites representing the intracellular and extracellular (secreted) metabolomes 
were extracted with methanol and subjected to LC-MS analyses. Chemometric modelling revealed 
a metabolic variation trajectory, comprising three distinct stages that metabolically describe the 
adaptation of the fungus to diminishing nutrients. Selected marker gene expression indicated stage 
one (0–3 d.p.i) as corresponding to the early logarithmic phase. Stage two can be interpreted as 
an intermediate transitionary stage with stage three corresponding to the stationary phase (9–12 
d.p.i). Stage one was characterised by up-regulation of endo-metabolites such as ferricrocin, fatty 
acids and flavone-conjugates, while stage three was characterised by the secretion of phytotoxins, 
including colletotrichin and colletotric acid. Ultimately, results from our in vitro model reveal previously 
unknown insights into the dynamic aspects of metabolome reprogramming in the growth phases of 
Colletotrichum spp as determined by nutrients obtainable from plant cell walls.

Colletotrichum is one of the most widespread and economically detrimental genera of plant pathogenic fungi, 
and represents a serious threat to global food security and ecosystem health1,2. Members of this genus are etio-
logical agents of anthracnose leaf spot and other diseases including blights and post-harvest rots on a vast range 
of agronomic and horticultural crops3,4. The severe damage caused by Colletotrichum spp leads to major losses in 
economically important crops, extending particularly to vital staple foods in tropical and sub-tropical regions4,5.

Colletotrichum pathology characteristically follows a multistage hemibiotrophic infection strategy involving 
the formation of a series of specialised cell types6. Following adhesion of spores, melanin-pigmented appressoria 
are formed and mediate initial host penetration using mechanical force and enzymatic degradation. Furthermore, 
Colletotrichum fungi differentiate specialised infection vesicles, which then begin the growth of primary hyphae 
that develop inside living host cells surrounded by an intact host plasma membrane6,7. This symptomless stage 
of infection, i.e. biotrophy, is short lived and the fungus switches to a necrotrophic stage, forming differentiated 
and morphologically distinct secondary hyphae that kill and destroy host tissue for nutrient acquisition. The life-
style transition involves dynamic multi-layered reprogramming, including the expression of a vast array of genes 
encoding lytic enzymes, transporters and secondary metabolism-related enzymes as well as toxin biosynthesis 
that accompanies rapid growth, systemic colonisation and breakdown of host cells6–9.
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Extensive studies have been carried out using cytological, physiological, genomic and transcriptomic 
approaches to elucidate the molecular details that govern the lifestyles of hemibiotrophic Colletotrichum fungi, 
and have provided substantial knowledge of the underlying infection strategies6–10. Furthermore, considering 
high diversity and tractability to in vitro culture, Colletotrichum spp provide excellent models for studying the 
molecular mechanisms and biochemistry of infection structure differentiation and fungal-plant interactions11,12. 
However, there is still much to uncover about the chemical signalling and regulatory mechanisms underlying the 
transition from biotrophy to necrotrophy of Colletotrichum pathogens that may allow the development of novel 
approaches to control fungal diseases in crop plants.

Studies of fungal growth in planta are technically challenging and represents a specific challenge to metabolo-
mic approaches due to the close association between plant and pathogen, coupled with a general commonality of 
metabolites13. Here, we opted for an in vitro culture system, coupled to a liquid chromatography-mass spectrom-
etry (LC-MS)-based untargeted metabolomic approach to gain information about the underlying biochemistry 
associated with the different growth stages of C. sublineolum. This was achieved by profiling the methanol soluble 
secondary - and some primary metabolites present in the endo- and exometabolomes that characterise the dif-
ferent stages of growth in batch culture. The uncovered metabolic signatures, accompanied with expression levels 
of selected marker genes, identified specific biochemical processes involved in the growth stages of the fungus, 
generating a holistic molecular description of the trophic transition phenomenology.

Results and Discussion
Growth of C. sublineolum on different carbon sources.  Understanding nutrient acquisition modes 
employed by hemibiotrophic phytopathogenic fungi, with carbon metabolism as an essential feature14, can pro-
vide informative insights about the biochemical underpinnings governing fungal adaptation to the host environ-
ment15. Glucose, polymers of glucose and related derivatives are main constituents of plant cell walls and are also 
present in the apoplast and intracellular compartments16,17, while arabinose and rhamnose are neutral sugars in 
the pectic polysaccharide fraction15,18,19. Previous studies have indicated that arabinose and rhamnose stimulate 
endopolygalacturonase gene expression in C. lindemuthianum, important for establishing the fungal infection 
by targeting the pectin polymers in the cell wall and middle lamella15. Here, following a reductionist approach, 
different carbon sources namely glucose, arabinose and rhamnose15 were added to Murashige and Skoog (MS) 
culture medium to provide a controlled in vitro nutrient environment for C. sublineolum growth. This basal salt 
medium was selected as it does not contain any organic compounds as nutrients that could interfere with sub-
sequent downstream metabolomics analyses. C. sublineolum could grow in the culture media containing these 
different carbon sources (with a slow rate in rhamnose-containing media)15 with a noticeable carbon assimilation 
(Supplementary Fig. 1A–D) which reflects the nutrition-suitability thereof.

Metabolomic profiling of C. sublineolum growth stages.  Both intra- and extracellular (secreted into 
the medium) methanol-soluble metabolite extracts were analysed on an LC-MS analytical platform, allowing 
the simultaneous detection of multiple analytes (primarily mid-polar metabolites that, in addition to second-
ary metabolites, included some primary metabolites) with high sensitivity. Chromatographically, the resultant 
differential profiles (Supplementary Figs 2–7) provided a visual indication of changes in extracted metabolites 
occurring over time, and point to alterations in the metabolome during growth and development. To further 
elucidate the functional readouts of cellular physiological states related to the fungal growth, chemometric anal-
yses were applied to the collected LC-MS data. Following data pre-processing, principal component analysis 
(PCA) was firstly applied to summarise the multidimensional data in an intelligible way that grasps the silent 
characteristics of the data. Thus, PC analyses allowed descriptive assessment of the distribution of samples so as 
to evaluate the quality of the data and detect natural groupings, trends and outliers. The infographic output of the 
PCA modelling showed, in the scores space, no strong outliers (observations that do not fit the model, i.e. outside 
the 95% confidence interval, ellipse). The PCA modelling indicated stability, reliability and reproducibility of the 
analyses – as confirmed by the quality control (QC) samples clustering closely in the center of the plot –, and nat-
ural separation between control and inoculated samples (Fig. 1A,B). Furthermore, PCA models revealed distinct 
time-related groupings in both the endo- and exo-‘metabolite space’ in all carbon source conditions. Here, clear 
sample groupings indicate dynamic changes occurring in C. sublineolum metabolism during growth in the culture 
media, and an underlying time-trend that characterises these metabolic changes (Fig. 1C,D and Supplementary 
Figs 8 and 9).

