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Revisit population-based and 
Family-based Genotype Imputation
Ching-ti Liu1, Xuan Deng1, Virginia Fisher1, Nancy Heard-Costa  2, Hanfei Xu1, Yanhua Zhou1, 
Ramachandran s. Vasan2,3 & L. Adrienne Cupples1,3

Genome-Wide Association (GWA) with population-based imputation (pBI) has been successful in 
identifying common variants associated with complex diseases; however, much heritability remains 
to be explained and low frequency variants (LFV) may contribute. to identify LFV, a study of unrelated 
individuals may no longer be as efficient as a family study, where rare population variants can be 
frequent in families. Family-based imputation (FBI) provides an opportunity to evaluate LFV. to 
compare the performance of pBI and FBI, we conducted extensive simulations, generating genotypes 
using seqsIMLA from various reference panels for families. We masked genotype information for 
variants unavailable in Framingham 550 K GWA genotype data in less informative subjects selected 
by GIGI-Pick. We implemented IMPUTE2 with duoHMM in SHAPEIT (Impute2_duoHMM) for PBI, 
MeRLIN and GIGI for FBI and pedBLIMp for a hybrid approach. In general, FBI in both MeRLIN and 
GIGI outperformed other approaches with imputation accuracy greater than 0.99 for the squared 
correlation and imputation quality scores (IQs) especially for LFV, although imputation accuracy from 
MeRLIN depends on pedigree splitting for larger families. pBI performed worst with the exception of 
good imputation accuracy for common variants when a closely ancestry matched reference is used. In 
summary, linkage disequilibrium (LD) information from large available genotype resources provides 
good imputation for common variants with well-selected reference panels without requiring densely 
sequenced data in family members, while imputation of LFV with FBI benefits more from information 
on inheritance patterns within families yielding better imputation.

Genotype imputation derives from statistical inference of genotypes that are not directly assayed. In recent 
decades, genotype imputation has been commonly used in genome-wide association studies (GWAS) since it 
provides the same set of single nucleotide polymorphisms (SNPs) to collaborating studies, thereby enabling 
researchers to combine genotype-phenotype association results from participating cohorts using different gen-
otyping platforms. Thus, genotype imputation efficiently increases the effective sample size and improves sta-
tistical power to detect disease variants with moderate effects. Genotype imputation strategies can be broadly 
classified into population-based methods, which use population linkage disequilibrium (LD) information, and 
family-based methods, which use inheritance information within pedigrees.

Population-based methods impute unobserved SNPs using a reference panel of subjects with complete obser-
vations on a more comprehensive set of SNPs. These reference panels, such as HapMap and 1000 Genomes1,2, 
represent most common genetic variation in human populations. LD or correlation between nearby SNPs is used 
to predict unobserved genotypes in a study sample with a sparser set of variants. For example, IMPUTE23 was 
developed as a population-based imputation method that improves upon previous approaches by using both the 
reference and study samples to inform haplotype phasing at observed markers. SHAPEIT2 duoHMM4 further 
improves upon phasing in family-based studies with a hidden Markov model for identity by descent (IBD), with 
results incorporated into an IMPUTE2 analysis.

The era of GWA with population-based imputation has been highly successful in identifying common variants 
associated with many diseases and their risk factors. Nevertheless, GWAS have not explained all genetic variation 
in association with the diseases and risk factors that affect large numbers of U.S. individuals. Much genetic varia-
tion remains to be explained5 and larger samples are needed to identify variants with weaker effects and/or lower 
frequency. Whereas we once thought that only a few genes/variants might be associated with disease, we have 
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now reconfirmed the paradigm that the genetic determinants of many complex diseases derive from a polygenic 
model comprising many genetic variants with small effects6–9.

To identify low frequency variants (LFV), a population study of unrelated individuals is no longer an efficient 
study design. Family studies offer an effective, and less expensive, option to pursue such variation with adequate 
power, as rare population variants will be more frequent in families where a founder has the variant. Further, 
multiple rare variants in a gene in several families may act in a similar fashion on traits. Hence, linkage studies or 
collapsed rare variant analyses in such families may have improved power compared to studies of unrelated indi-
viduals and also provide identification of those variants that are segregating through the family with the trait10.

