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Identification and profiling of 
microRNAs during gonadal 
development in the giant 
freshwater prawn Macrobrachium 
rosenbergii
Xue Liu1,2,3,4, Bi-Yun Luo1,2,3,4, Jian-Bin Feng1,2,3,4, Ling-Xia Zhou1,2,3,4, Ke-Yi Ma1,2,3,4 &  
Gao-Feng Qiu1,2,3,4

As post-transcriptional regulators, microRNAs (miRNAs) play an important role in growth and 
reproductive processes. So far, there is limited information regarding crustacean miRNAs. To explore 
the potential role of miRNAs in the gonadal development of the prawn Macrobrachium rosenbergii, 
we constructed seven small RNA libraries from ovarian and testicular tissues at various stages using 
somatic tissue as the control. A total of 1,954 known and 129 novel miRNAs were retrieved. By 
comparing differentially expressed miRNAs (DEMs) between testes and ovaries, forty-one miRNAs were 
identified with sex-biased expression patterns, including 17 ovary-biased and 24 testis-biased patterns. 
Furthermore, the putative target genes of the sex-biased miRNAs, such as cyclin L1, mitogen-activated 
protein kinase 7 (MAPK 7), heat shock protein (HSP), and zinc finger protein, were significantly enriched 
in many reproduction-related pathways including the Gonadotropin-releasing hormone (GnRH) 
pathway, glycolysis, gluconeogenesis pathway, ovarian steroidogenesis, estrogen signaling pathway, 
MAPK pathway, Wnt pathway, and insulin signaling pathway, implicating potential regulatory roles 
of miRNAs in reproduction. These data aid in the further investigation of the mechanism of gonadal 
development and reproductive regulation mediated by miRNA in M. rosenbergii.

MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules. As key post-transcriptional reg-
ulators, miRNAs in animals are capable of controlling gene expression mostly through interaction with the 3′ 
untranslated region (3′UTR) of the target mRNA for degradation or translational inhibition1. A large number of 
protein-coding genes (PCGs) have been revealed to be targeted by miRNAs. It is interesting to note that a single 
miRNA molecule can target thousands of mRNAs, and that each mRNA could have recognition sequences for 
multiple miRNAs as well. More than one third of the human genome has been determined to be regulated by 
miRNAs2,3.

miRNAs are involved in the regulation of a variety of life processes4,5. Recent evidence has shown that miR-
NAs play an important role in the development of reproductive systems and the differentiation of germ cells6–8. 
Statistical, genome-wide analysis of miRNAs discovered many differentially expressed miRNAs (DEMs) during 
gonadal development in mammals, including mouse (Mus musculus)9,10, pig (Sus scrofa)11, cattle (Bos Taurus)12, 
and sheep (Ovis aries)13. Sex-biased miRNAs may be directly involved in the differential expression of many 
target genes, which contribute to different sexual traits during gonadal development14. In Acipenser schrenckii, 37 
miRNAs were detected exclusively in the gonad and 148 miRNAs exhibited sex-biased expression, including 83 
female-biased and 65 male-biased miRNAs. Based on these DEMs, twenty-five putative gametogenesis-related 
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target genes were predicted, including anti-Mullerian  hormone (Amh), winged helix/forkhead transcription fac-
tor (Foxl2), and Vasa15. Subsequent studies also revealed many DEMs in sea urchin (Strongylocentrotus nudus)16, 
tilapia (Oreochromis niloticus)17, and common carp (Cyprinus carpio)18, suggesting that miRNAs involved in 
gonadal development are mediated by their differential expression of sexual dimorphism.

