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A dicentric chromosome 
identification method based on 
clustering and watershed algorithm
Xiang Shen, Yafeng Qi, Tengfei Ma & Zhenggan Zhou

Aiming at the problem of low efficiency of dicentric chromosome identification counting under the 
microscope, this paper presents a joint processing algorithm combining clustering and watershed. The 
method first uses clustering and watershed algorithm to segment the original chromosome image, 
and then identifies the individual chromosomes. The results show that when the equivalent width 
Y parameter is selected m = 1, n = 1, the true positive rate of dicentric chromosome identification is 
76.6%, and positive predictive value is 76.6% in high dose, which is higher than the threshold algorithm 
for the true positive rate (63.9%) and positive predictive value (63.5%). The number of identified 
dicentric chromosomes can be used for dose estimation. When 500 cells are used for identification and 
dose estimation, the dose estimation pass rate can reach 80% in high dose. But for low dose, more cells 
should be used to identify to increase the dose estimation pass rate.

Dicentric chromosome (dic) is the main type of aberration used for radiation dose estimation. Based on the 
number of dicentric chromosomes, it is possible to estimate the dose of radiation to an individual and thus to 
assess the work of regular radiation examinations. The health status of personnel, or when a radiation accident 
occurs, a treatment plan is formulated according to the radiation dose to save the lives of the radiation-affected 
personnel. The dicentric aberration is formed by the two linked broken chromosomes containing the centromeric 
parts, and also accompanied by an amphoteric body formed by the connection of the remaining chromosomes of 
the two chromosomes without a centromere fragment (f). For example, three dicentric chromosomes and three 
fragments are marked (Fig. 1). Dicentric chromosome identification is divided into two main steps: segmentation 
and identification. In these two steps, it is particularly important to segment a single chromosome from a chro-
mosome clump. The quality of the segmentation result will influence the identification of the centromere point. 
Although many methods have been tried for chromosome segmentation, for example: an initial threshold for 
initial segmentation and then secondary segmentation based on the path density1; an improved classical fuzzy 
mean algorithm based on gain fields2; a cutting method based on geometry3; a method of using a white point 
approach4, the segmentation methods are not universally applicable due to many interference factors, and some-
times the segmented objects are also different. For example, there are image segmentation methods for M-FISH 
chromosome images5,6, but in this paper, the Giemsa staining chromosome images are used. The main steps to 
identify the centromeres are as follows: First, the central axis of a single chromosome is extracted, and then the 
centromeres are identified according to the characteristic parameters of the chromosome. Most of the centerline 
extraction methods are based on MAT (medial axis transformation) and different thinning methods7–11, such as 
distance transformation7, boundary extraction and refinement8. For the identification of centromeres, most of 
the methods are based on the characteristics of the centromeres, for example: geometric features8, the pixels of 
chromosomes12–14. Most of the current literature on chromosome segmentation is mainly for karyotype analysis, 
and there are a few papers for identifying and counting dicentric chromosomes, the DCScore software is used to 
identify the dicentric chromosomes and estimate radiation dose on a large accidental overexposure at Dakar, but 
the software has a 50% misrecognition rate for overlapping chromosomes15. The machine learning method is used 
to identify dicentric chromosomes, resulting in 50~65% true positive rate (TPR) and 70~80% positive predictive 
value (PPV)16. It is necessary to research and develop a method for improving the identification rate and accuracy.

When chromosomes are segmented, chromosomes will be a substantial loss for its shape and pixel linear 
compression by conventional methods such as threshold algorithm. Therefore, this paper uses the K-Means ++ 
clustering algorithm and the watershed algorithm to segment the chromosomes in cells. The clustering algorithm 
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can remove the impurities in the original image and perform the initial segmentation. The watershed algorithm 
can further segment the lightly contiguous chromosomes so that the single chromosomes in the chromosome 
cluster can be completely segmented. Using this method can not only maintain the original morphology of chro-
mosomes, but also effectively avoid the large number of pixel loss caused by linear compression in the segmenta-
tion process. And segmentation of a single chromosome or clumps only accounts for tens of KB, greatly reducing 
the generated process memory and improving the processing speed. The segmented single chromosomes are 
identified by centromeres. The algorithm has a true positive rate (TPR) 76.6% and a positive predictive value 
(PPV) of 76.6% in high dose. The number of identified dicentric chromosomes can be used to estimate the dose of 
the population exposed to the radiation source, for low dose radiation, more identified cells should be used, and 
for high dose radiation, the number of identified cells can be appropriately reduced. When 500 cells are used for 
identification and dose estimation, the dose estimation pass rate can reach 80% in high dose.