As mentioned, once host cells have been penetrated, Colletotrichum spp deploy multistage mechanisms that 
are crucial for fungal establishment and successful infection. Although there is still considerable uncertainty 
with regard to differentiation between nutrients obtained directly from the host and that which is de novo syn-
thesised by the invading pathogen, it is known that Colletotrichum fungi employ different nutrient acquisition 
mechanisms11,18,20. These strategies are associated with dynamic developmental processes and may be viewed 
as time-dependent stages, related by the time trend(s) revealed by PC analyses (i.e time-related sample group-
ings in scores space) (Fig. 1 and Supplementary Figs 8 and 9). However, PCA, as the standard model to deal 
with high-dimensional and complex metabolomic data sets, is mathematically a non-dynamic method, due 
to its insensitivity to the evolutionary nature of the time axis. Standard PC-based analyses can only uncover 
time-trends in a data set, without necessarily efficiently defining these time-related trajectories21,22. Hence, in this 
study, batch statistical processing or modelling (BP/M)22,23 was utilized to descriptively explain these time-related 
metabolic changes in C. sublineolum growth revealed by PCA, treating each carbon source (glucose, arabinose 
and rhamnose) as an individual batch, comprising a series of times (3, 6, 9, 12 d.p.i. samples). BP/M provided an 
efficient means of infographically visualising the biochemical response to the type of carbon source in terms of 
both inter-group variation and net variation in intra/extracellular metabolite profiles. BP/M allowed for the evo-
lution of the metabolic changes to be statistically characterised and described in time trajectories and provided 
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thus a template for defining the sequence of time-dependent metabolic profiles. Significant time-related changes 
could subsequently be identified, as well as metabolic features (metabolite signals) related to these changes.

The three-way data matrix built up by the batches (carbon source conditions), the pre-processed LC-MS var-
iables (m/z, Rt variables: spectral descriptors) and the metabolite collection time (the maturity variable) was 
decomposed by subjecting it to two subsequent levels of multivariate analysis: batch evolution (or lower level) 
and batch level (or upper level) modelling22–24. The former is based on PLS regression against metabolite col-
lection time, thus providing a descriptive characterisation of the metabolic variation trajectory in terms of PLS 
components. PLS takes advantage of the correlation that already exists between the LC-MS variables (spectral 
descriptors) and time; generating scores plots that explain the greatest variance in the data with respect to time.

The computed batch evolution (lower level PLS) models were statistically significant and reliable, with a good 
predictability in Y (time), according to cross-validation, and indicated a significantly substantial relationship of 
X-variables with time (Fig. 2 and Supplementary Fig. 10A). Since the first vector t[1] is the vector direction that 
normally explains the maximum covariance between X and Y, plots of the first scores vector (t[1]) were mapped 
to generate a time-course trajectory plot describing the different phases of the dominant metabolic perturbations 
with time (Fig. 2). Lower scores vectors (t[2]-t[n]), which progressively explained less of the covariance in the 
data and orthogonal to each other, were also plotted over time to establish more subtle, time-related metabolic 
variations (Supplementary Fig. 10B). The batch time-evolution for the fungal growth (data from extracted endo- 
and exo-metabolite samples) together with the average trajectory (dotted green line) and the ±3 SD control limits 
(dotted red lines) indicated a significant increase in scores 3 d.p.i., as described by the first PLS scores vector t[1] 
(Fig. 2). Thereafter, a relatively smoother increase in t[1] followed up to 6 d.p.i. The evolution kept increasing 

Figure 1.  Principal component analysis (PCA) scores plots of the UHPLC-MS data. (A,B) Infographically 
display the assessment of the quality of the acquired data. (A) A 12-component model (R2 = 0.721 and 
Q2 = 0.624) of ESI positive data (Pareto-scaled) from extracellular samples (all three carbon sources). The 
control samples refer to the non-inoculated media. The quality control (QC) samples cluster together, which 
is an indication of good quality of the acquired data. (B) A 14-component model (R2 = 0.787 and Q2 = 0.708) 
of ESI negative, Pareto-scaled data from extracellular samples (all three carbon sources). QC samples cluster 
together with almost no within-group variation. (C) A PCA scores scatter plots of the PCA model of X-data 
(ESI negative) from extracellular extracts of C. sublineolum grown on arabinose: a 2-component model, 
explaining 59.5% of the total variation in the Pareto-scaled data, with the amount of predicted variation by the 
model, according to cross-validation, as 53.9%. (D) A PCA scores scatter plot (first two components) of X-data 
(ESI negative) from intracellular extracts of C. sublineolum grown on arabinose: a 3-component model, with 
R2 = 0.603 and Q2 = 0.51, of Pareto-scaled data X. In both (C,D), data from each time point form differential 
groups (no within-group variation) and a clear time-related trend is observed. These clear time-related 
differences and time-course trends were also observed in data sets from glucose and rhamnose carbon sources 
and different ESI modes, as indicated in Supplementary Figs 8 and 9.
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(with slightly changing slope) until the last time point, and no deviating behaviour (outside the ±3 SD control 
limits) was observed.