Gonadal development involves a series of complex regulatory processes at transcriptional and post- 
transcriptional levels. Although efforts have been made to study this regulation in Decapoda crustaceans, only a 
few studies have focused on post-transcriptional gene regulation. Furthermore, miRNAs related to gonadal devel-
opment have only been reported in the Chinese mitten crab (Eriocheir sinensis)8,19 and swimming crab (Portunus 
trituberculatus)7. In E. sinensis, miR-2 and miR-133 were demonstrated to down regulate cyclin B gene expression 
during meiotic oocyte maturation19. Moreover, some miRNAs (let-7c, miR-21-5p, and miR-17-3p) displayed 
different expression patterns at various stages of testicular development and may be involved in spermatogene-
sis8. In P. trituberculatus, 44 ovarian and 31 testicular miRNAs were preferentially expressed7. Furthermore, the 
expression of miR-7 and miR-87 was significantly increased and they were predicted to target cell division cycle 
4 (Cdc4) and cyclin-dependent kinase 2 (Cdk2)7, both of which are critical for controlling the G1-to-S-phase 
transition during the cell cycle20,21. In the giant freshwater prawn Macrobrachium rosenbergii, however, there is 
limited information currently available regarding miRNAs during gonadal development.

The prawn M. rosenbergii is a commercially valuable decapod species that is widely cultured in southern 
and southeastern Asia as well as in the western Pacific22,23. During the last decade, there has been significant 
development in farming technology of M. rosenbergii in China, with an average annual farming expansion rate 
of 15.28%24. Although this increased productivity and technology has achieved great progress, there have been 
numerous developmental problems. Furthermore, annual production is not very stable due to the limitation of 
breeding and farming technology, such as inbreeding and disease24. Therefore, it is necessary to focus on the 
mechanism of gonadal development for breeding and farming technology optimization in M. rosenbergii.

By taking advantage of high-throughput next-generation sequencing (NGS) technology, we screened miR-
NAs in from seven different M. rosenbergii miRNA libraries. During this process we were able to identify novel 
miRNAs and DEMs for the first time in M. rosenbergii. We further conducted miRNA expression profile analysis 
and the functional annotation of DEMs by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) to explore potential roles of miRNAs in gonadal development. The results from this study provide valu-
able information regarding the regulatory roles of miRNAs in gonadal development and reproductive control in 
M. rosenbergii.

Results
Identification of miRNAs from M. rosenbergii.  We constructed seven cDNA libraries of small RNAs 
from early-middle (ET) and late (LT) developing testis; early (EO), middle (MO) and late developing (LO) ova-
ries; and male (MS) and female (FS) somata. A total of 19,316,857; 30,914,458; 51,441,365; 31,871,854; 29,986,842; 
29,092,334; and 25,530,458 raw reads were initially generated from the seven libraries, respectively. After filtering 
out low quality sequences, there were 17,837,427; 26,153,111; 41,516,524; 27,583,544; 26,887,205; 24,940,628; 
and 22,053,365 clean reads remaining in the corresponding libraries. By comparing the small RNA sequences 
with those sequences in the Rfam, non-coding RNAs in all of the libraries were categorized into rRNA, snRNA, 
tRNA, known miRNA and those without annotation (Table 1). As shown in Table 1, most of the small RNAs 
were unannotated with a range from 10,003,331 to 34,476,353 sequences, implying that small RNA information 
is still underdeveloped for decapod species. After removing the repeat reads, known and novel miRNAs were 
retrieved from each library as shown in Table 2. A total of 1,954 known and 129 novel miRNAs were obtained. 
The highest number of the known miRNAs was found in the ET library, while three ovary libraries generated the 
highest number of novel miRNAs, displaying 49, 46, and 44 novel miRNAs, respectively. To get a rudimentary 
understanding for the distribution of the miRNA among seven libraries, we further analyzed the data using box-
whisker plot (Fig. 1).

Length distribution of small RNAs.  The length distribution of the high-quality reads varied through 
markedly different bimodal patterns in size distribution (Fig. 2). One peak for the 22 nucleotide (nt) size class 
represents the typical miRNA of Dicer-processed product. Other peaks for 27 nt or 32 nt mostly represent longer 
piwi-interacting RNAs (piRNAs), which are endogenous small non-coding RNA molecules. As Fig. 2 showed, in 
EO, MO, and LO, the peak represented by the longest size class (27–29 nt) was much higher than for the peaks of 
the 21–23 nt size class, indicating that piRNAs were more abundant in M. rosenbergii ovary. On the other hand, 
the amount of miRNAs and piRNAs were not significantly different in ET and LT. In comparison with the status 