Thus, imputation in family studies provides an opportunity to evaluate rarer variants and their effects on 
disease and associated risk factors. Several methods have been proposed for situations where some family mem-
bers have been genotyped on a dense set of markers, and other members have only sparse marker genotypes 
measured. For example, Merlin11,12 uses pedigree structure to identify inheritance vectors within a family, then 
propagates genotypes at high-density markers observed in a subset of individuals to others in the pedigree. GIGI 
(Genotype Imputation Given Inheritance)13 uses a two-stage procedure to infer inheritance vectors at sparse 
markers, then uses MCMC sampling to estimate genotypes of a dense marker set. With the growing availability of 
whole genome sequences, family-based imputation may provide improved strategies for imputing rare variants. 
In this paper, we compare two family-based imputation (FBI) methods to population-based imputation (PBI) as 
well as a hybrid version that combines FBI and PBI.

Materials and Methods
We carried out a series of simulations to evaluate the performance of PBI and FBI strategies in several scenarios. 
Figure 1 summarizes our study design and simulation procedures. We simulated sequence data and masked some 
genotypes to evaluate the imputation approaches. For PBI, we considered several scenarios using dense reference 
panels from UK10K and 1000 G. The identification of genetic variants for the sparse backbone panel that would 
be used for imputation was based on the array variants from the 250 K Nsp, 250 K Sty Affymetrix and the 50 K 
gene centric Affymetrix arrays that were observed in the Framingham Heart Study. All imputation methods 
were restricted to diallelic single nucleotide variants (SNVs). FBI used informative individuals in families with 
sequence data to impute variants missing in other members within the same family. Family members with miss-
ing variants have backbone variants or no genetic data. We focused on 5 imputation strategies: I1) SHAPEIT 
without pedigree information for phasing followed by IMPUTE2; I2) SHAPEIT with duoHMM for phasing that 
takes into account pedigree information followed by IMPUTE2; I3) MERLIN for estimating IBD followed with 
genotype imputation; I4) GIGI with pre-calculation of inheritance vectors in MORGAN; and I5) PedBLIMP14 
using LD information from external panel data and IBD information from internal family data.

phasing and Imputation strategies. We estimated unknown haplotypes from typed genotypes (e.g. 
GWA array variants), known as phasing, for each subject with SHAPEIT (both with and without using the 
duoHMM feature) and followed by genotype imputation for PBI implemented via IMPUTE24,15,16. For FBI, we 
implemented two approaches for imputation. One is GIGI, where imputation for each member of a family fol-
lows estimation of the pattern of genetic transmission within the family based on the observed genotype data17. 
We used MORGAN for this estimation of inheritance vectors18. The second FBI approach was implemented 
in MERLIN, which performs estimation of inheritance vectors for families and does not require an additional 
step for haplotype estimation12. Additionally, we considered a hybrid approach, PedBLIMP, which calculates the 

Figure 1. Flow chart of the study design.
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covariance matrix for LD information from an external panel and then estimates IBD for each locus to obtain the 
locus specific relatedness matrix14. We briefly describe each approach.

Haplotype estimation and Inheritance vectors estimation. Haplotype phasing and inheritance 
vector estimation are essential steps in PBI and FBI. We used SHAPEIT version v2-790 to pre-phase prior to 
PBI. SHAPEIT estimates haplotypes from directly measured genetic variants (e.g. array-based genotypes) before 
imputing genotypes for those un-typed variants from a denser reference haplotype panel. This pre-phasing step 
improves the imputation speed since the haplotype estimation needs to be done only once. We considered two 
scenarios in haplotype phasing. One ignored relatedness information within families and another improved phas-
ing by incorporating family information through a hidden Markov model (duoHMM)4.

For FBI, we used PLINK 1.9 to perform LD-based SNP pruning, with window size of 50 SNPs and shifted by 5 
SNPs at each step, to construct a list of SNPs in approximate linkage equilibrium with pairwise LD r2 < 0.2 from 
available directly genotyped data. The SNPs in linkage equilibrium identified by this analysis were selected from 
simulated data and used to estimate the number of alleles shared IBD among relatives in a pedigree in MERLIN. 
We used the same SNPs to infer inheritance vectors summarizing the pattern of genetic transmission through 
pedigrees, based on estimated genetic locations of meiotic events with the gl_auto routine in MORGAN 3.1. The 
same process was used for PedBLIMP.

Large pedigree splitting. An important property of MERLIN is that it can only evaluate smaller pedi-
grees. For the scenario where pedigrees exceed the computational limit for imputation in MERLIN, we used a 
pedigree splitting algorithm previously described19. Briefly, the algorithm used kinship coefficients for splitting 
and trimming each large pedigree into multiple smaller sub-pedigrees of a user pre-specified size (in our case, 
maxbits = 18 or 20 and bit size = 2 * # non-founders – # founders – # un-genotyped founder couples). The basic 
steps started with clustering un-genotyped individuals with their un-genotyped first-degree relatives and then 
constructing sub-pedigrees based on these clusters and their genotyped relatives. The same procedure applied 
to the sub-pedigrees until their bit sizes meet the pre-selected size. Essentially, each sub-pedigree produced was 
centered on one or more un-genotyped individuals with as many closely related genotyped relatives as possible. 
In the case where an individual was included in multiple sub-pedigrees, imputation was performed using one 
sub-pedigree at a time and the imputations with the best quality for an individual were used for further analysis.

