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Validation and quality assessment 
of macromolecular structures using 
complex network analysis
Jure Pražnikar1,2, Miloš Tomić1 & Dušan turk2,3

Validation of three-dimensional structures is at the core of structural determination methods. the local 
validation criteria, such as deviations from ideal bond length and bonding angles, Ramachandran plot 
outliers and clashing contacts, are a standard part of structure analysis before structure deposition, 
whereas the global and regional packing may not yet have been addressed. In the last two decades, 
three-dimensional models of macromolecules such as proteins have been successfully described by a 
network of nodes and edges. Amino acid residues as nodes and close contact between the residues as 
edges have been used to explore basic network properties, to study protein folding and stability and to 
predict catalytic sites. Using complex network analysis, we introduced common network parameters 
to distinguish between correct and incorrect three-dimensional protein structures. The analysis 
showed that correct structures have a higher average node degree, higher graph energy, and lower 
shortest path length than their incorrect counterparts. Thus, correct protein models are more densely 
intra-connected, and in turn, the transfer of information between nodes/amino acids is more efficient. 
Moreover, protein graph spectra were used to investigate model bias in protein structure.

Insight into the three-dimensional structures of macromolecules resolved to atomic detail is crucial for our 
understanding of biological processes. As only the correct structures can be used in earnest to address biological 
questions, the validation and quality assessment of three-dimensional structures is an important issue in struc-
tural biology1–4. Therefore, tools for validating many criteria have been developed, including Ramachandran plot 
outliers, all-atom clash scores, deviations from bonding geometry, and rotamers. These criteria are good indica-
tors of the local structure’s correctness. Implementation of Huber’s rule that the structure is correct when it fits the 
electron density and is correct locally and globally relies on human assessment5; however, algorithms and their 
software implementations are lacking.

The informational abstraction of three-dimensional macromolecular structures into residue networks 
provides a means to address this issue. The analysis and exploration of a complex networks approach are still 
expanding across various research areas6. In the last decade, protein structures have been modelled as networks 
numerous times7–9. Interacting amino acids, presented as nodes and edges, have small-world properties10 with 
relatively short characteristic path lengths and high clustering coefficients. From this perspective, the interact-
ing amino acids are like other self-organized networks, such as World Wide Web pages11, biological signaling 
pathways12, metabolic networks13, and scientific collaboration networks14. Protein and residue network models 
have been successfully used for predictions of catalytic sites15–17, examinations of protein structures from mod-
eling18, investigations of protein dynamics19, analysis of protein-protein interaction networks20,21, graph theo-
retical analysis of protein pathways22, and assignments of residues that play crucial roles in protein folding23–25. 
Surprisingly, to date, residue network characteristics have not been used to validate three-dimensional protein 
structures deposited in Protein Data Bank and, Protein Graph Repository. Here, we demonstrate the use of com-
plex network analysis for macromolecule model quality assessment and for differentiation between incorrect and 
correct protein structures.
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Results
Node degree of residue network models. We analysed more than 50,000 residue networks and evalu-
ated the dependence of node degree (ND) on (i) resolution and (ii) residue network size. The ND parameter 
indicates how an average node is connected to the other nodes. The distribution of ND clearly shows that ND 
does not depend on resolution (Fig. 1A, inset) and suggests that ND is not strongly related to protein size (N), as 

.ND N 0 023 (Fig. 1A). Furthermore, the expected ND can be given by the expression = .ND N7 0 023, where N is 
number of nodes, and the next approximation is given as ≈.e 71 94 . The resulting scaling exponent of 0.023 indi-
cates that an increase in the protein size of 1000 times increases the ND by approximately 20% on average. 
Therefore, the ND of proteins of similar sizes are not randomly scattered over a wide range but rather are distrib-
uted in a narrow interval (σ ≈ 0.4). Note that a higher ND for large proteins may be observed because larger 
proteins have more core nodes. Moreover, larger proteins are made from several domains, thereby forming qua-
ternary structures and hence establishing additional edges between adjacent domains in three-dimensional 
space19.