Category

ET LT EO MO LO MS FS

reads reads reads reads reads reads reads

rRNA 3,769 33,136 48,257 20,316 40,387 2,158 5,080

tRNA 1,171 5,584 22,061 13,703 16,964 1,464 2,728

snRNA 4,733 9,983 18,753 10,105 9,660 3,380 2,728

miRNA 1,742,122 1,965,016 758,290 723,904 558,479 10,377,965 8,546,491

unannotation 13,974,481 20,515,216 34,476,353 24,099,130 22,000,208 11,351,482 10,003,331

Table 1.  Distribution of reads in theseven small RNA libraries. Note: ET, early-middle testis; LT, late testis; EO, 
early ovary; MO, middle ovary; LO, late ovary; MS, male somata; and FS, female somata.
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Library KnownmiRNA NovelmiRNA

ET 1,148 36

LT 888 38

EO 937 49

MO 854 46

LO 850 44

MS 1,009 33

FS 957 36

Table 2.  Numbers of known and novel miRNAs in seven small RNA libraries. Note: ET, early-middle testis; LT, 
late testis; EO, early ovary; MO, middle ovary; LO, late ovary; MS, male somata; and FS, female somata.

Figure 1.  Box-whisker plot of miRNA expression among seven libraries. ET, early-middle testis; LT, late testis; 
EO, early ovary; MO, middle ovary; LO, late ovary; MS, male somata; and FS, female somata.

Figure 2.  Length distribution of clean reads. The nucleotide length of miRNAs is shown on the X-axis; the 
percentage of different nucleotide lengths in the sized miRNAs among the total miRNA population is shown on 
the Y-axis. ET, early-middle testis; LT, late testis; EO, early ovary; MO, middle ovary; LO, late ovary; MS, male 
somata; and FS, female somata.
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in gonad, the length distributions were quite different in MS and FS. MiRNAs were more abundant with a per-
centage of approximately 30% in MS and FS. Additionally, the length of piRNAs ranged from 31 to 33 nt, which 
was longer than that those of the gonads.

Nucleotide bias of miRNAs.  The nucleotide bias of miRNAs at each position was analyzed (Supplementary 
Fig. S1). The results showing that U and A were the dominant nucleotides in all seven libraries. Interestingly, 
there were relatively fewer U on bases 2–4 and A was generally distributed on the 10th base. This is because the 
localization of the 10th base is generally the cleavage site of the miRNA when its target gene is sheared. Analysis 
on the first nucleotide bias of miRNAs showed that U was the predominantly common first nucleotide between 
the lengths of 15–25 nt, with its proportion exceeding 50% (Supplementary Fig. S2). Nevertheless, A was the 
dominant first nucleotide of 26–27 nt, and its proportion ranged from 75% to 100%.

GO and KEGG annotation.  We obtained DEMs by comparing the expression of miRNAs between different 
libraries. By comparing the differentially expressed miRNAs (DEMs) between testes and ovaries, forty-one miR-
NAs were identified with sex-biased expression patterns, including 17 ovary-biased and 24 testis-biased miRNAs 
(Fig. 3). For instance, miR-194-5p and miR-148a-5p demonstrated higher expression in the ET library, suggesting 
they could play important roles in early testicular development. In contrast, miR-24-3p was up-regulated in ovary, 
especially in LO the library, indicating that miR-24-3p may be involved in ovarian maturation. Subsequently, 
Gene ontology (GO) annotation was performed to elucidate the function of the target genes identified as being 
potentially regulated by DEMs. A total of 253 potential target genes were enriched between the ovaries and tes-
tes. Amongst the three categories of biological process, cellular component, and molecular function, the most 
enriched GO terms were “transcription, DNA-templated”, “cytoplasm”, and “poly (A) RNA binding”, respectively 
(Supplementary Fig. S3A). Additionally, many predicted target genes were involved in gonadal development, such 
as cyclin L1, mitogen-activated protein kinase 7 (MAPK 7), heat shock protein (HSP), and zinc finger protein 
(Supplementary Table S1).