Genotype Imputation. We used IMPUTE2 v2.3.0 to impute genotypes for untyped (masked) variants using 
several reference panels3. IMPUTE2 can use either unphased genotype data or phased haplotype data to estimate 
unobserved genotypes. However, pre-phasing lowers the computational time significantly; hence we phased our 
data first with SHAPEIT before conducting imputation with IMPUTE2.

For FBI, we consider three implementations: MERLIN v1.1.2, GIGI v1.04, and PedBLIMP v0.2.0. MERLIN 
uses dense genotype data from a subset of individuals in a pedigree to infer missing genotypes in remaining rel-
atives, who may or may not have sparse genotype data. It first uses low-density genotypes in all family members 
to estimate the number of alleles shared IBD in a pedigree. Then, with IBD and high-density genotype data in 
a subset of family members, unobserved high-density genotypes for remaining members can be imputed. The 
imputation implemented in MERLIN uses the Lander-Green algorithm20, in which posterior probabilities of 
the three possible genotypes at each SNV are calculated. MERLIN imputation can be very rapid and efficient in 
small pedigrees; however, the complexity of Lander-Green algorithm increases exponentially with pedigree size. 
Pedigree size 12 used in our study is sufficiently small for this algorithm21. For pedigree size 40, sub-pedigrees 
were constructed as described above.

GIGI uses a two-step procedure to impute dense genotypes in pedigrees where only a few members have 
high-density genotype or sequence data available, and most members have been genotyped on a sparse set of 
“framework” markers in linkage equilibrium. After summarizing the pattern of genetic transmission through the 
pedigree as inheritance vectors, using MORGAN, the second step uses the inferred inheritance vectors and all 
available dense marker sequence data to impute unobserved genotypes by estimating locations of meioses and 
filling in variants between framework markers.

PedBLIMP14 extends the population-based method BLIMP22, which uses conditional multivariate normal 
moments to impute genotypes with LD information from an external panel, by additionally taking the pedigree 
structure or IBD information into consideration. PedBLIMP first builds a precomputed shrinkage covariance 
and mean of genotypes from the reference panel data, and then imputes SNP data using the expected relatedness 
matrix calculated from the pedigree structure.

study Design and Genotypic Data simulation. Figure 1 displays our study design including genotype 
data simulation, genotype masking scenarios and imputation strategies.

sequence simulation. To compare imputation strategies, we simulated dense DNA sequence data 
on a selected region on chromosome 20 using SeqSIMLA23 to generate genotype data for family members 
(Supplemental Fig. 1), based on the available haplotype pool. Specifically, we considered the following haplotype 
pools: H1: The combined haplotype information from the UK10K (http://www.uk10k.org/, n = 3,781) and the 
1000 Human Genome Metropolitan Panel (1000 G, n = 1,092); H2: Haplotype information from UK10K only; 
H3: one-third of haplotype information randomly selected from UK10K (n = 1,260) (Fig. 1). We first simulated 
1000 families of size 12 (total 12 K subjects) with identical pedigree structure. We also simulated 300 families of 
size 40 (total 12 K subjects). Our results primarily focused on the scenario with family size 12.

The region from 1965933 to 4025750 (hg19) on chromosome 20 was selected as it contains variants with a full 
range of minor allele frequency (MAF) from 0.028% to 49.98%. The majority of variants were less frequent: the 
proportions of variants with MAF >5%, 1–5% and <1% were 19.3%, 9.2% and 71.4% in the H1 pool, respectively. 
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In addition, we selected this region to be large enough to contain various LD structures, a strong LD block and a 
weak/mild LD block, and small enough to handle the multiple simulations in the current study. There are 26,308 
variants in total within this region. To mimic reality, we assumed that dense genotypes were observed only for 
‘informative’ family members. Informative family members were identified with GIGI-Pick13, providing a guide-
line to sequence a minimal number of individuals to deduce other family members’ sequence through imputa-
tion. For the remaining family members, we masked the simulated genotype information except for a set of sparse 
variants available in commonly used genotype array platforms. Supplemental Fig. 1 identifies the ‘informative’ 
subjects used in our simulation setting.