Furthermore, the (aligned) average PLS trajectory plotted in two dimensions (t[2]/t[1] vectors) (Fig. 3) clearly 
indicates that the modelled metabolic evolution comprised three distinct and significant phases corresponding to 
the time periods of 0–3, 3–6 and 6–12 d.p.i. These uncovered intervals of metabolic reprogramming point to dis-
tinct stages of C. sublineolum growth, which can be postulated to be early adaptation (0–3 d.p.i.), transition (3–6 
d.p.i.) and stationary (6–12 d.p.i.). These mathematically elucidated developmental time-periods of fungal growth 
correlate to previous studies, which reported that the biotrophic phase of Colletotrichum pathogens is short-lived, 
lasting about 72 h post-infection/inoculation, followed by the switch to necrotrophic lifestyle6,10–12. However, 
very little substantial knowledge exists with regards to the underlying biochemical and molecular mechanisms 
and differences in growth stages do not necessarily correspond to biotrophy or necrotrophy. Hence, it could be 
possible that there is actually a transition period (as this in vitro study suggests: 3–6 d.p.i.) that can inform on the 
in planta situation where the fungus gradually responds to environmental cues and adapts to a complete necro-
trophic phase.

Differential gene expression profiling indicative of metabolic reprogramming in C. sublineo-
lum.  To confirm these chemometrically characterised phases as corresponding to distinct metabolomes, quan-
titative expression analyses of selected marker genes were carried out, with actin as a reference gene. Quantitative 
measurements were normalised to give the relative gene expression wherein error bars represent the standard 
error of mean (SEM) (Fig. 4).

The group 1 marker genes, reported to be associated with a biotrophic phase in related Colletotrichum gramin-
icola6, namely sodium/hydrogen exchanger family protein (NaH), GMC oxidoreductase (Oxi) and zinc carboxy-
peptidase (Zinc), showed a significant up-regulation at 3 d.p.i., independently of carbon source, where after 
the expression levels decreased from 6 d.p.i., with a significant decrease in expression levels at 12 d.p.i. (Fig. 4). 
However, some carbon source-related nuances could be observed as in rhamnose-containing culture media, 
where the expression levels of these genes were high even at 6 d.p.i. and significantly decreased at 9 d.p.i. (Fig. 4B). 
In contrast, the group 2 marker genes, expressed during a necrotrophic phase6, namely fungal cellulose binding 
domain-containing protein (Fcbd), pectate lyase (Pec) and putative peptidase family M28 (Ppep) were significantly 
expressed at 9–12 d.p.i. (Fig. 4), independently of the culture milieu. Nonetheless, the expression levels of Pec 
and Ppep genes were higher than that of the Fcbd gene in C. sublineolum cultured in arabinose-containing media 

Figure 2.  Partial least squares (PLS) trajectory plots from batch evolution modelling of ESI negative data: 
samples from C. sublineolum grown on different carbon sources (arabinose, glucose and rhamnose) for 3, 6, 9 
and 12 d.p.i. (A) Extracts from extracellular samples – the computed lower-level PLS model of three significant 
components explaining 63.7% of the variation in the Pareto-scaled data X and 99.1% of the variation in the 
response Y (time). The predicted variation by the model, according to cross-validation, is 98.6%, indicating 
a significantly substantial relationship with time (CV-ANOVA p-value = 3.8 × 10−30). (B) Extracts from 
intracellular samples – a 4-component PLS model explains 56.9% of the variation in the Pareto-scaled data X 
(from intracellular samples), and 91.9% of the variation in the response Y (time). The predicted variation by the 
model = 90.1%, and CV-ANOVA p-value = 0. In both (A,B) the green dotted line indicates the average and the 
red dotted lines the ±3 SD. Each line represents a sample from a batch; and a batch refers to a carbon source. 
Data from all carbon sources (glucose, arabinose and rhamnose) are computed together. Due to figure size not 
all names/labels are detailed. The computed time-related evolution thus provides a descriptive characterisation 
of time-dependent metabolic changes.
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(Fig. 4C). In both glucose- and rhamnose-containing media, on the other hand, the Fcbd gene was the highest 
expressed group 2 gene (Fig. 4A,B).

Despite some carbon source-related differential gene expression levels observed, the results indicate that the 
0–3 d.p.i. time interval is associated with group 1 gene expression, whereas group 2 gene expression is linked to the 
time period of 9–12 d.p.i. (Fig. 4). Although the expression levels of selected group 2 marker genes were observed 
to be significant at 9 d.p.i. (e.g. Fcbd gene), the expression of these genes could be seen also at 6 d.p.i. (Fig. 4). 
Except for rhamnose-containing media (in which the group 1 marker genes were expressed at 6 d.p.i. – Fig. 4B),  
the time interval between 3 and 6 d.p.i. could be related to the transition phase. These observations confirm the 
chemometrically identified metabolic phases (Figs 2 and 3) as corresponding to distinct metabolomes (0–3 d.p.i.) 
vs. (9–12 d.p.i.) during the in vitro growth, development and differentiation of C. sublineolum in batch culture.

Metabolic signatures associated with early – vs. late trophic stages of C. sublineolum.  The puta-
tively identified metabolites, from both endo- and exo-metabolomes, statistically extracted to be discriminant for 
the two dominant trophic stages (0–3 d.p.i. vs. – 9–12 d.p.i.), were of diverse metabolic origins and biochemical 
functions during fungal growth (Table 1). The metabolite profile of stage 1 (chemometrically described as the 0–3 
d.p.i. time interval, Fig. 3) was characterised by up-regulation of intracellular metabolites (3 d.p.i./6 d.p.i.-fold 
change ratios >1) with a range of biochemical functions. Similarly, fold change ratio values > 1 of 12 d.p.i. vs. 3 
d.p.i. were used to obtain information on metabolites associated with stage 3 (Table 1). Both primary as well as 
secondary metabolites were associated with stage 1as well as stage 3. Interestingly, with the exception of arachi-
donoyl amine and indole-3-acetyl-glutamic acid, the fold change ratios of the rhamnose vs. glucose comparison, 
fell within a ± 2 range.

To gain more insights into possible biochemical and molecular frameworks that choreograph the transition 
of C. sublineolum growth from stage 1 to stage 3, a network analysis approach was carried out, using a high 
degree of correlation (biochemical and empirical) between the measured significant metabolites. The constructed 
correlation-based networks (Fig. 5) depict relational patterns in the experimental data (based on the fold changes 
listed in Table 1) and identify altered graph neighbourhoods which do not depend on any predefined biochemical 
pathways, thus allowing the characterisation of the molecular and cellular states induced by pathway interconnec-
tions under the stated experimental conditions.