Global correctness of macromolecular structures. Because ND does not depend on resolution and its 
relation to protein size is rather weak, we investigated the general applicability of complex network parameters for 
validation and quality assessment. To address the global correctness of the model, we analysed the shortest path 
length and graph energy of nine pairs of previously studied correct and incorrect protein models (Supplementary 
Table 1). In graph theory, the degree of a node corresponds to the number of edges (i.e., the pair-wise contacts 
between residues), the shortest path length indicates how fast information spreads from a given node to other 
reachable nodes in the network, and the graph energy measures the stability of the connections in the network. 
The correct protein models have a significantly higher node degree (Fig. 1B), higher graph energy (Fig. 1C), and 
lower shortest path length (Fig. 1D). The relative change in graph energy ranges from 6% to 48%; the same is 
true for the shortest path length where a negative change is observed. Furthermore, the incorrect structures have 
node degrees approximately 2σ below the mean (Fig. 1B). The only exception among the presented cases is the 
pair (PDB id) 1ENL and 3ENL. The node degree of the incorrect model (PDB id: 1ENL) indicates that this model 
is in fact correct; however, the correct structure (PDB id: 3ENL) has an even higher node degree that is closer 
to the good percentile. Additional analysis of the poor and long Cα subgraphs of the incorrect model revealed a 

Figure 1. (A) Scaling exponent of node degree (ND) versus number of residues (N). (Inset) Distribution of 
ND against resolution data (Å) of the protein structures. (B) Mean ND, shown in grey, and ±2σ levels that 
approximately correspond to the 2.5 and 97.5 percentile levels, shown in green and red, respectively, are 
plotted smoothly, along with all individual data points for incorrect (red diamonds) and correct (blue circles) 
protein models. (C) Normalized graph energy and (D) shortest path length of nine pairs incorrect and correct 
structural models. The change in graph energy and shortest path length is shown in blue and green, respectively, 
whereas the relative change between the incorrect and correct model is shown in orange.
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region of Cα atoms that are too close or too far apart from the expected distance (∼3.8 Å) (Fig. 2A–F). Note that 
in the case of poor subgraph construction, an edge is formed when the distance between any two Cα atoms is 
in the range of 3.0 to 3.7 Å. Inspection of the subgraphs of the incorrect structure (PDB id: 1ENL) revealed that 
the poor subgraphs contain edges between non-sequential amino acid pairs: Val208-Asp210, Gly202-Asp210, 
Met57-Val61 and Arg200-Ala203 (Fig. 2A,C,D). Furthermore, the ribbon representation (Fig. 2G) of the three 
poor and three long subgraphs of the incorrect model indicates a mistraced region. Thus, we have demonstrated 
that the poor and long Cα subgraphs (i.e., connected components) can identify problematic regions in the protein 
structure and can assist in the final part of model building.

Next, we analysed the case (PDB ids: 2FD1 and 5FD1) that shows the largest increase of node degree (Fig. 1B) 
and graph energy (Fig. 1C) among our examples. Visual inspection of the residue networks (Fig. 3A,B) shows 
that the correct model has a well-balanced distribution of edges that link the amino acids/nodes. The node degree 
distribution clearly shows that the correct structure has more nodes with a higher degree and does not have 
nodes with a very low degree (Fig. 3C). Thus, the correct model does not contain any nodes with a low degree 
but has 13 nodes with degree greater than 10. In contrast, the incorrect model contains 28 nodes (9 + 19) that 
have fewer than four edges and does not contain any nodes with degree greater than 10. In addition to the large 

Figure 2. (A–F) Poor and long Cα subgraphs of an incorrect protein model (PDB id: 1ENL). Graphs coloured 
in red correspond to poor Cα subgraphs, while graphs coloured in magenta correspond to long Cα subgraphs. 
(G) Ribbon presentation of the correct structure in green (PDB id: 3ENL), and wire presentation of incorrect 
model in blue (PDB id: 1ENL). Colours and residue labels in the bottom panel correspond to the red and 
magenta subgraph colours. Poor edges (red) between non-sequential residues are plotted using dotted lines.
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increase in node degree and energy, the case (PDB ids: 2F2M and 3B5D), exhibits a pronounced decrease in 
the shortest path length (Fig. 1D). Visual inspection of the incorrect model revealed that a group of 22 residues 
(vertices in blue and edges in orange, Fig. 3D) are connected to the rest of the protein residues by only one link 
between two sequential residues, Gly176 and Gln177 (Fig. 3D). In the correct structure, the same group of 22 
amino acids/nodes forms a considerably higher number of links (Fig. 3E); thus, the edges represent non-covalent 
interactions with other nodes in the residue network. Additionally, the node degree distribution shows that the 
incorrect model has a high peak at node degree 8 and only two nodes that have more than 10 edges (Fig. 3F). The 
correct model contains 17 nodes with a degree greater than 10 and with data evenly distributed about the mean19 
(Fig. 3F).