Masking genotypic information: Imputation scenarios. We considered three scenarios for selecting 
which members of the pedigree have dense genotype information from the sequence data (Fig. 1). The first sce-
nario (S1) assumed that everyone has sequence data, an unlikely circumstance. There are 26,308 variants in total 
within the pre-selected region from our simulation. This scenario served as a benchmark to compare with others. 
The second scenario (S2) assumed that only informative individuals have dense sequence data and the remaining 
family members have sparse genotype (or backbone) data. The identification of the sparse genotypes was based on 
the genotype information in the Framingham Heart Study (FHS) SHARe project, for which genotyping was con-
ducted using approximately 550,000 SNPs (Affymetrix 250 K Nsp and 250 K Sty mapping arrays plus Affymetrix 
50 K gene-centric supplemental array). Specifically, there were 447 variants within the region of interest, 136 of 
which remained after LD pruning. The third scenario (S3) was designed to evaluate the performance of imputing 
the ‘top’ generation, specifically the first generation here, assuming that sequence data was available for all their 
descendants and relatives (the second generation and their spouses and the third generation). Such a circum-
stance occurs when the members at the top of a pedigree in a sample of families are dead and have no genotype 
data.

For reference panels for IMPUTE2, we considered: R1: combined haplotype information from 1000 G and 
UK10K; R2: 1000 G only; R3: one-third of UK10K without overlapping with H3 haplotype pool; R4: two-thirds 
of UK10K from the complementary set of the H3 haplotype pool. For PedBLIMP, we used R2:1000 G as the ref-
erence panel.

evaluation of Imputation performance. Several measures of imputation performance are available to 
evaluate imputation quality, for example, concordance, squared correlation and imputation quality score (IQS) 
with the true sequence genotypes. Concordance between imputed and true simulated genotypes uses the best 
guess genotype and thus, depends on the threshold of the posterior probability for the best guess. As a result, it 
overestimates the accuracy for rare or less common variants due to random chance of concordance. In addition, 
by using the best guess and ignoring the posterior probability for the best guess, it ignores the uncertainty of 
imputed genotypes that is reflected in the dosage. Prior literature has shown lower power in association analyses 
that use the best guess compared to those methods that use genotype dosage or take uncertainty of imputed geno-
types into consideration24. Therefore, we used the squared correlation and IQS as measures of imputation quality 
for comparisons among different imputation methods.

squared Correlation (r2). The squared correlation estimate for each SNP is the squared Pearson correlation 
between the masked true genotypes, which take values of 0, 1, 2, and the imputed dosages, which take values in 
the range [0, 2]. Squared correlation estimates are not very reliable measurements of the accuracy for rare var-
iants. For example, the squared correlation of a SNP with low minor allele frequency is unmeasurable because 
either the true genotypes or the imputation dosages might be identical for all individuals. We used the squared 
correlation here to compare the different imputation approaches and to contrast with the IQS.

Imputation quality score (IQs). We also consider the imputation quality score (IQS), originally inspired 
by Cohen’s Kappa statistic and developed by Lin et al.25,26. IQS measures the agreement between two classifica-
tions, adjusting for chance agreement. The calculation of IQS requires the posterior probabilities of imputed 
genotypes. Denote nij as the number of individuals with true genotype i and imputed additive genotype j, n.j as the 
total number of individuals with imputed genotype j, ni as the total number of individuals with true genotype i 
and n.. is the total sample size. IQS is calculated by subtracting the chance agreement Pc from the observed agree-
ment Po and dividing by the maximum possible value of the numerator: = −
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IQS incorporates the uncertainty of imputation by using posterior probabilities for genotypes instead of the 
best-guess genotype, thus avoiding potential bias caused by the selection of a threshold for posterior probability. 
IQS is useful for rare variants because it accounts for allele frequency and adjusts for chance agreement. IQS can 
be computed using dosages, yielding more information on imputation quality. Details of IQS can be found in Lin 
et al.26.

Results
Imputation Accuracy. As described, genotypic data were generated from three sources (H1: UK10K + 1KG, 
H2: UK10K only; H3: 1/3 of UK10K); imputation was performed using five imputation methods (I1: Impute2_
unrelated, I2: Impute2_duohmm, I3: GIGI, I4: MERLIN and I5: PedBLIMP) along with four reference panels (R1: 
UK10K + 1KG, R2: 1KG, R3: 1/3 of UK10K, R4: 2/3 of UK10K) for imputation (Fig. 1). The squared correlation 
and IQS measured the agreement with true simulated genotypes. The results are displayed in Figs 2, 3 and 4.