Lumichrome (7,8-dimethylalloxazine), a breakdown product of riboflavin25, was found to be prominent 
marker during the active growth of stage 1. The levels subsequently decreased before increasing again during the 

Figure 3.  Aligned average partial least squares (PLS) trajectory plots t[1]/t[2]. (A) Represents extracellular 
samples and (B) intracellular samples, (data from all carbon sources and ESI negative mode MS). Since on 0 
d.p.i. there was no sufficient fungal material yet for intracellular metabolite extraction, the intracellular data (B) 
start on 3 d.p.i. The plots show three distinct phases corresponding to the time periods: 0–3 (stage 1), 3–6 (stage 
2), and 9–12 d.p.i. (stage 3).
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nutrient-limiting stage stage 3 (Table 1, Fig. 5). The metabolite was reported to participate in aspects of symbiosis 
(reconfiguration of the host primary carbon and phytohormone metabolism) and enhancement of hyphae initi-
ation25. The significant and dynamic changes in the level of this metabolite suggests the flavin-related metabolic 
pathways are activated during the early growth phase of C. sublineolum, with metabolites involved in establish-
ment of a parasitic relationship between fungus and host. To orchestrate such a complex manipulation of the 
cellular trafficking and organisation in the host cell for successful biotrophy8,12,20, the fungus needs to repro-
gram its metabolism, deploying a coordinated and efficient transfer system for nutrient acquisition (e.g. involving 
flavin-related metabolism as this study suggests).

Furthermore, the stage 1 metabolite profile was characterised by hydroxylated free fatty acids, - amide and 
- dioic acid conjugates and derivatives (Table 1, Fig. 5). Scientific attention into the dynamics of the ‘lipidome’ 
during plant-fungal interactions has revealed that fungal lipids are involved in organism development as well as 
regulatory machinery for secondary metabolism. In this regard, linolenic -, oleic -, nonanoic - and decanoic acids 
have been shown to participate in the regulation of spore development and mycotoxin production in Aspergillus 
spp, Fusarium spp, and Laetisaria arvalis26–28. Moreover, nonanoic acid (pelargonic acid) is reported to weaken 
the waxy cuticle of plants, causing cell disruption and cell leakage (PubChem database, https://pubchem.ncbi.
nlm.nih.gov). These properties might contribute to the establishment of a C. sublineolum infection and penetra-
tion associated with its biotrophic phase.

Important signatory biomarkers related to the early growth phase were the siderophores, namely ferricrocin 
and coprogen (decreasing in relative content from 3 d.p.i. to 6 d.p.i., Table 1, Fig. 5), which are essential molecules 
for iron uptake and storage29–32. The transition element, iron, is essential in key metabolic processes30,31 and plays 
a vital role in plant-microbe interactions29,33,34. A study on the related hemibiotrophic maize pathogen C. gramin-
icola, revealed that siderophores are required for the establishment of vegetative growth of the fungus, and are also 
involved in modulating the plant immune system35.

Notably, the polyketide, 5-methoxysterigmatocystin, (Table 1, Fig. 5) was found as a marker for stage 1 
growth (3.7-fold decrease from 3 d.p.i. to 6 d.p.i.). Sterigmatocystin is a highly toxic mycotoxin and initially 
reported from Aspergillus spp26,36–39. The intracellular occurrence of this methoxylated form of sterigmatocys-
tin in C. sublineolum points to the initiation of reprogramming of secondary metabolism during stage 1, char-
acterised by the biosynthesis of toxins to be deployed during nutrient-limiting conditions as during stage 3 
(6-demethylsterigmatocystin). This finding is consistent with previous studies that indicated that the biotrophic 
phase of Colletotrichum spp is marked by activation of a genomic program involved in secondary metabolism, 
directed also to toxin production6,8,10,20.

Figure 4.  Gene expression analysis of group 1 and −2 gene markers in C. sublineolum grown in MS media 
containing either glucose (A), rhamnose (B) or arabinose (C). The data was normalised using the actin gene 
to give the relative gene expression wherein error bars represent the standard error of mean. The marker genes 
for stage 1 were: Zinc carboxypeptidase (Zinc), putative sodium/hydrogen exchanger family protein (Nah), GMC 
Oxidoreductase (Oxi); and for stage 3: fungal cellulose binding domain-containing protein (Fcbd), pectate lyase 
(Pec) and putative peptidase family M28 (Ppep).
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The toxins that were found in this study to be secreted by C. sublineolum (during stage 3, chemometrically 
elucidated as 9–12 d.p.i. time period – Fig. 3) include colletotric acid and colletotrichin, among others (Table 1, 
Fig. 5). The production and secretion of these phytotoxins (mostly non-host-specific) by Colletotrichum spp have 
been reported to be a marker for necrotrophic development. During this stage, Colletotrichum spp satisfy nutri-
tional needs by actively killing the host tissue via phytotoxin production or generation of reactive oxygen species 
mechanisms6,10,20,40,41.

It can be postulated that with the significant depletion of carbon sources (Supplementary Fig. 1), the fungus 
resorts to destructive mechanisms, characterised by the production of phytotoxins, for survival and proliferation. 
Such conjecture can be extrapolated to the in planta scenario. Furthermore, the generated networks topologically 
revealed clear modules: such as clusters/modules related to lumichrome, fatty acids, ferricrocin and colletotrichin 
(Fig. 5). These clusters point to underlying metabolic processes that define a transition from stage 1 to stage 
3, suggesting highly complex and tightly regulated dynamic metabolism as the fungus transits from nutrient 
abundance to scarcity. The interweavement of different classes of significant metabolites within and between 
these different clusters thus describes silent features in this dynamic metabolism: coordinated regulations in 
both early - (e.g. changes in primary metabolism, fatty acid derivatives and siderophores) and late growth stages 
(exemplified by up-regulation and secretion of toxins). This observation correlates to a highly complex and coor-
dinated genetic and transcriptional program, as well as capacity deployed by Colletotrichum in its infection strat-
egy as previously reported; involving activation of genes related to degradative enzymes, expression of secondary 