Furthermore, the predicted genes were submitted to KEGG analysis. The results showed that target genes were 
assigned into 141 signaling pathways. As shown in Fig. 4, glycolysis, gluconeogenesis and glucagon signaling 
pathways were the main metabolic pathways identified in this study (P < 0.05), indicating that these signaling 
pathways might play an important role in gonadal development. In addition, many predicted pathways were also 
involved in gonadal development, such as the MAPK pathway, GnRH signaling pathway, and insulin signaling 
pathway (P < 0.05). In addition to the pathways showed in Fig. 4, the Wnt signaling pathway, ovarian steroidogen-
esis, and estrogen signaling pathway were associated with gonadal development as well (Supplementary Table S2).

GO enrichment analysis different gonadal development stages (between ET and LT, EO and MO, MO 
and LO, respectively) showed that the main GO terms at the level of biological processes were “transcription, 
DNA-templated” and “regulation of transcription, DNA-templated”. At the level of cellular components, “cyto-
plasm” and “nucleus” were the main terms. At the molecular function level, “metal ion binding”, “ATP binding” 
and “zinc ion binding” were the dominant terms (Supplementary Fig. 3B–D). The KEGG results indicated that 
two signaling pathways “transcriptional misregulation in cancers” and “cGMP-PKG signaling pathway” were 
shared the most between the three groups (Supplementary Fig. 4A–C).

Quantitative real-time PCR analysis of sex-biased miRNAs.  To validate the differential expression 
of sex-biased miRNAs identified by sequencing, we randomly selected five ovary-biased miRNAs (miR-146a, 
miR-100, miR-24-3p, miR-190, and MRO-novel-13) and three testis-biased miRNAs (miR-1a-3p, miR-8-3p, and 
miR-137b-3p) to analyze expression profiles using quantitative real-time PCR (qPCR). The qPCR results indi-
cated that miR-146a, miR-100, miR-24-3p, miR-190, and MRO-novel-13 were up-regulated in ovary and miR-
1a-3p, miR-8-3p, and miR-137b-3p were up-regulated in testis (Fig. 5), which was consistent with the sequencing 
results. Additionally, we selected some conservative and novel miRNAs to further characterize the DEMs between 
ovary and testis. MiR-100-5p, miR-9-5p, miR-21-5p, and MRO-novel-69 were highly expressed in ovary, whereas 
miR-1, miR-26a, MRO-novel-104, and MRO-novel-19 were highly expressed in testis. In general, the expression 
of DEMs was significantly different between the ovary and testis. For example, the expression level of miR-137-3p 
and miR-26a in the testis was four times and two times its concentration in the ovary, respectively. The resulting 
miRNA expression profiles were consistent with each other.

Discussion
Although the importance of miRNAs has been recognized in regulating gene expression during sexual differen-
tiation and gonadal development7,8,25, there is little information available regarding the expression of miRNAs 
in the prawn M. rosenbergii. Thus, the main objective of this study was to identify conserved and novel miRNAs 
present in M. rosenbergii and to evaluate differential expression patterns during gonadal development. Therefore, 
a series of DEMs and novel miRNAs were identified from seven miRNA libraries, and their corresponding tar-
get genes were predicted. Elucidation of the differences in miRNA and their sex-biased expression between tis-
sues and stages will be valuable in understanding the gene expression regulatory networks underlying gonadal 
development.

The results of miRNA analysis revealed that U and A were the dominant nucleotides. This phenomenon may 
be related to some of the function of miRNA, such as binding to target genes18. Despite two peaks for the length 
distribution of small RNAs present in all libraries, the distribution is varied. As our results showed, the length 
distribution of small RNAs was roughly the same at various stages in gonads, but another differently peak was 
observed in MS and FS libraries (Fig. 2). In Decapod species P. trituberculatus, the amount of miRNAs and piR-
NAs (25–27 nt) was roughly the same7. However, piRNAs, with lengths ranging from 27 to 29 nucleotides, were 
the main enriched small RNA in ovarian tissue in M. rosenbergii. In contrast, miRNA was the dominant small 
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RNAs observed in somatic tissues. This was also verified in M. nipponense26, suggesting that the length distribu-
tion and percentage of different small RNAs displayed specificity among various tissues as well as among species. 
Interestingly, after analysis of differently expressed piRNAs between ovary and testis, we found up regulation of 