Identification of local errors. Next, we inspected three cases with local problems: (i) an eight-residue-long 
bound peptide that can be traced in two alternative directions, (ii) a register error, and (iii) differences between 
non-crystallographic symmetry-related molecules.

 (i). Protein cathepsin H (PDB id: 8PCH) has an eight-residue-long propeptide, termed a mini-chain, with a 
disulphide bond link to the main-chain. There are two alternative chain traces of the mini-chain. Using 
kick maps, the authors decided on the correct chain trace26. The ND analysis showed that the correct trace 
of the mini-chain is linked by 14 body residues, whereas the incorrect trace is linked by 11 body residues 
(Fig. 4A,B). Moreover, the high sensitivity of the global network parameters revealed a higher node degree 
and lower shortest path length for the model with the correctly placed mini-chain (Supplementary Table 2).

 (ii). The 1ZEN structure is partially incorrect due to several sequence register errors. Again, the global parame-
ters show that the correct model has more edges and a lower shortest path length (Supplementary Table 2). 
In addition, we performed graph spectral analysis of the adjacency matrix for PDB id: 1ZEN. The eigenvec-
tor of the largest positive eigenvalue, i.e., eigenvector centrality, is a common measure of the importance 
of the nodes in the network. On the one hand, the eigenvector of the incorrect model exhibited very high 
scores in region of the α10 and α11 helices but had scores below 0.6 for rest of the structure (Fig. 4C). On 
the other hand, the eigenvector of the correct model exhibited the highest scores for β strands 1, 2, 7 and 8 
(Fig. 4C), while also displaying high scores (>0.8) for the α10 and α11 helices. This analysis reveals that the 
eigenvector centrality of the correct structure provides a better interpretation and reveals the importance 
of the (α/β)8 barrel and the α10 and α11 helices in dimer formation (Fig. 5A–D). Additionally, the bimetallic 
binding site in the (α/β)8 barrel contains residues Asp109, His110, Glu172, Glu174, His226, His264 and 
Lys284, which have higher eigenvector values compared to the eigenvector values of these residues in the 
incorrect model (Fig. 4C).

Figure 3. The 2D representations of two incorrect models (A,D) against their correct counterparts (B,E) using 
an organic layout visualized with Cytoscape (www.cytoscape.org). (A) Incorrect model (PDB id: 2FD1) and (B) 
correct counterpart (PDB id: 5FD1). (D) Incorrect model (PDB id: 2F2M) and (E) correct counterpart (PDB id: 
3B5D), with the region around the Gly176-Gln177 edge shown in orange and marked. (C) Frequency of nodes 
against node degree of an incorrect (PDB id: 2FD1) and a correct protein model (PDB id: 5FD1) shown with 
blue and green bars, respectively. (F) Frequency of nodes against node degree of an incorrect (PDB id: 2F2M) 
and a correct protein model (PDB id: 3B5D) shown with blue and green bars, respectively.
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 (iii). Furthermore, we demonstrated the usefulness of the residue network parameter, e.g., node degree, to 
expose differences between two pairs of molecules in the asymmetric unit that are related by non-crys-
tallographic symmetry (NCS). Molecules in a very similar environment are expected to have similar, but 
not identical, three-dimensional structures. The ND differences between two pairs of the same protein 
structure were calculated by subtracting the ND of chain A from the ND of chain B. The correct pair (PDB 
id: 1CEL) of structures exhibited insignificant discrepancies in ND along the chain (Fig. 6A), whereas the 
large ND discrepancies along the entire residue network in 3SDP (Fig. 6B) revealed that the previous lack 
of tools for the refinement of twinned crystals and the absence of NCS restraints hampered refinement in 
such cases. However, when the differences are localized, for example in allosteric enzymes, then the graph 
can indicate conformational differences between the relaxed and tense states. For example, analysis of the 
crystal structure of bacterial L-lactate dehydrogenase27 (PDB id: 1LTH) revealed that the region with the 
largest discrepancies involves residues Ala17, Pro89, Pro126, Ile229 and Ile230 (Fig. 6C). This insight is 
consistent with the findings of visual inspection, which revealed sites with large conformational changes.

Ranking decoys. In addition to the nine models that had been deposited in the PDB but later found to 
be incorrect we ranked the CASP11-stage128 and Sali Lab29 decoy datasets. A total of 110 targets and their cor-
responding 7,800 models were taken in to our analysis. Energy statistical functions30–34 and Machine learning 
technique35–39 are often used on the decoy discrimination problem.