# Metabolite m/z
Rt 
(min)

Ion 
mode Ion

Molecular 
formula

Fold change

Milieu
Biochemical 
Class3 d/6 d* 12 d/3 d# Rh/Glc$

1 Lumichrome (7,8-dimethylalloxazine) 285.0371 13.69 neg [M + Na_Na-H]− C12H10N4O2 74.6 7.5 0.6 Endo- Flavin

2 Ferricrocin-iron siderophore 771.2507 7.19 pos [M + H]+ C28H44FeN9O13 12.4 4.5 0.6 Endo- Siderophore

3 2-Phenylbutyric acid 187.0729 9.74 pos [M + Na + H]+ C10H12O2 4.9 4.2 0.7 Endo- Organic acid

4 2,15,16-Trihydroxy palmitic acid 325.1991 14.69 neg [M + Na-H]− C16H32O5 34.2 3.1 1.4 Endo- Fatty acid

5 Hydroxy-acetyl-cysteinyl-dihydronaphthalene 376.0823 9.66 pos [M + HCOONa]+ C15H17NO4S 4.4 2.2 1.1 Endo- Naphthalene

6 Trihydroxy-methoxyanthraquinone 287.0545 9.63 pos [M + H]+ C15H10O6 5.1 1.9 0.6 Endo- Anthraquinone

7 Malonamoyl-CoA 870.1695 6.18 pos [M + NH4]+ C24H39N8O18P3S 2.2 0.9 0.6 Endo- Fatty acyl CoA

8 Coprogen hydroxamate siderophore 822.313 9.14 pos [M + H]+ C35H53FeN6O13 8.6 0.8 1.1 Endo- Siderophore

9 Arachidonoyl amine 346.2114 13.49 neg [M + Na_Na-H]− C20H33NO 13.2 0.8 14.6 Endo- Fatty amide

10 3-Hydroxy-2-oxindole-3-acetyl-asp 343.0555 13.02 neg [M + Na-H]− C14H14N2O7 5.2 0.8 0.1 Endo- Indole

11 Phosphatidylserine 386.1202 5.18 pos [M + H]+ C13H24NO10P 2.6 0.7 0.6 Endo- Phospholipid

12 Nonanoic acid (pelargonic acid) 159.1373 9.97 pos [M + H]+ C9H18O2 5.2 0.5 1.5 Endo- Fatty acid

13 9-Hydroxy-hexadecan-1,16-dioic acid 301.2032 14.83 neg [M − H]− C16H30O5 13.8 0.5 0.2 Endo- Dioic acid

14 Fructoselysine 6-phosphate 389.1326 8.97 pos [M + H]+ C12H25N2O10P 9.1 0.5 0.7 Endo- Intermediate

15 Indole-3-acetyl-glutamic acid 325.0796 12.60 neg [M + Na-H]− C15H16N2O5 12.2 0.2 6.8 Endo- Indole

16 Heptadecane 239.2749 12.38 neg [M − H]− C17H36 30.5 0.1 1.6 Endo- Alkane

17 D-Glucose 6-phosphate 259.0227 15.28 neg [M − H]− C6H13O9P 56.6 0.1 0.1 Endo- Intermediate

18 3′,5-Dihydroxy-3,4′,7-trimethoxyflavone 343.0815 13.86 neg [M − H]− C18H16O7 11.3 0.0 0.7 Endo- Flavanone

19 5-Methoxysterigmatocystin 377.0615 8.85 pos [M + Na-H]+ C19H14O7 3.7 0.2 1.2 Endo- Mycotoxin

20 Colletotrichin 491.327 11.78 pos [M + H]+ C28H42O7 1.9 79.6 1.0 Exo- Mycotoxin

21 6-Demethylsterigmatocystin 331.0236 15.19 neg [M + Na-H]− C17H10O6 0.2 55.5 0.7 Endo- Mycotoxin

22 Colletotric acid 523.284 16.89 neg [M − H]− C28H28O17 2.0 49.9 0.1 Exo- Mycotoxin

23 Unidentified (sterigmatocystin related) 373.0104 15.79 neg [M − FA]− C17H12O7 0.1 39.0 0.8 Exo- Mycotoxin

24 Pyridoxyl-glutamic acid-monophosphate 377.0747 15.45 neg [M − H]− C13H19N2O9P 0.2 18.1 1.6 Endo- Co-enzyme

25 Mycophenolic acid 321.2602 19.03 pos [M + H]+ C17H20O6 0.7 5.6 0.2 Exo- Antibiotic

26 N-Benzyl-4-sulfamoyl-benzamide 311.0474 15.80 neg [M + Na-H]− C14H14N2O3S 0.7 4.1 0.8 Endo- Benzenoid

27 6-Hydroxy-5-methoxyindole glucuronide 338.0869 15.04 neg [M − H]+ C15H17NO8 0.3 1.6 0.8 Endo- Indole derv

28 5-Nitrofurfural 142.013 8.02 pos [M + H]+ C5H3NO4 0.6 1.5 1.6 Endo- Heterocyclic

29 N-acetyl-D-glucosaminitol 224.1139 8.74 pos [M + H]+ C8H17NO6 1.4 1.1 1.9 Endo- Fungal cell wall

30 2-Octenedioic acid 173.0813 9.06 pos [M + H]+ C8H12O4 0.8 1.0 1.5 Endo- Fatty acids

Table 1.  Summary of annotated metabolites that contributed to the discriminating variability in the altered 
metabolomes of Colletotrichum sublineolum grown on glucose, arabinose and rhamnose, as described by 
chemometric models. These discriminating metabolites were identified based on partial least squares (PLS) 
loadings plots (Supplementary Fig. 11) and reported to the Metabolomics Standards Initiative, level 2. *Fold 
change computed by 3 d vs. 6 d for a quantitative assessment of stage 1. #Fold change computed by 12 d vs. 3 
d for a quantitative description of stage 3. $Fold change computed by rhamnose vs. glucose for a quantitative 
assessment of the differential metabolic profiles in the two different carbon source media. Bold: metabolic 
markers for stage 1; Italic = metabolic markers for stage 3; Black = metabolite markers that were less conclusive. 
MSI-2 = Metabolomics Standards Initiative, level 2.

https://doi.org/10.1038/s41598-019-38692-7


8Scientific Reports |          (2019) 9:3290  | https://doi.org/10.1038/s41598-019-38692-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

metabolism gene clusters, metabolite diversity via transcriptional regulation6,8. Thus, this predictive description 
proposes that the Colletotrichum lifestyle is metabolically more complex (temporally and spatially) than currently 
understood, spanning various metabolic pathways.