Methods
To perform the segmentation and identification of chromosome, a chromosome image of cells in metaphases 
must first be obtained. The chromosome images used in this article are derived from regular Giemsa-stained 
slides. The chromosome image acquisition system consists of three parts (Fig. 2): (1) Color microscope, using an 
OLYMPUS optical microscope with an oil-immersed 100X objective. (2) CCD camera, using Lumenera’s cam-
era, the camera connected to the computer through the USB interface, real-time display and photographing. (3) 
Motion console and storage system. The computer sends instructions by Ethernet to make the motion console 
move according to the default path while the microscope moves up and down to photograph the captured chro-
mosome clumps and store it in the computer.

The algorithms were developed in Visual Studio 2013, and the software was implemented by C++, which 
consists of four modules. They are image acquisition module, image processing module, image analysis module 
and data storage management analysis module. Software support library includes OpenCV and other third-party 

Figure 1.  The structure of dicentric chromosome. Dic: dicentric chromosome. F: fragment.

Figure 2.  Dicentric chromosome identification system.
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libraries. Std::thread in C++ 11 provides multi-threading parallel processing for dicentric chromosome analysis 
operations. Graphic Processing Unit(GPU) is used to accelerate the image processing.

Chromosome segmentation.  Segmentation is an important step in chromosome analysis. The segmen-
tation of chromosome will affect chromosome centromere identification and the accuracy of karyotype analysis. 
The chromosome segmentation includes the segmentation of chromosomes and backgrounds, and the segmen-
tation of chromosome clumps. And the segmentation of chromosome clumps is divided into simple adhesion 
segmentation and overlapped cross segmentation.

In this paper, the chromosomes and backgrounds are first segmented by clustering algorithm. The K-Means 
clustering algorithm is mainly used to implement the automatic clustering. It is an unsupervised machine learn-
ing algorithm and is widely used. There are many kinds of clustering algorithms. This paper uses the K-Means++ 
algorithm for segmentation. The main parameters of the K-Means++ algorithm are samples, clusterCount, ter-
mcrit, and attempts. The metaphase split phase images are taken as samples, and the clusterCount is chosen to be 
2, which separates the background from the chromosome object, the termcrit is chosen to be 40, and the attempts 
is selected as 3. After the first clustering is completed, a large number of chromosome clusters are generated, and 
a small number of individual chromosomes are generated. By simple feature judgment, the screened chromo-
some clumps are re-segmented. For slightly clumped chromosome clumps, the watershed method is a commonly 
used segmentation method. In the paper, the clustering algorithm is combined with the watershed algorithm to 
segment the chromosome clumps. In the second segmentation, partial clustering algorithm parameters such as 
clusterCount and termcrit are appropriately adjusted for the chromosome clumps. After using the K-Means++ 
clustering algorithm, since the central parts of chromosomes are darkly stained at the opposite edges, this cluster-
ing algorithm makes the chromosomes thinner, that is, discarding the lighter part of the edge and retaining the 
deeper part of the center, thus making the large-scale adhesion chromosomes separate. However, the segmented 
chromosome is relatively thinner than the chromosome segmented in the first step. In order to ensure the con-
sistency of the chromosome morphology of the whole cell, using the idea of watershed algorithm, the thinner 
segmented chromosome is used as a seed point. “Watering” one pixel at a time centered on each seed point until 
two different seed points meet the core “waters”. At this time, different chromosomes are labeled with the seed 
point as a reference point, and each chromosome can be separated according to the label.

For overlapping chromosome clumps, although some papers propose some solution algorithms, such as 
threshold segmentation method1, deep learning after sampling from the artificially segmented chromosomes2, 
geometry-based segmentation method3, IAFCM (improved adaptive fuzzy C-Means algorithm)5, fuzzy c-means 
clustering algorithm and watershed algorithm6, CPOOS (classification-driven partially occluded object segmen-
tation)17. But mostly for a specific type overlapping chromosomes, and segmentation does not have universal 
applicability, and even if the segmentation is performed according to the algorithms in the papers, the segmented 
single chromosomes are prone to misidentify the centromeres in the subsequent chromosome centromere identi-
fication algorithm. Therefore, for overlapping chromosome clumps (Fig. 3), this type is used to identify by manual 
interaction.