Figure 3.  Heat-map of 41 differentially expressed miRNAs between ovary and testis. The heat-map was 
constructed based on the relative expression level of miRNA (TPM fold change > 2, P < 0.05). The color 
indicates the log2-fold change from high (red) to low (blue), as indicated by the color scale. The name of 
miRNAs and the libraries to which they belong are shown on the right side. The novel miRNAs have been 
revised as MRO-novel-**, the others are known miRNAs. ET, early-middle testis; LT, late testis; EO, early 
ovary; MO, middle ovary; LO, late ovary; MRO, Macrobrachium rosenbergii; aae, Aedes aegypti; aca, Anolis 
carolinensis; bbe, Branchiostoma belcheri; bmo, Bombyx mori; bta, Bos taurus; ccr, Cyprinus carpio; cfa, 
Canis familiaris; cgr, Cricetulus griseus; cin, Ciona intestinalis; cqu, Culex quinquefasciatus; dme, Drosophila 
melanogaster; dpu, Daphnia pulex; dre, Danio rerio; efu, Eptesicus fuscus; gga, Gallus gallus; ggo, Gorilla 
gorilla; hme, Heliconius melpomene; ipu, Ictalurus punctatus; lmi, Locusta migratoria; mdo, Monodelphis 
domestica; mml, Macaca mulatta; nvi, Nasonia vitripennis. oha, Ophiophagus Hannah; rno, Rattus norvegicus.
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327 piRNAs in testis, while no piRNAs were unregulated in ovary (Supplementary Table S3). These results cor-
roborate the previous study that piRNAs can affect the process of sperm production27.

In total, we obtained 1,954 known and 129 novel miRNAs from seven libraries. Among the 2,083 miRNAs, 
we focused on DEMs for the purpose of this study. From these we identified 17 ovary-biased and 24 testis-biased 
miRNAs in terms of expression patterns. These miRNAs could play a vital role in gonadal development. For 
instance, miR-194-5p and miR-148a-5p were more expressed in the ET library, suggesting possible involvement 
in early testicular development. In contrast, miR-24-3p was up-regulated in ovary, especially in the LO library, 
indicating that miR-24-3p could promote ovarian maturation. In addition, cgr-miR-122 was abundant in the 
ET library. Furthermore, GO enrichment analysis indicated that its target gene was MAPK 7, a key member in 
the MAPK signaling pathway, which regulates cyclin D1 expression during ovarian development and is there-
fore required for cell cycle progression28. Additionally, the testis-biased miRNA miR-193, target F-box/WD 
repeat-containing protein 7 (FBW 7) and could therefor suppress cell proliferation through the G2/M cell cycle 
transition29. Another testis-biased miRNA miR-145 was predicted to target cytosolic phospholipase. Cytosolic 
phospholipase has been verified to function in the synthesis of prostanoid involved in ovarian development 
in Penaeus monodon30. In addition, prediction results showed that many target genes participate in gonadal 

Figure 4.  Top 20 significantly enriched KEGG pathways of putative target genes between testes and ovaries. 
KEGG pathways with P < 0.05 were considered significantly enriched. The color indicates a p-value from 
small (orange) to large (red). The smaller the p-value, the more vivid the red color. Each point corresponds to a 
pathway, and the larger the point is, the more genes are enriched in the pathway.