Conclusion
For successful infection of host plants, hemi-biotrophic fungal pathogens like the Colletotrichum spp depend 
heavily on the establishment of effective nutrient acquisition strategies, i.e. a biotrophic phase followed by a 
necrotrophic phase. This in vitro study model, using different carbon sources (glucose, arabinose or rhamnose), 
obtainable in planta as cell wall- and pectin-derived nutrients, provided insights into the metabolic changes in C. 
sublineolum, suggesting specific metabolic features during the growth course of the fungus.

Our results chemometrically describe that metabolic reprogramming occurs in C. sublineolum during the 
transition from stage 1 to stage 3 growth. By applying a dynamic multivariate method, the time-course phases 
were elucidated over a period of 12 days. Stage 1 was seen to be short lived (0–3 d.p.i.), followed by a transition 
interval, stage 2 (3–6 d.p.i.), leading to stage 3 (9–12 d.p.i.). Stage 1 was accompanied with the expression of genes 
reported to be associated with biotrophy while stage 3 was associated with expression of genes associated with 
necrotrophy in C. graminicola6.

The metabolic profiles of these growth stages of the fungus were characterised by reprogramming of primary 
and secondary metabolism, with production of phytotoxins in stage 3. The metabolic states, as uncovered by both 

Figure 5.  Metabolic network analysis: A biochemical and empirical network displaying metabolic 
relationship patterns between chemometrically selected metabolites – signatory biomarkers and metabolic 
phenomenologies for stage 1 (A) and stage 3 phases (B). Edge type and thickness depict the relationship 
(biochemical, structural) and Tanimoto correlation coefficient (structural only, with a cut-off of 0.5) between 
respective nodes. Node shape illustrates whether the metabolite is endogenous or secreted in the medium. Node 
colour and size reflect the direction (red – decreased; green – increased) and magnitude of change (fold-change 
of 3/6 d.p.i (A) and 12/3 d.p.i. (B)). The graph was visualized using Cytoscape version 3.5.1.
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the endo- and exo-metabolome profiles, point to complex metabolomic changes that might be of functional sig-
nificance to the interaction between the pathogen and host in an in planta situation.

The marker gene expression during stage 1 vs. stage 3 would imply that endogenous signals related to nutrient 
depletion are necessary and sufficient to trigger the changes in gene expression associated with necrotrophy. 
However, care should be taken in extrapolating the in vitro growth results to biotrophic – and necrotrophic stages 
in infected plant tissues. Also, this model, does not address the possibility that other signals, originating from 
fungal structures in the infected plant or from the plant itself, might play contributing roles in such a lifestyle 
switch. However, it does lay a solid foundation for further targeted metabolomic studies related to specific stages 
of fungal growth and development, in vitro or in planta.

Unravelling metabolite profile patterns underlying the C. sublineolum in vitro growth stages thus pointed 
to specific biochemical processes and deciphered regulatory mechanisms, providing a holistic description of 
growth and adaptation to diminishing nutrient conditions. Such knowledge contributes to enhance insight into 
the infection strategies of the fungal pathogen and the dynamic intricacies of the molecular interactions between 
Colletotrichum spp and plant targets. As such, the present work provides a necessary step for in planta studies, 
uncovering metabolic central hubs and key drivers in molecular events governing the C. sublineolum biology. 
Finally, the metabolomic information presented in this work will be a valuable resource for relating data from 
other omics layers towards systems biology description of the phenomenology of plant-fungal pathogen inter-
actions. Colletotrichum spp represent economically significant pathogens where a holistic and detailed under-
standing of pathogen biology could substantially inform strategies for targeted disease control and management.

Methods
Fungal cultures, media and inoculation.  A pathogenic isolate of C. sublineolum (PPRI 7183) was grown 
and maintained on potato dextrose agar (PDA). The working sub-cultures were maintained on half-strength 
PDA solid media in Petri dishes and incubated under a 12 h–fluorescent light cycle at 25 °C. To simulate in planta 
nutrient sources, three types of Murashige and Skoog (MS; without vitamins)-based liquid media (Duchefa, 
Haarlem, Netherlands, product number M0221) containing 10 g L−1 of different carbon sources, namely glucose, 
arabinose and rhamnose, were prepared under sterile conditions42.

One hundred mL Erlenmeyer flasks containing 50 mL of the MS liquid media (containing the various carbon 
sources) were each inoculated with three mycelial plugs (2 mm diameter) from C. sublineolum grown on solid 
PDA media (14 day-old cultures). The flasks were incubated at 25 °C on a rotary shaker at 130 rpm under a 12 h–
fluorescent light cycle. Consumption of glucose during the growth stages of the fungus was quantitatively assessed 
using a glucose measuring device (Accu-Check®, Roche Diagnostics) on supernatants separated from the myce-
lial bio-mass harvested at 3, 6, 9 and 12 days post-inoculation (d.p.i.) (Supplementary Fig. 1A–D).

The experiment was conducted in three biological replicates. For extracellular samples, non-inoculated liquid 
media was also incubated and harvested under the same conditions, to account for any change that might have 
occurred in the media over time and served as negative controls.

Extraction of intracellular and extracellular metabolites, and sample preparation.  The organic 
solvents used, methanol and acetonitrile, were UHPLC-MS grade quality (Romil, Cambridge, UK), and water was 
purified by a Milli-Q Gradient A10 system (Millipore, Billerica, MA, USA). Leucine enkephalin and formic acid 
were purchased from Sigma Aldrich/Merck (Munich, Germany).