Centerline extraction.  Many operations on chromosomes require the centerline of chromosomes, such as 
classification of chromosomes4,14. Many features related to shape and structure, such as width and density profiles, 
can be extracted based on the centerline of the chromosome. The small deviations in extracting these real features 
may lead to identification and classification errors18. When the extraction of the chromosome centerline is com-
pleted, the identification and counting of the centromeres of single chromosomes can be performed according 
to the centerline.

This article’s processing method draws the minimum circumscribed rectangle of each chromosome firstly. 
Using the ratio of the area of the chromosome to the area of the smallest rectangle as a measure, when the ratio 
is less than a certain value, it indicates that the degree of chromosome bending is severe. When the ratio is close 
to 1, it indicates that the chromosome is straight. For the extended type chromosome, the axis of symmetry that 
parallels to the long side of the minimum circumscribed rectangle is directly used as the centerline of the chromo-
some. For the more severely curved chromosomes, use the method19 to extract the skeleton. In order to overcome 
the problem of small bifurcations and small holes when extracting the skeleton by this algorithm, the chromo-
somes are eroded, dilated, smoothed borders and filled the internal pores. To overcome the fact that the skeleton 

Figure 3.  Examples of overlapping and cross chromosome clumps.
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extracted by this algorithm is significantly shorter than the chromosome, the approximate slope is calculated at 
both ends of the skeleton, and then an empirical value length is extended to solve the extraction of short skeleton.

Centromere identification.  Centromeres are also called kinetochores. Chromosome centromeres refer to 
the pair of spherical structures that are located in the centromere area and the outer surface of the two chromatids 
and can be colored by special methods. The number of dicentric chromosomes in the human peripheral blood 
lymphocytes is used to detect the presence of chromosomal abnormalities in an individual. Or when a radiation 
accident occurs, the number of dicentric chromosomes is used to estimate the exposure of the human body to 
radiation. According to the radiation dose, it can improve the patient’s efficient and timely treatment.

Observing and analyzing the chromosome image, we find that there are three distinct differences in the image 
characteristics of the centromere and non-centromere area. The chromosome usually has a smaller width at the 
centromere, a smaller gray value, and the distribution of gray values is more uniform, so these differences are 
usually used as the characteristics of the centromere identification. For example, the projection vectors in the 
horizontal and vertical directions are calculated by adding up the values of the pixels along the projection line 
to determine the centromere position12. The identification of centromeres can be identified using fuzzy sets and 
neighborhood masks13. The pixel and distance are computed to find centromeres14. The identification of cen-
tromeres can also be used to calculate the number of centromeres by concavity8, but both angle and curvature can 
cause noise pollution20. The multiple identification methods of centromeres mainly use the width or gray values. 
The accuracy of these identification methods is not very high. Therefore, the method of combining width and gray 
values is used to identify the location of centromeres. The background gray value of the single chromosome after 
division is set to 0, and the gray value of the region of the chromosome itself is not processed. Let the coordinate 
of each point of the center axis extracted in II-B be Pi(xi, yi), and the corresponding gray value is Mi. Since the gray 
value is smaller, negate it, denote it as Gi:

= −G M255 (1)i i

At point Pi, make a vertical line about the center axis. The coordinates of the point on each axis are PQ x y( , )i j ij ij , 
the negation of the corresponding gray value is Gij, and the Euclidean distance from the vertical point Pi to the 
point PiQi in vertical line is Dij:

= − + −D x x y y( ) ( ) (2)ij i ij i ij
2 2

Define a new parameter: the equivalent width Yi, then the equivalent width at point Pi is:

∑= ⋅ ∈Y D G m n N( , ) (3)i ij
m

ij
n

For a single chromosome after extracting the central axis, the process of identifying the centromere according 
to the equivalent width is as follows:

	 1.	 A single chromosome after extracting the central axis is taken as input, and the equivalent width curve of 
the point on the central axis is obtained, and one-dimensional low-pass filtering is performed thereon.

	 2.	 For the filtered equivalent width curve, the trend of the equivalent width is fitted with a straight line, and 
the difference between the point value on the fitted line and the value corresponding to the filtered point is 
used to generate a difference curve.