Figure 5.  Expression patterns of sex-biased miRNAs confirmed by real-time PCR. The scales of the Y axis were 
indicated by Log2. The red column represent testis, while the blue column represents ovary. (A) Seven testis-
biased miRNAs were highly expressed in the testis; (B) Nine ovary-biased miRNAs were highly expressed in the 
ovary. SnRNA was used as an internal reference. Bars represent the triplicate mean + SD from three individuals 
(n = 3). Asterisks indicate a significant difference (P < 0.05) between testis and ovary.
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development, such as cyclin L1, HSP, and zinc finger protein31–33. For instance, Hsp110 is required for progression 
of spermatogenesis, and is associated with germ cell apoptosis32. The early growth response (Egr) family of zinc 
finger-containing transcription factors includes 4 members34. The Egr4 transcript and protein were localized in 
the developing murine testis and displayed distinct intracellular localization patterns within specific cell popu-
lations of the testis35. Additionally, some putative genes were mapped to reproductive biological pathways, and 
the main pathways included glycolysis, gluconeogenesis and the glucagon signaling pathway. Previous studies 
have shown that inefficient glycolysis combined with an increase in amino acid catabolism could be incompatible 
with the need for a high level of metabolism to maintain the rate of cell division required to form a gonad and 
populate it with germ cells8. Furthermore, Glucagon-like peptide 1 could be a factor involved in control of the 
hypothalamic-pituitary-gonadal axis36. Other pathways, such as the MAPK signaling pathway11,37, Wnt signaling 
pathway38,39, GnRH signaling pathway40, insulin signaling pathway41, cAMP signaling pathway42, ovarian steroi-
dogenesis43, and the estrogen signaling pathway44 were proven to have influence on gonadal development. It is 
known that GnRH is the main hypothalamic regulator of the reproductive system in mammals45. Similar to results 
from previous studies on GnRH signaling pathway, lysophospholipase, 1-phosphatidylinositol 4,5-bisphosphate 
phosphodiesterase classes I and II-like, and MAPK 7 were mapped to the GnRH signaling pathway with p-value 
of approximately 0.01 in this study. Therefore, these DEMs and target genes are potentially involved in gonadal 
development. Further research is needed to confirm their regulatory mechanism mediated by miRNAs.

In conclusion, we provided the first report of known and novel miRNAs for M. rosenbergii gonad at different 
developmental stages. Based on the DEMs analysis, we identified 24 male-biased miRNAs and 17 female-biased 
miRNAs. These miRNAs may play an important role in gonadal development and reproduction. The GO and 
KEGG analysis of DEMs further revealed that some DEMs involved the process of gonadal development. The data 
obtained from our study could serve as a basis for further genetic mechanism research and contribute to valuable 
information for reproduction-control technology on M. rosenbergii.

Materials and Methods
Animals and sample collection.  Healthy prawns were collected from a local fish market and transported 
back to our laboratory. The prawns were maintained at 26 ± 2 °C in a 30-L aerated aquarium for three days. 
Various samples, including ovaries, testes, and somatic tissue of female and male prawns were collected and 
immediately frozen in liquid nitrogen followed by storage at −80 °C. The developmental stages of the ovary and 
testis were determined according to the gonadal histological sections (Supplementary Fig. S5). Based on previ-
ous studies, ovarian development was divided into early, middle and late stages40,46, and testicular development 
was divided into early-middle and late stages47. Thus, seven samples including two samples of female and male 
somata, were prepared for the following RNA-Seq and qPCR experiments.

RNA isolation.  Total RNA was extracted using Trizol reagent (Invitrogen, USA) and treated with RNase-free 
DNase I (TaKaRa, Japan) for removing genomic DNA according to the manufacturer’s instructions. The extracted 
RNA was run on 1.5% agarose gel and Bioanalyzer 2100 system (Agilent Technologies, USA) for checking RNA 
integrity. The RNA quantity and purity were analyzed by a Nanodrop2000c spectrophotometer to obtain the 
A260/280 and A260/230 ratios with values within 1.90–2.10 and 2.00–2.50, respectively.

Library construction and high-throughput sequencing.  The libraries were constructed using NEB 
Next Multiplex Small RNA Library Prep Set for Illumina (New England Biolabs, USA) following the manufac-
turer’s instructions. Small RNAs were first isolated from the total RNAs of each of the seven samples. Then, these 
small RNAs were ligated to an activated 3′ and 5′ adaptor in turn. Then, adaptor-ligated small RNAs were reversed 
to create cDNA constructs. Subsequently, the generated cDNA constructs were amplified by PCR using Long 
AmpTaq 2 × Master Mix and SR Primer for Illumina. PCR products were purified on an 8% polyacrylamide gel. 
Finally, the seven resulting libraries were sequenced at OE Biotech. Co., Ltd. (Shanghai, China) using Illumina 
Solexa technology.