Ideal scenario for population-based imputation. Here the haplotype information in the reference panel for 
population-based imputation came from the same source of the haplotype information for genotypic data 
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generation, i.e. H1 (Fig. 1a). An unlikely situation, it showed how good PBI can be using an extremely good ref-
erence panel. As expected, Impute2_duoHMM performed excellently with both squared correlation (r2) and IQS 
close to 1 (Fig. 2). In the scenario with family size 12 (Fig. 2a,b), both MERLIN and GIGI showed comparable 
imputation quality to Impute2_duoHMM for variants with MAF <5%. However, for variants with MAF >5%, 
the imputation quality for both MERLIN and GIGI was lower although their performance remained high with 
both r2 and IQS greater than 0.994. The imputation approach without utilizing pedigree structure information 
(Impute2_unrel) performed worst even with the ideal reference panel except for variants with MAF greater than 
20% where it slightly outperformed FBI. The variability of the estimated accuracy was larger in Impute2_unrel 
than other approaches. However, variabilities were consistently low, especially for MERLIN and GIGI. Hence, 
variability information is not provided hereafter. We also evaluated a larger pedigree of size 40, selected from the 
Framingham Heart Study, where MERLIN requires splitting the whole pedigree into sub-pedigrees. We evaluated 
two options for maxbit: 18 and 20. MERLIN with maxbit 18 retains imputation quality as good as GIGI while 
there is a clear drop in imputation quality for MERLIN with maxbit 20 (Fig. 2c,d). This comparison indicates that 
different pedigree splits can affect imputation performance dramatically.

Comparison among imputation approaches: family-based, population-based and hybrid imputation. Next, we 
evaluated imputation performance with family size 12 by considering different sources of haplotype information 
between genotypic data generation (UK10K) and the reference panel (1000 G) (Fig. 1b). In addition to comparing 

Figure 2. Comparison of imputation accuracy with squared correlation and imputation quality score among 
various imputation strategies under the scenario that all informative people have dense genotypes for family-
based imputation and all individuals have sparse genotype as backbone for population-based imputation, 
using genotypes simulated from haplotype pool 1 (UK10K + 1000 G sample). The left panel, (a,b), of the figure 
shows the imputation accuracy for the scenario with 1000 families of size 12; the right panel, (c,d), of the figure 
shows the imputation accuracy for the scenario with 300 families of size 40. For family size of 40, two different 
pedigree-splitting methods (Merlin_mb18 and Merlin_mb20) are considered based on maxbits of 18 or 20 for 
the imputation using Merlin. The x-axis in the figures is on a logarithmic scale.
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traditional PBI and FBI, we include a newly proposed hybrid approach, PedBLIMP. For both the squared corre-
lation and IQS, FBI (MERLIN and GIGI) performs best, followed by PedBLIMP, and PBI (Impute2_duoHMM) 
shows the worst performance. Interestingly, the performance of PedBLIMP drops but that of Impute2_duoHMM 
increases when the MAF of imputed variants >5% for IQS (Fig. 3b).

Effect of different sources and sizes of reference panel for population-based imputation. We further evaluated the 
imputation accuracy using different reference panels (Fig. 1c). The haplotype information from UK10K was ran-
domly divided into three groups with each having 1260 subjects. From them, one group was randomly selected 
to serve as the haplotype pool (H3) for data generation. The reference panel then used a randomly selected one 
of the two remaining thirds (R3) or all remaining haplotype data (R4). In addition, we evaluated 1000 G (R2) as 
the reference panel. For both imputation accuracy measures, using 1/3 of UK10K (R3) and 2/3 of UK10K (R4) 
performed similarly, although the larger reference panel yields slightly better performance for rare or less frequent 
variants (Fig. 4). For IQS, 1/3 of UK10K (R3) and 2/3 of UK10K (R4) performed better than 1000 G (R2), indicat-
ing better imputation accuracy with a closely related population as a reference panel (Fig. 4b).

Family-based Imputation of first generation individuals who do not have genetic information. It is not uncommon 
that DNA samples are unavailable for an earlier generation while other clinical variables are available for analysis. 

Figure 3. Comparison of imputation accuracy with squared correlation, (a) and imputation quality score, 
(b) among various imputation strategies under the scenario that all informative people have dense genotypes 
for family-based imputation and all individuals have sparse genotype as the backbone for population-based 
imputation, using genotypes simulated from haplotype pool 2 (all UK10K sample). The x-axis in the figures is 
on a logarithmic scale.