Here we introduce simple, but efficient ranking which is rather similar to the comparison of important global 
quality indicators in the wwPDB validation report. By using the Z-score of mean node degree we classified decoys 
in to four quality groups: (i) Good: absolute value of the Z-score in the interval [0, 1], (ii) Fair: absolute value of 
the Z-score in the interval [1, 2], (iii) Poor: absolute value of the Z-score in the interval [2, 3], (iv) Very poor: 
absolute value of Z-score is greater than 3. The Z-score of mean node degree was compared against three struc-
tural similarity metrics: global distance total score (GDT-TS)40, Root Mean Square Distance (RMSD) of Cα atoms 

Figure 4. (A,B) The 2D representations of the residue network using a circular layout visualized with Cytoscape 
(www.cytoscape.org). The mini-chain nodes are coloured in red, whereas the body residues of Cathepsin H 
(PDB id: 8PCH) are coloured in grey. Edges are marked as black lines. (C) Normalized vector components 
(maximum score is set to 1) that correspond to the largest eigenvalue of the incorrect and correct structure, 
plotted against the residue index (PDB id: 1ZEN). The incorrect and correct structures are plotted in blue and 
green, respectively. The bimetallic-binding site residues in the (α/β)8 barrel are marked in orange.

https://doi.org/10.1038/s41598-019-38658-9
http://www.cytoscape.org


www.nature.com/scientificreports/

6Scientific RepoRts |          (2019) 9:1678  | https://doi.org/10.1038/s41598-019-38658-9

and Native Overlap (NO)41 at a 3.5 Å cutoff. Note, the similarity metrics GDT-TS, RMSD and NO are part of the 
CASP11-stage1 and Sali Lab decoy datasets. Figure 7 shows the relation of classified decoys and the similarity 
metrics for the CASP11-stage1 (Fig. 7A,B) and Sali Lab (Fig. 7C,D) datasets. It can be seen that when the model 
has a very low (<−3) or a very high (>3) Z-score then the quality of the structure is low. Low quality structures 
have the highest RMSD and the lowest GDT-TS and NO. Models that have been assigned to the Good quality 
group show the lowest RMSD (Fig. 7B,D) and highest GDT-TS and NO (Fig. 7A,B). There is a positive (negative) 
trend for RMSD (GDT-TS, NO) when going from good towards very poor quality group. From the above exam-
ples, it is clear that by employing different parameters of the residue network, we were able to detect suspicious 
3D models deposited in the PDB and to appropriately rank more than 7,800 decoys from the CASP11-stage1 and 
Sali Lab datasets.

Moreover, the evaluation of the presented method with standard metrics (average per-target correlation), shows 
that ND Z-score and shortest path strongly correlate with RMS (Supplementary Table 3). The comparison with 
DeepQA38, which is a single model quality assessment method, on the CASP11-stage1 dataset shows that DeepQA 
correlates (R = 0.64) better with GDT-TS, than residue graph parameters ND Z-score (R = 0.41) and shortest 
path (R = −0.39), see Supplementary Table 3. However, ND Z-score and shortest path correlate more closely than 
FUSION (R = 0.10) and raghavagps-gaspro (R = 0.35) on the CASP11-stage1 data set38. Furthermore, the correla-
tions of DeepQA training feature spanned from 0.37 (Euclidean compact score) up to 0.63 (Qprobe score). It follows 
that ND and shortest path (absolute value) correlate better than the lowest DeepQA feature38 on the CASP11-stage1. 
In this respect, the results show that residue graph parameters could be used for ranking and selecting protein mod-
els as a single quality assessment method or as an individual feature of a deep belief network.

Discussion
These examples demonstrate that the complex network analysis of a residue-based network is a useful tool for 
regional and global validation of three-dimensional macromolecular models. The standard validation criteria 
included in the wwPDB validation reports, i.e., Ramachandran, clash and rotamer Z-score exhibit moderate to 
strong correlation (R > 0.5, Fig. 8), meanwhile the comparison of the ND Z-score with Ramachandran, clash and 
rotamer Z-score, showed much lower correlation (R ~ 0.2). Our comparisons and the resolution independence 
of the network parameter analysis confirmed its independence from the usual local validation criteria, and the 
global criterion, such as the crystallographic Rfree factor3. Importantly, the construction of a residue network from 
a macromolecular model is not included in the stereo-chemical restraints applied to the model during model 
building and refinement. Hence, the nonbiased approach is another key advantage of residue network analysis. 
The network analysis is also applicable for Cα-only models, which lack validation tools. The network analysis 
presented here is equally applicable to three-dimensional structures of macromolecules determined by electron 
microscopy. To conclude, we expect that the use and further development of the network analysis presented 
here will enhance the validation and quality assessment of three-dimensional structures, thereby deepening our 
understanding and insight into the biological functions of proteins.