Each flask was harvested by filtering the contents through a double layer of Miracloth under vacuum to sep-
arate the fungal mycelia and the media. The mycelia samples were weighed and the wet-weight recorded. The 
extracellular metabolites (the exo-metabolome: metabolites secreted into the media) were extracted from 25 mL 
freeze-dried media filtrate with 50% methanol and filtered through a 0.22 µm nylon filter into glass chromatogra-
phy vials fitted with 500 µL inserts. The intracellular metabolites (endo-metabolome) were extracted using 100% 
methanol added directly to the weighed-out fungal material in a ratio of 1:10 (w/v), and immediately homoge-
nised using an Ultra Turrax homogeniser followed by sonication using a probe sonicator (Bandelin Sonopuls, 
Berlin, Germany), set at 55% power for 20 sec and repeated twice, which served to rapidly quench enzymatic 
activities43,44.

The homogenates were then centrifuged at 5000 × g for 15 min at 4 °C. The supernatants were placed in 50 mL 
round-bottom flasks and evaporated to 1 mL at 50 °C using rotary evaporation under vacuum, and dried to com-
pleteness with a speed vacuum centrifuge at 45 °C. The dried residues were re-constituted in 300 µL 50% methanol 
and filtered through a 0.22 µm nylon filter as described. The filtered aqueous-methanol extracts prepared from the 
endo- and exo-metabolomes were stored at −20 °C until analysed.

Ultra-high performance liquid chromatography – mass spectrometry (UHPLC-MS) analy-
ses.  Chromatographic separation of metabolites was performed on an Acquity UHPLC system (Waters 
Corporations, Milford, MA, USA) using a conditioned autosampler at 4 °C. Two µL of methanol-extracted sam-
ples were separated on an analytical C18 column HSS T3 (150 mm × 2.1 mm, 1.7 µm – Acquity, Waters, Milford, 
MA, USA), thermostatted at 60 °C. Degassed solutions of formic acid: ultra-pure water (1:103, v/v) (eluent A) and 
formic acid: acetonitrile (1:103, v/v) (eluent B) were pumped at 0.4 mL min−1 into the UHPLC system. The applied 
gradient started at 5% B and increased linearly to 95% B over 22 min. The conditions were kept constant for 3 min 
to wash the column and returned to initial conditions at 27 min. The analytical column was allowed to equilibrate 
for 3 min. Each sample was analysed in triplicate to account for any analytical variability and the run time for each 
analysis was 30 min. The LC system was coupled to a SYNAPT G1 high definition (HD) quadrupole time-of-flight 
(Q-TOF) mass spectrometer (Waters, Milford, MA, USA), with an electrospray ionisation (ESI) source. The TOF 
analyser was used in V-optics, and the data were acquired in centroid mode.
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Both positive and negative ionisation modes were employed with the scan range of 100–1000 Da, a scan 
time of 0.2 s and an inter-scan delay of 0.02 s. A lock spray source was used allowing online mass correction 
to obtain high mass accuracy of analytes (typically between 1 and 5 mDa mass accuracy). Leucine enkephalin, 
[M + H]+  = 556.2766 and [M − H]− = 554.2615, was used as a lock mass reference, being continuously sampled 
every 15 s at a flow rate of 0.4 mL min−1, producing an average intensity of 350 counts scan−1 in centroid mode. 
The optimal conditions for MS analysis were as follows: source temperature: 120 °C; desolvation temperature: 
450 °C; cone gas flow 50 L h−1; capillary voltage: 2.5 kV; sampling cone voltage: 17 V; extraction cone voltage: 4 V; 
desolvation gas flow: 550 L h−1. To assist with downstream structure elucidation and compound identification, the 
MS analyses were set to perform unfragmented as well as four fragmenting experiments (MSE) simultaneously by 
collision energy ramping from 10 to 40 eV. The software used to control the hyphenated system and perform all 
data manipulation was MassLynx 4.1 (SCN 704, Waters Corporation, Milford, MA, USA).

Quality control (QC) pooled samples were used to condition the LC-MS analytical system so as to assess the 
reliability and reproducibility of the analysis, and for non-linear signal correction45,46. Sample acquisition was 
randomised and the QC sample (6 injections) analysed every 10 injections to monitor and correct changes in the 
instrument response. Furthermore, 6 QC runs were performed at the beginning and end of the batch to ensure 
system equilibration. Such sample randomisation provides stochastic stratification in sample acquisition so as to 
minimise measurement bias. In the principal components analysis (PCA) space, the QC samples were clustered 
closely to each other (Fig. 1A,B), thus confirming the stability of the LC-MS system, and the reliability and repro-
ducibility of the analyses.

Data analysis: data set matrix creation and chemometric analyses.  Visualisation and data pro-
cessing were performed using MassLynx XSTM 4.1 software (Waters Corporation, Manchester, UK) for both the 
centroid ESI positive and negative raw data. The MarkerLynxTM application manager of the MassLynx software 
was used for data pre-processing (matrix creation), producing a matrix of retention time (Rt)-m/z variable pairs, 
with m/z peak intensity for each sample. The parameters of the MarkerLynx application were set to analyse the 
1–25 min Rt range of the mass chromatogram, mass range 100–1000 Da, and alignment of peaks across samples 
within the range of ±0.05 Da and ±0.20 min mass and Rt windows, respectively; and mass tolerance of 0.01 Da. 
The MarkerLynx application uses the patented ApexPeakTrack algorithm to perform accurate peak detection and 
alignment. Following the peak detection, the associated ions are analysed (the maximum intensity, Rt and exact 
m/z mass) and captured for all samples. In this study, sample normalisation was done by using total ion intensities 
of each defined peak. Prior to calculating intensities, MarkerLynx performs a patented modified Savitzky-Golay 
smoothing and integration.

The data matrices thus generated were exported into SIMCA (soft independent modelling of class analogy) 
software, version 14 (Umetrics, Umeå, Sweden) for chemometric analyses, including multivariate and univariate sta-
tistical modelling, and an unsupervised method, namely PCA, was employed. The data pre-treatment methods used 
included Pareto-scaling, and as described in the results section, the computed models were rigorously validated.