Figure 4. Comparison of imputation accuracy with squared correlation, (a) and imputation quality score, 
(b) among various population-based imputation strategies under the scenario that all individuals have sparse 
genotypes as the backbone for population-based imputation, using genotypes simulated from haplotype pool 3 
(1/3 of UK10K sample). The x-axis in the figures is on a logarithmic scale.
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Including these individuals’ imputed genotypes will increase the sample size and power for downstream analysis. 
We evaluated the imputation results for the first generation individuals using the second and third generations’ 
genotype information (Supplemental Fig. 2) with MERLIN and GIGI, as PBI was not applicable. In general, GIGI 
outperformed MERLIN for both the squared correlation and IQS accuracy measures. The only exception was 
that higher IQS values were observed for MERLIN for variants with minor allele frequency less than 1% (bottom 
panel of Supplemental Fig. 2).

Discussion
We conducted intensive simulation to evaluate the performance of several strategies to impute missing geno-
types. Our data demonstrated that FBI, specifically MERLIN and GIGI, provides better imputation quality in 
general when there are informative family members with available dense sequence data, while PBI, specifically 
Impute2_duoHMM, offers reasonable imputation quality for common variants especially when a closely related 
reference panel is used. In addition, MERLIN and GIGI produced imputation quality comparable to each other in 
small pedigrees; however, as a cautious point, MERLIN can only handle pedigrees of small or moderate size and 
requires splitting of large pedigrees, which has an observable effect on imputation accuracy. A separate effort to 
comprehensively describe the properties of MERLIN, especially the strategy on the splitting of large pedigrees, 
is needed.

PBI has facilitated identification of common variants associated with complex diseases; however much genetic 
variation remains to be explained and less frequent variants may contribute. Various imputation approaches have 
been proposed to enhance imputation accuracy of rare variants. The growing size of available reference panels 
will provide better coverage of longer stretches of haplotypes27,28. However, we still observed an apparent gap in 
the imputation accuracy compared to family-based imputation. Other studies suggest using a local reference or 
study-specific samples29,30, consistent with our observation in the ideal scenario for population-based imputa-
tion, an unusual case, where the haplotype sources are the same for target study samples and reference panel. The 
advantage for this type of approach comes from the potential population-specific haplotypes introduced by low 
frequency variants and a local reference panel can provide more precise haplotypes than publicly available refer-
ence panels of similar size. The information used for FBI shares similar merit as a local reference panel. However, 
the advantage of FBI is less likely to diminish even when publicly available reference panels grow with dense 
sequencing of more individuals as such an ideal scenario for population-based imputation may not be realistic. 
Additionally, imputation to family members, such as older generations, without genotype information is only 
applicable in a family-based approach.

Leveraging the information from LD and inheritance patterns may improve genotype imputation. There may 
not always be enough family members with dense sequence data to obtain accurate inheritance vectors, although 
the family-based imputation clearly dominates the imputation accuracy. LD information from large publicly 
available genotype resources can provide imputation for common variants with a well-selected reference panel 
without requiring densely sequenced data in family members. Therefore, methods to use the strengths from both 
PBI and FBI may provide alternative strategies. Indeed, Saad and Wijsman31,32 showed that combining PBI and 
FBI of sequence data improves statistical power to detect rare variant associations. Lent et al.33 demonstrated that 
a sequential approach that uses PBI to increase the density of a sequenced reference panel before performing FBI 
further increases imputation accuracy. Results that are more powerful were observed through such approaches, 
but these only used information from LD and inheritance patterns indirectly. Recently, PedBLIMP14 uses both 
pedigree structure and LD information to define the genotype covariance matrix used in a linear prediction 
model. As observed in our simulation, the improvement of the imputation accuracy with this approach compared 
to the population-based imputation is obvious although there remains room for improvement compared to the 
family-based imputation.

Our study comes with several strengths and limitations. Among the strengths, first, we used UK10K plus 
1000 G, the largest publicly available haplotype reference panel, at the time we started this project. The release 
of more dense reference panels will continue to improve PBI. Second, we conducted extensive simulations to 
systematically evaluate the accuracy of genotype imputation for FBI, PBI and hybrid strategies. Third, imputation 
to the earlier generation of individuals based on the available data in later generations was also evaluated. This 
evaluation provided useful information as it is relatively common to lack DNA data in earlier generations due to 
death or loss to follow up.