	 3.	 Derivate the difference curve and perform one-dimensional low-pass filtering to find all extreme points
	 4.	 For all the minimum values, find the difference between the maximum value of the left and right sides of 

the point, and the difference between the left side is recorded as A and the right side is recorded as B.
	 5.	 A threshold T is set according to a large amount of data. When A > T or B > T, and A > T/2 and B > T/2, 

the minimum point is a centromere point.

According to the number of centromere points, the chromosome can be judged as dicentric chromosomes, or 
monocentric chromosomes, or multicentric centromere chromosomes.

Dose estimation.  Radiation sources that are usually exposed to the human body are X rays, γ rays, and 
occasionally neutrons. The radiation dose estimation for humans are often using a γ ray curve. As the uncer-
tainty of counting can be caused by slides or observation of individual differences in chromosome centromeres, 
a confidence interval is introduced to express uncertainty, using a 95% confidence interval as a criterion21. As the 
Poisson distribution of detected aberrations in the overexposed sample and the uncertainty in the calibration 
curve that is close to the normal distribution, it is difficult to calculate the confidence limits. Savage22, Merkle23, 
and Szluinska24 have been analyzed and discussed this problem. Merkle’s method is the simplest, and considers 
both the Poisson error on the aberration yield and the errors on the dose curve to be taken into account.

For the dose-effect curve established on counting a large number of cells, the change of the curve is small 
compared with the change of the distortion rate of the subject, which can be neglected. As shown in the Fig. 4 and 
Table 1, the confidence interval can be calculated through the following four steps.

	 1.	 Assuming that M cells are analyzed and contain X dicentric chromosomes, the distortion yield is:

=Y X M/ (4)

The dose-effect curve is a linear square model(Y = C + αD + βD2), the estimated dose D can be obtained by 
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solving the equation:

α α β

β
=

− + + −
D

Y C4 ( )
2 (5)

2

	 2.	 Assuming the Poisson distribution, XU and XL are obtained from the standard statistical table of the ex-
pected Poisson’s distribution limit25. The YU and YL are:

=Y X M/ (6)U U

=Y X M/ (7)L L

	 3.	 Calculate the dose at the intersection of YL and the curve, which is the lower confidence limit(DL).
	 4.	 Calculate the dose at the intersection of YU and the curve, which is the upper confidence limit(DU).

Results and Discussion
Segmentation results.  The chromosome segmentation includes the segmentation of chromosomes and 
backgrounds, the segmentation of chromosome clumps, and the segmentation of chromosome clumps is divided 
into simple adhesion segmentation and overlapped cross segmentation.

After the chromosome and background segmentation of the original picture, the initial clustering segmenta-
tion can generate single chromosomes (Fig. 5). And when segmenting, the algorithm does not change the original 
morphology of the chromosome.

The simple characterization of the first-segmented chromosome clumps is performed, and the re-segmented 
chromosome clumps are selected. These selected chromosome clumps are taken as input to segment by clustering 
and watershed algorithm, it is obvious that the clustering segmented chromosomes are one circle smaller than the 
original chromosomes. In order to ensure the consistency of chromosome morphology, regarding the clustering 
segmented chromosomes as seed points, performing watershed segmentation can separate slightly sticky chro-
mosome clumps (Fig. 6).

Most of the chromosomes are derived from human peripheral blood lymphocytes after gamma-irradiation. 
After being stained with Giemsa, they are placed on a microscope platform and scanned automatically. The data 
consist of metaphase split images taken from photographs of different doses of slides. Data contain 15,000 met-
aphase images, which are divided into data set 1, data set 2, and data set 3 for 5,000 images of 1 Gy,2 Gy,4 Gy 
radiation dose. And each data set contains 10 groups. For the data set 1, 2, 3, the software of using the clus-
tering + watershed algorithm segmented the average group of 19542, 20128, 20732 objects, averaging 39,40,41 
objects per metaphase. When the threshold is used, the software segmented the average group of 14654, 15244, 
16178 objects, averaging 29, 30, 32 objects per metaphase.

Extraction centerline results.  The centerline is extracted from the single segmented chromosomes. For 
the straight type, or curved type can directly obtain the centerline (Fig. 7a). For the hole type, or bifurcation type, 
the centerline can be obtained after the chromosome has been eroded, dilated, smoothed borders and filled the 
internal pores (Fig. 7b,c). The centerlines of most single chromosomes can be extracted, except for some specially 
shaped chromosomes. The centerlines of these chromosomes will produce a severe shift. However, since the 
occurrences of this type is infrequent, the effect on the dicentric chromosome recognition results almost can be 
neglect.