A partial least squares (PLS)-based approach, namely batch processing/modelling (BP/M), was used to opti-
mally assess and describe the time-related metabolic trajectories observed from PC-analyses22,23, allowing a mul-
tivariate statistical description of time-related events. In a BP/M approach, PLS regression analysis against time 
(i.e. the time period over which the changes are recorded) allows for the evolution of the metabolic changes to 
be statistically characterized and described in time trajectories. Thus, significant time-related changes can subse-
quently be identified, as well as metabolic features (metabolite signals) related to/that explain these changes21,23,24.

Biochemical networks were generated using Cytoscape47,48. Structural similarities were determined based on 
similarities between PubChem Substructure Fingerprints (ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/
pubchem_fingerprints.txt). The R package Chemminer generated molecular fingerprints using the PubChem 
Power User Gateway (PUG). Molecular fingerprints in the form of ordered lists of binary bits defining presence 
or absence of physical properties (e.g. element type, functional group, nearest neighbours) were used to calculate 
structural similarities; pairwise similarities were calculated based on Tanimoto similarity between two bit vectors 
resulting in scores between 0 and 1, where a score of 0 or 1 defines no or complete overlap in structural properties 
between the two molecules. A Tanimoto coefficient cut-off of 0.5 was used for network analyses.

Metabolite identification.  Data matrices from MarkerLynxTM-based data processing were exported to 
the Taverna workbench (www.taverna.org.uk) for PUTMEDID_LCMS Metabolite ID workflows49. The Taverna 
workflows consist of correlation analysis, metabolic feature - and metabolite annotation and allow for integrated, 
automated and high-throughput annotation and putative metabolite identification from LC-ESI-MS metabolo-
mic data. The Taverna Metabolite ID procedure involves: (i) Pearson-based correlation analysis (List_CorrData), 
(ii) metabolic feature annotation (annotate_Massmatch) – allowing for grouping together ion peaks with similar 
features such as Rt, and annotating features with the type of m/z ion (molecular ion, isotope, adduct, others) 
believed to originate from the same compound. The elemental composition/molecular formula (MF) of each 
m/z ion was then automatically calculated; and (iii) metabolite annotation (matchMF-MF) of the calculated MF 
(from the output file from workflow 2) was automatically compared and matched to the MF from a pre-defined 
reference file of metabolites.

For confidence in metabolite annotation, the following steps were performed: (i) the calculated MF of a 
selected metabolite candidate was manually searched against databases and bioinformatics tools, such as the 
Dictionary of Natural Products (DNP) (www.dnp.chemnetbase.com), Chemspider (www.chemspider.com), 
Knapsack database (http://kanaya.naist.jp/KNApSAcK/) and KEGG (www.genome.jp/kegg/); (ii) structural con-
firmation through careful inspection of fragmentation patterns by examining the MS1 and MSE spectra of the 
selected metabolite candidate. Metabolites were annotated to level 2 as classified by the Metabolomics Standard 
Initiative (MSI)50.
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Gene expression analyses - qPCR and data analysis.  Total RNA was extracted from 100 mg myce-
lia of all time point samples using the Trizol-reagent (Invitrogen, Carlsbad, CA, USA) and then subjected to 
DNase treatment using DNase I (Thermo Scientific, Waltham, MA, USA), per the manufacturers’ instruc-
tions. Concentrations were determined using a NanoDrop® ND-1000TM Spectrophotometer (NanoDrop Inc., 
Wilmington, DE, USA) and the integrity verified by denaturing agarose gel electrophoresis.

Based on the putative function during biotrophic and necrotrophic development of C. graminicola6, six C. sub-
lineolum genes were selected for gene expression analysis in C. sublineolum grown in a culture containing either 
arabinose, glucose or rhamnose as carbon source. The selected marker-genes for the biotrophic phase were zinc 
carboxypeptidase (JMSE01000325.1), putative sodium/hydrogen exchanger family protein (JMSE01001189.1) and 
glucose-methanol-choline (GMC) oxidoreductase (JMSE01001299.1); while the genes for the necrotrophic phase 
included fungal cellulose binding domain-containing protein (JMSE01001209.1), pectate lyase (JMSE01001554.1) 
and putative peptidase family M28 (JMSE01001300.1). The primer pairs (Supplementary Table 1) were designed 
using the ‘Primer Quest’ tool (Integrated DNA Technologies, Coralville, IA, USA) from the sequences obtained 
in Genbank (www.ncbi.nlm.nih.gov/genbank). Prior to quantification of the expression levels, the DNase-treated 
RNA was reverse-transcribed to cDNA using a RevertAid™ Premium First Strand cDNA synthesis kit 
(Fermentas, Thermo Scientific, Waltham, MA, USA).

qPCR was performed to analyse the expression of each gene on a Rotor gene-3000A instrument (Qiagen, 
Venlo, Netherlands) using the SensiFAST SYBR No-ROX Kit (Bioline, London, UK) according to the manufac-
turer’s instructions. Ten μL SensiFAST SYBR, 1 μL (1 μM final concentration) each forward and reverse primers, 
and 6 μL DNase-free water was added to 2 μL cDNA for amplification in a total volume of 20 μL. The cycling con-
ditions were as follows: initial denaturation for 2 min at 95 °C followed by amplification and quantification cycle 
repeated 40 times each consisting of 5 s denaturing at 95 °C, 10 s annealing at primer specific temperatures, and 
20 s extension at 72 °C. Two biological replicates were used with two technical replicates of each.

The relative standard curve method51 was used to quantify the expression levels of the selected genes and 
the data normalised using actin (ref.6 and Supplementary Fig. 12) as reference gene. Data sets were statistically 
compared between samples at each time point using one-way analysis of variation (ANOVA) with the statistical 
analysis software GraphPad InStat v3 (GraphPad software, San Diego, CA, USA). The confidence level of all anal-
yses was set at 95%, and values with p < 0.05 were considered significant.

Data Availability
The study design information, LC-MS raw data, analyses and data processing information, and the meta-da-
ta have been deposited to the EMBL-EBI metabolomics repository – MetaboLights database (https://doi.
org/10.1093/nar/gks1004. PubMed PMID:23109552)52 with the identifier (accession number) MTBLS735 (http://
www.ebi.ac.uk/metabolights/MTBLS735).
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