Some limitations of our study include the fact that we primarily simulated a specific pedigree structure with 
three generations. This structure may provide more information in imputation than a trios study design but is less 
informative than more extended family pedigrees, such as family structures collected in the Framingham Heart 
Study. Larger pedigrees may affect the imputation accuracy for family-based imputation. However, MERLIN can-
not be used in large pedigrees without splitting. We demonstrated this approach in one of our simulation settings. 
On the other hand, we assumed an ideal scenario that all informative individuals within the pedigree have dense 
genotypes, a circumstance that may not always be practical for various reasons such as cost or lack of DNA sam-
ples for genotyping. Considering information from related individuals, the imputation results and their down-
stream association analysis will depend on the selection of subjects to densely genotype. Third, to better evaluate 
imputation performance for rare variants, we conducted extensive simulations in a specific genomic region rather 
than simulating whole genome data, due to the computational constraints. However, the selected region has a 
wide range of allele frequencies and various LD structures; so we do not anticipate substantial changes in our 
findings should the simulation be done in the whole genome.

Imputation methods provide information on the distribution of possible genotypes at untyped variants for 
very little cost compared to direct genotyping or sequencing. As observed in our study, family-based imputa-
tion when informative individuals within a pedigree having dense genotypes outperformed population-based 
imputation even with haplotype phasing estimated using family relationships. This advantage was found in 
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both common and LF variants while population-based imputation may provide relatively comparable results 
for common variants if closely ancestry-matched samples are available for the reference. Combining family- 
and population-based imputation data may provide an alternative option to improve imputation quality as sug-
gested by Saad and Wijsman32 where better imputed genotypes for each variant from either family-based or 
population-based imputation are used. Hence, an approach that can simultaneously use LD information from a 
large haplotype reference and extra information from related subjects may provide fruitful results in genotype 
imputation and identification of risk variants underlying complex disease.

References
 1. Consortium, I. H. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).
 2. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
 3. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-

wide association studies. PLoS Genet 5, e1000529 (2009).
 4. O’Connell, J. et al. A general approach for haplotype phasing across the full spectrum of relatedness. PLoS Genet 10, e1004234 

(2014).
 5. Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).
 6. Pritchard, J. K. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69, 124–137 (2001).
 7. Bodmer, W. & Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 40, 695–701 

(2008).
 8. McClellan, J. & King, M. C. Genetic heterogeneity in human disease. Cell 141, 210–217 (2010).
 9. Dickson, S. P., Wang, K., Krantz, I., Hakonarson, H. & Goldstein, D. B. Rare variants create synthetic genome-wide associations. 

PLoS Biol 8, e1000294 (2010).
 10. Wijsman, E. M. Family-based approaches: design, imputation, analysis, and beyond. BMC Genet 17(Suppl 2), 9 (2016).
 11. Abecasis, G. R., Cherny, S. S., Cookson, W. O. & Cardon, L. R. Merlin–rapid analysis of dense genetic maps using sparse gene flow 

trees. Nat Genet 30, 97–101 (2002).
 12. Burdick, J. T., Chen, W. M., Abecasis, G. R. & Cheung, V. G. In silico method for inferring genotypes in pedigrees. Nat Genet 38, 

1002–1004 (2006).
 13. Cheung, C. Y., Marchani Blue, E. & Wijsman, E. M. A statistical framework to guide sequencing choices in pedigrees. Am J Hum 

Genet 94, 257–267 (2014).
 14. Chen, W. & Schaid, D. J. PedBLIMP: extending linear predictors to impute genotypes in pedigrees. Genet Epidemiol 38, 531–541 

(2014).
 15. Delaneau, O., Howie, B., Cox, A. J., Zagury, J. F. & Marchini, J. Haplotype estimation using sequencing reads. Am J Hum Genet 93, 

687–696 (2013).
 16. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. & Abecasis, G. R. Fast and accurate genotype imputation in genome-wide 

association studies through pre-phasing. Nat Genet 44, 955–959 (2012).
 17. Cheung, C. Y., Thompson, E. A. & Wijsman, E. M. GIGI: an approach to effective imputation of dense genotypes on large pedigrees. 

Am J Hum Genet 92, 504–516 (2013).
 18. Wijsman, E. M., Rothstein, J. H. & Thompson, E. A. Multipoint linkage analysis with many multiallelic or dense diallelic markers: 

Markov chain-Monte Carlo provides practical approaches for genome scans on general pedigrees. Am J Hum Genet 79, 846–858 
(2006).

 19. Chen, M. H. et al. Using family-based imputation in genome-wide association studies with large complex pedigrees: the 
Framingham Heart Study. PLoS One 7, e51589 (2012).