Figure 5. Ribbon presentations of vector components (maximum component is set to 1) that correspond to the 
largest eigenvalue of the incorrect (A,C) and correct structure (B,D). High vector values are coloured in red, whereas 
low vector values are coloured in blue; Lys284 is in green. (C,D) Show a magnified view of the (α/β)8 barrel.
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Methods
Residue network database. Node degree and clustering coefficient against protein size and resolution 
was analysed using 50,249 residue networks. Residue network data were retrieved from the Protein Graph 
Repository42 (http://wjdi.bioinfo.uqam.ca/). By transformation of the three-dimensional protein models into the 
2D graphs, each amino acid is abstracted as a Cα atom. The Cα atom of an amino acid residue is a node, and an 
edge is created when the distance between Cα atoms is equal to or below a threshold value of 7 Å43.

In an incorrect model graph, edges between nodes are constructed when the distance between any two nodes 
(Cα atoms) is between 3.0 and 3.7 Å. The edges in a long graph are constructed only when sequential nodes in 
the primary structure of protein model were more than 3.9 Å apart from each other. The threshold distances and 
poor/long terminology followed terminology introduced by Kleywegt, 199744. Poor and long graphs were then 
decomposed into connected components, i.e., subgraphs.

The structures from the Protein Graph Repository were selected according to the following criteria: (i) the 
protein chain was longer than 50 residues, (ii) the resolution of the crystallographic experimental data was 
beyond 4.0 Å and (iii) the protein was a member of the Structural Classification of Proteins (SCOP)45 classes A 
(α proteins), B (β proteins), C (α/β proteins), D (α + β proteins), E (multi-domain proteins) or F (membrane and 
cell surface proteins and peptides), see Supplementary Material for details on the raw data sets.

Figure 6. (A,B) Node degree differences between different copies of the same protein related by non-
crystallographic symmetry. The plot reveals the distribution of (A) the correct model (PDB id: 1CEL), and (B) 
the incorrect model (PDB id: 3SDP). (C) Node degree differences between the relaxed and tense states of the 
crystal structure of bacterial L-lactate dehydrogenase (PDB id: 1LTH).
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Incorrect and correct protein models. An objective comparison between two residue networks can only 
be made when they have the same number of nodes, which excludes comparisons of models with different num-
bers of missing residues. Before performing a detailed analysis of the network parameters, we constructed Cα 
atom matches between the incorrect and correct models. The incorrect and correct primary structures were 
aligned, and only the residues present in both models were used to construct the residue network.

All network parameters were calculated using online tool for Network based Analysis of Protein Structures46, 
Bio3D (2.3.3) and igraph (1.0.1) R package (3.4.0), see Supplementary Material for details on R scripts.

Protein models (PDB ids) 1PHY, 1PTE, 1ENL, 2FD1, 3XIA and 179l are obsolete in the Protein Data Bank 
(PDB) and have been superseded by 2PHY, 3PTE, 3ENL, 5FD1, 1XYA, and 177l, respectively. The structure of 
aspartyl protease from human immunodeficiency virus HIV-1 (PDB id: 2HVP) is partly incorrect and was later 
corrected and refined as chemically synthesized HIV-1 protease (PDB id: 3HVP). Structures (PDB id) 1FZN 
and 2F2M are both obsolete but have not been superseded. In Crystal structures of SarA, a pleiotropic regulator of 
virulence genes in S. aureus47 (PDB id: 1FZN), an erratum was published. Later, in 2006, the correct model (PDB 
id: 2RH) was deposited into the PDB database48. The X-ray structures of EmrE (PDB id: 2F2M and 3B5D) was 
published by Chang and co-workers. The structure published in 2006 (PDB id: 2F2M) was later retracted, and the 
correct model was published in 200749 (PDB id: 3B5D).