Sequence data analysis.  The initial sequence data from Illumina Solexa sequencing were filtered to remove 
low quality reads and adaptor sequences. Sequences originating from protein-coding genes (PCGs) were also 
removed by blast against the reference sequences derived from multi-transcriptomic datasets of M. rosenber-
gii in GenBank (SRX760286, SRX760284, SRX859032, SRX097639, SRX097638, and SRX092198) to obtain the 
final clean reads. The distribution of small RNA read lengths was determined. Then the reserved reads were 
classified into ribosomal RNA (rRNA), small nuclear (snRNA), and transfer RNA (tRNA) by blasting the Rfam 
database (version 10.0, http://rfam.xfam.org/). As there was no whole-genome data available for M. rosenbergii, 
the remaining sequences were searched against the miRBase database (version 21.0, http://www.mirbase.org/) 
to identify conserved miRNAs. Meanwhile, potential novel miRNAs were analyzed by Mirdeep2 and RNAfold48. 
The sequences exceeding a length of 18 bp were submitted to Mirdeep2 and the mapping genome sequences 
(P < 0.05) remained for further analysis. The remained sequences were able to predict its secondary structure, to 
be considered a novel miRNA. Subsequently, base-bias was analyzed for all miRNAs. To identify miRNAs with 
significantly different expression between samples, miRNA expression levels were normalized as transcripts per 
million (TPM): Normalized expression = (mapped read count / total reads) × 1.0 × 106. Differentially expressed 
miRNAs (DEMs) analysis among libraries was carried out using Audic-Claverie49. The criteria for significant 
expression was defined as P < 0.05 and TPM > 2. The box-whisker plot allowed rough visualization of whether 
the data has symmetry and the degree of dispersion by using five statistics in the data: minimum value, the first 
quartile (25%), median (50%), third quartile (75%) and maximum value.

Target gene prediction and functional annotation of DEMs.  The raw sequences from transcriptomes 
of M. rosenbergii were trimmed and the overlapping high-quality reads were assembled to create longer contigs. 
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Protein coding regions, 5′UTR, and 3′UTR were determined using ORF Finder (https://www.ncbi.nlm.nih.gov/
orffinder/). Then the 3′UTR extracted from the above transcriptomes of M. rosenbergii were employed to predict 
potential target genes of the DEMs with Miranda software (S ≥ 150, ΔG ≤ −30 kcal/mol)50. All putative target 
genes were categorized into functional classes using Gene Ontology (GO) enrichment analysis (http://www.gene-
ontology.org/), in which gene numbers were calculated for each term, and then hyper geometric testing was used 
to identify significantly enriched GO terms and the putative targets. We used Benjamini & Hochberg for the cor-
rected p-value. GO terms with corrected values of P < 0.05 were defined as significantly enriched. Subsequently, 
pathway analysis of predicted target mRNAs was performed using the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database (http://www.genome.jp/kegg/pathway.html). KEGG pathways with P < 0.05 were considered 
significantly enriched.

Quantitative real-time PCR.  To verify the reliability of sequencing results, qPCR was employed on the six-
teen randomly selected miRNAs. Total RNA (500 ng) was reverse transcribed using miRcute reverse transcriptase 
kit (Tiangen, China) according to the manufacturer’s instructions. Each reverse transcribed reaction mixture 
(20 μL) contained 5 μL of RNA (100 ng/μL), 2 × miRNA RT Reaction Buffer, 2 μL miRNA RT Enzyme Mix, and 
3 μL H2O, with cycle parameters were 42 °C for 60 s and 95 °C for 3 min. Each miRNA was amplified by specific 
forward primers (Table 3) and a universal reverse primer (Tiangen, China) for qPCR. The qPCR was conducted 
using a Bio-Rad CFX96 Real-Time PCR Detection System (Bio-Rad). Each PCR reaction mixture (20 μL) con-
tained 10 μL of 2 × miRcute Plus miRNA Premix, 1 μL of cDNA, 0.4 μL of forward and reverse primers, and 8.2 μL 
ddH2O. The PCR cycle parameters as follow, 95 °C for 15 min, 40 cycles of 94 °C for 20 s and 60 °C for 34 s. The 
miRNA expression levels were calculated using the 2−△△CT method. Each sample was run in triplicate. SnRNA 
was amplified as an internal control51. The statistical significance was measured with one-way ANOVA by SPSS 
(version 20.0) and the differences were considered to be significant if P < 0.05.

Data Availability
The datasets generated and analyzed during this are available from the corresponding author on reasonable request.
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