Dicentric chromosome identification results.  As shown in II-A, a new method for chromosome seg-
mentation is designed based on the clustering algorithm and the watershed algorithm. The segmented single 

Figure 4.  A dose-effect curve used to estimate uncertainties ignoring the error due to the curve.
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X XL XU, XD X XL XU, XD X XL XU, XD X XL XU, XD

0 0 3.285 40 28.97 53.72 80 62.81 99.17 120 99.17 142.70

1 0.051 5.323 41 28.97 54.99 81 63.49 99.17 121 99.17 144.01

2 0.355 6.686 42 30.02 55.51 82 64.95 100.32 122 100.32 144.01

3 0.818 8.102 43 31.675 56.99 83 66.76 101.71 123 101.71 145.08

4 1.366 9.598 44 31.675 58.72 84 66.76 103.31 124 103.31 146.39

5 1.970 11.177 45 32.28 58.84 85 66.76 104.40 125 104.40 147.80

6 2.613 12.817 46 34.05 60.24 86 68.10 104.58 126 104.40 149.53

7 3.285 13.765 47 34.665 61.90 87 69.62 105.90 127 104.58 150.19

8 3.285 14.921 48 34.665 62.81 88 71.09 107.32 128 105.90 150.36

9 4.460 16.768 49 36.03 63.49 89 71.09 109.11 129 107.32 151.63

10 5.323 17.633 50 37.67 64.95 90 71.28 109.61 130 109.11 152.96

11 5.323 19.050 51 37.67 66.76 91 72.66 110.11 131 109.61 154.39

12 6.686 20.335 52 38.16 66.76 92 74.22 111.44 132 109.61 156.32

13 6.686 21.364 53 39.76 68.10 93 75.49 112.87 133 110.11 156.32

14 8.102 22.945 54 40.94 69.62 94 75.49 114.84 134 111.44 156.87

15 8.102 23.762 55 40.94 71.09 95 75.78 114.84 135 112.87 158.15

16 9.598 25.400 56 41.75 71.28 96 77.16 115.60 136 114.84 159.48

17 9.598 26.306 57 43.45 72.66 97 78.73 116.93 137 114.84 160.92

18 11.177 27.735 58 44.26 74.22 98 79.98 118.35 138 114.84 162.79

19 11.177 28.966 59 44.26 75.49 99 79.98 120.36 139 115.60 162.79

20 12.817 30.017 60 45.28 75.78 100 80.25 120.36 140 116.93 163.35

21 12.817 31.675 61 47.02 77.16 101 81.61 121.06 141 118.35 164.63

22 13.765 32.277 62 47.69 78.73 102 83.14 122.37 142 120.36 165.96

23 14.921 34.048 63 47.69 79.98 103 84.57 123.77 143 120.36 167.39

24 14.921 34.665 64 48.74 80.25 104 84.57 125.46 144 120.36 169.33

25 16.768 36.030 65 50.42 81.61 105 84.67 126.26 145 121.06 169.33

26 16.77 37.67 66 51.29 83.14 106 86.01 126.48 146 122.37 169.80

27 17.63 38.165 67 51.29 84.57 107 87.48 127.78 147 123.77 171.07

28 19.05 39.76 68 52.15 84.67 108 89.23 129.14 148 125.46 172.38

29 19.05 10.94 69 53.72 86.01 109 89.23 130.68 149 126.26 173.79

30 20.335 41.75 70 54.99 87.48 110 89.23 132.03 150 126.26 175.48

31 21.36 43.45 71 54.99 89.23 111 90.37 132.03 151 126.48 176.23

32 21.36 44.26 72 55.51 89.23 112 91.78 133.14 152 127.78 176.23

33 22.945 45.28 73 56.99 90.37 113 93.48 134.48 153 129.14 177.48

34 23.76 47.025 74 58.72 91.78 114 94.23 135.92 154 130.68 178.77

35 23.76 47.69 75 58.72 93.48 115 94.23 137.79 155 132.03 180.14

36 25.4 48.74 76 58.84 94.23 116 94.70 137.79 156 132.03 181.67

37 26.31 50.42 77 60.24 94.70 117 96.06 138.49 157 132.03 183.05

38 26.31 51.29 78 60.90 96.06 118 97.54 139.79 158 133.14 183.05

39 27.735 52.15 79 62.81 97.54 119 99.17 141.16 159 134.48 183.86

Table 1.  The Poisson upper and lower 95% confidence limits on observed numbers(X) of dicentrics25.