The three additional cases were selected from our previous works in which all three protein models were ana-
lysed. The structure of Cathepsin H with both the correctly and reversely built mini-chain (PDB id: 8PCH) was 
analysed by validation of averaged kick maps, which can remove model bias from a protein model26,50. The crystal 
structure of a class II fructose-1,6-bisphosphate aldolase (PDB id: 1ZEN) is partly incorrect and contains a regis-
try error. This case was analysed during method validation for the removal of model bias50–52. Furthermore, this 

Figure 7. Boxplot of the GDT-TS, NO and RMSD for models in each quality group: Good - absolute value of 
the Z-score in the interval [0, 1], Fair - absolute value of the Z-score in the interval [1, 2], Poor - absolute value 
of the Z-score in the interval [2, 3], Very poor - absolute value of Z-score is greater than 3. (A,B) CASP11-stage1 
and (C,D) Sali Lab dataset.
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partly incorrect model was rebuilt, refined and used to show the efficacy of free kick refinement52. The compari-
son and presentation of the correct model (PDB id: 1CEL) and the model with unusual features (PDB id: 3SDP) 
related by non-crystallographic symmetry was a case in Validation of protein crystal structure1.

Graph. A graph G = G(V, E) consists of a set of vertices (nodes) V = v1, v2, … vn and a set of edges E = e1, e2, … 
em. Two vertices vi and vj of a graph G are said to be adjacent if there is an edge eij connecting them. The vertices 
vi and vj are then said to be incident to the edge eij. Two distinct edges of G are adjacent if they have at least one 
vertex in common.

(Average) node degree. The degree of a node v, denoted d(v), represents the number of nodes adjacent to 
v. The average node degree of a graph G is the average value of the degrees of all nodes in G. The average node 
degree is formally written as

∑=
=

d G
N

d v( ) 1 ( )
i

N

i
1

where d(vi) represents the degree of the node vi and N is the total number of nodes in a graph G. Another way of 
expressing the average node degree is with the ratio

=d G e G
N G

( ) 2 ( )
( )

where e(G) represents the total number of edges in a graph G, and N(G) is the number of nodes in a graph G.

Average shortest path. Let G = G(V, E) be a graph containing n vertices and m edges, with the set of ver-
tices V = v1, v2, … vn and the set of edges E = e1, e2, … em. The adjacency matrix A(G) = (ai,j) of G is then a n × n 
matrix defined by

=





∈
a

if v v E
otherwise

1, ( , )
0,i j

i j
,

Since protein graphs are simple graphs without loops or multiple edges, the adjacency matrix of any protein 
graph is symmetric with zeros on the diagonal. The shortest path between two nodes, vi and vj, is the minimal 
number of edges that lie between two given nodes. For computing the shortest path between a pair of nodes, we 
used Dijkstra’s algorithm53.

Largest eigenvalue (LeV) and corresponding eigenvector (eigenvector centrality). The adja-
cency matrix A(G) of an undirected simple graph is symmetric and therefore has a complete set of real eigenvalues 
and an orthogonal eigenvector basis. The set of eigenvalues of a graph is the spectrum of the graph. Eigenvalues 
are denoted as λ1 ≥ λ2 ≥ … λN. The eigenvalues are obtained as the roots of the characteristic polynomial of 
matrix A; that is, we look for the solutions of the equation

Figure 8. The correlation matrix shows correlations between following Z-scores: Ramachandran (Zrama), 
rotamer (Zrota), clashscore (Zclash), Rfree (ZRfee) and node degree (Znode). Ramachandran, rotamer, 
clashscore and Rfree Z-score was calculated from global percentile ranks taken from wwPDB X-ray Structure 
Validation Report. Node degree Z-score was calculated with respect to entries of similar length.
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λ− =det A I( ) 0

where I is the identity matrix. For every eigenvalue, we can identify at least one vector x for which it holds

λ =x Ax

where vector x is called a corresponding eigenvector of the given eigenvalue λ, and A is an adjacency matrix. 
The Perron–Frobenius theorem asserts that a real square matrix with positive entries has a unique largest real 
eigenvalue and that the corresponding eigenvector can be chosen to have strictly positive components. The vth 
component of the vector that corresponds to the largest eigenvalue (λ1 = LEV) gives the relative centrality score 
of the vertex v in the network.

energy of a graph. The graph energy E(G) of a graph G on N vertices with M edges is defined as the sum of 
the absolute values of all eigenvalues λ1, λ2 …, λN of the adjacency matrix A(G), formally written as

∑ λ= | |
=

E G( )
i

N

i
1
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