 20. Lander, E. S. & Green, P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 84, 2363–2367 (1987).
 21. Chen, W. M. & Abecasis, G. R. Family-based association tests for genomewide association scans. Am J Hum Genet 81, 913–926 

(2007).
 22. Wen, X. & Stephens, M. Using Linear Predictors To Impute Allele Frequencies From Summary Or Pooled Genotype Data. Ann Appl 

Stat 4, 1158–1182 (2010).
 23. Chung, R. H. & Shih, C. C. SeqSIMLA: a sequence and phenotype simulation tool for complex disease studies. BMC Bioinformatics 

14, 199 (2013).
 24. Zheng, J., Li, Y., Abecasis, G. R. & Scheet, P. A comparison of approaches to account for uncertainty in analysis of imputed genotypes. 

Genet Epidemiol 35, 102–110 (2011).
 25. Cohen J. A coefficient of agreement for nominal scales. Educational, and Psychological Measurements; XX: 37–46 (1960).
 26. Lin, P. et al. A new statistic to evaluate imputation reliability. PLoS One 5, e9697 (2010).
 27. Huang, J. et al. Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel. Nat Commun 

6, 8111 (2015).
 28. Li, L. et al. Performance of genotype imputation for rare variants identified in exons and flanking regions of genes. PLoS One 6, 

e24945 (2011).
 29. Kreiner-Møller, E., Medina-Gomez, C., Uitterlinden, A. G., Rivadeneira, F. & Estrada, K. Improving accuracy of rare variant 

imputation with a two-step imputation approach. Eur J Hum Genet 23, 395–400 (2015).
 30. Joshi, P. K. et al. Local exome sequences facilitate imputation of less common variants and increase power of genome wide 

association studies. PLoS One 8, e68604 (2013).
 31. Saad, M. & Wijsman, E. M. Power of family-based association designs to detect rare variants in large pedigrees using imputed 

genotypes. Genet Epidemiol 38, 1–9 (2014).
 32. Saad, M. & Wijsman, E. M. Combining family- and population-based imputation data for association analysis of rare and common 

variants in large pedigrees. Genet Epidemiol 38, 579–590 (2014).
 33. Lent, S. et al. Imputing rare variants in families using a two-stage approach. BMC Proc 10, 209–214 (2016).

Acknowledgements
This work was partially supported by NHLBI R21 HL121589 and NHLBI Contract Nos. N01-HC-25195 and 
HHSN268201500001I.

Author Contributions
C.T.L. and L.A.C. conceived the study and supervised the study. X.D., V.F., N.H., H.X. and Y.Z. performed the 
analysis. C.T.L., X.D., V.F., N.H., H.X., Y.Z. and L.A.C. drafted the manuscript. All authors (C.T.L., X.D., V.F., 
N.H., H.X., Y.Z., R.S.V. and L.A.C.) critically reviewed and approved the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-38469-4.

https://doi.org/10.1038/s41598-018-38469-4
https://doi.org/10.1038/s41598-018-38469-4


www.nature.com/scientificreports/

9Scientific RepoRts |          (2019) 9:1800  | https://doi.org/10.1038/s41598-018-38469-4

Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-018-38469-4
http://creativecommons.org/licenses/by/4.0/

	Revisit Population-based and Family-based Genotype Imputation
	Materials and Methods
	Phasing and Imputation Strategies. 
	Haplotype estimation and Inheritance vectors estimation. 
	Large Pedigree Splitting. 
	Genotype Imputation. 
	Study Design and Genotypic Data Simulation. 
	Sequence Simulation. 
	Masking genotypic information: Imputation Scenarios. 
	Evaluation of Imputation Performance. 
	Squared Correlation (r2). 
	Imputation quality score (IQS). 

	Results
	Imputation Accuracy. 
	Ideal scenario for population-based imputation. 
	Comparison among imputation approaches: family-based, population-based and hybrid imputation. 
	Effect of different sources and sizes of reference panel for population-based imputation. 
	Family-based Imputation of first generation individuals who do not have genetic information. 


	Discussion
	Acknowledgements
	Figure 1 Flow chart of the study design.
	Figure 2 Comparison of imputation accuracy with squared correlation and imputation quality score among various imputation strategies under the scenario that all informative people have dense genotypes for family-based imputation and all individuals have s
	Figure 3 Comparison of imputation accuracy with squared correlation, (a) and imputation quality score, (b) among various imputation strategies under the scenario that all informative people have dense genotypes for family-based imputation and all individu
	Figure 4 Comparison of imputation accuracy with squared correlation, (a) and imputation quality score, (b) among various population-based imputation strategies under the scenario that all individuals have sparse genotypes as the backbone for population-ba