Figure 5.  Examples of single chromosome.
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chromosome can be identified centromeres according to the algorithm in II-B and II-C. The identification results 
of dicentric chromosomes are showed in Fig. 8. It can be clearly seen that Fig. 8a,b have two dicentric chromo-
somes which are identified correctly. But Fig. 8c contains three dicentric chromosomes, only two dicentric chro-
mosomes have been identified because there is no outwardly extending chromosome arm at the unrecognized 
part A. Therefore, it is more difficult to identify this type dicentric chromosome.

Foe three data sets, experts identified all dicentric chromosome and also labeled false positive dicentric chro-
mosomes. The experts also judged the identified dicentric chromosomes after the software identification and 
corrected the number of identified dicentric chromosomes.

The dicentric chromosomes in three data sets were identified for the (m = 1, n = 1) values and compared with 
the threshold algorithm, the results are shown in Fig. 9. PPV and TPR are used to measure the identification of 
algorithms among different methods. PPV indicates the identification accuracy of the dicentric chromosomes, 

Figure 6.  Segmentation process and result of final segmentation.

Figure 7.  Extraction centerline results of four type chromosomes.
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and TPR indicates the identification rate of the dicentric chromosomes. As can be seen from Fig. 9, compared 
with the threshold algorithm, the clustering + watershed algorithm has better results on TPR and PPV. Especially 
in high-dose radiation, the clustering + watershed algorithm has the TPR of 76.6% and the PPV of 76.6%, 
both of which exceed three-quarters, showing good identification results. At low dose, due to the relatively low 
radiation dose, the formation of dicentric chromosomes is less, normal chromosomes are more. It is prone to 
mis-segmentation, which will lead to low identification accuracy (30–40%).

Figure 8.  Identification results of dicentric chromosomes in single cells.
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Dose estimation results.  Dose estimation was performed on 30 groups of identification results. The dose 
curve was based on the dose-effect curve of the dicentric chromosomes fitted in our laboratory (8). The relative 
deviation of the estimated dose ≤20% is regarded as qualified. The pass rate for each data set is shown in Fig. 10.

= . + . + .Y D D0 000105 0 0186 0 0217 (8)2

As can be seen from Fig. 10, the higher dose, the higher pass rate of the dose estimate. Therefore, when dose esti-
mation is performed, the number of cells should be selected more for low-dose radiation, and the number of cells 
can be appropriately reduced for high doses.

Conclusion
This paper proposes a segmentation method based on clustering algorithm and watershed algorithm to segment 
the chromosome cluster, and then extract the central axis from the segmented single chromosome. According 
to the position of the central axis, the dicentric chromosomes are identified by combining the two factors of gray 
scale and distance. After manually identifying the identified dicentric chromosomes, the number of dicentric 
chromosomes is obtained, which can be used to estimate radiation doses. The results are as follows:

Figure 9.  Effects of clustering + watershed algorithm and threshold algorithm on dicentric chromosome 
identification. Orange signals indicate the true positive rate by threshold algorithm. Yellow signals indicate the 
true positive rate by clustering + watershed algorithm. Blue signals indicate the positive predictive value by 
threshold algorithm. Gray signals indicate the positive predictive value by clustering + watershed algorithm. 
Mean ± S.D., n = 10, *P < 0.05.

Figure 10.  Results of dose estimation for three data sets.
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	(1)	 The proposed automatic segmentation and identification method for dicentric chromosomes has the true 
positive rate (TPR) 75.6% and the positive predictive value (PPV) of 60%, which is higher than the method 
using threshold algorithm.

	(2)	 By comparing the different dose, it is found that the higher dose, the higher true positive rate and positive 
predictive value can be obtained, especially the positive predictive value.

	(3)	 The yield and pass rate of dose estimation depend on the amount of radiation dose received. For low dose 
radiation, the more cells should be identified, and for high dose radiation, the number of identified cells 
can be appropriately reduced. When 500 cells are used for identification and dose estimation, the dose 
estimation pass rate can reach 80% in high dose.

Statistics.  Data were tested for normal distribution. Differences between groups were analyzed using the 
paired Student t test (IBM SPSS Statistics v. 17.0, IBM, Armonk, NY). All values are expressed as mean ± standard 
deviation (SD). Statistical significance was accepted for values of P < 0.05.

Data Availability
The datasets generated and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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