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Changes in rhizosphere bacterial 
communities during remediation of 
heavy metal-accumulating plants 
around the Xikuangshan mine in 
southern China
Dongchu Guo1, Zhouzhou Fan1, shuyu Lu1, Yongjiao Ma1, Xiaohong Nie1, Fangping tong2 & 
Xiawei peng1

Mining and smelting activities are the major sources of antimony (sb) contamination. the soil around 
Xikuangshan (XKs), one of the largest sb mines in the world, has been contaminated with high 
concentrations of sb and other associated metals, and has attracted extensive scholarly attention. 
phytoremediation is considered a promising method for removing heavy metals, and the diversity 
and structure of rhizosphere microorganisms may change during the phytoremediation process. 
the rhizosphere microbiome is involved in soil energy transfer, nutrient cycling, and resistance and 
detoxification of metal elements. Thus, changes in this microbiome are worthy of investigation 
using high-throughput sequencing techniques. our study in Changlongjie and Lianmeng around 
XKs revealed that microbial diversity indices in the rhizospheres of Broussonetia papyrifera and 
Ligustrum lucidum were significantly higher than in bulk soil, indicating that plants affect microbial 
communities. Additionally, most of the bacteria that were enriched in the rhizosphere belonged to the 
proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes. In Changlongjie and Lianmeng, the 
diversity and abundance of the microbial community in the B. papyrifera rhizosphere were higher than 
in L. lucidum. In parallel, the soil pH of the B. papyrifera rhizosphere increased significantly in acidic soil 
and decreased significantly in near-neutral soil. Redundancy analyses indicated that pH was likely the 
main factor affecting the overall bacterial community compositions, followed by moisture content, Sb, 
arsenic (As), and chromium (Cr).

Antimony (Sb) is a metalloid that is widely used in various industrial products such as batteries, alloys, flame 
retardants, and catalysts1. As a result of the extensive use of Sb and the massive impact of anthropogenic activities 
(e.g., mining and smelting activities, industrial uses, combustion of fossil fuels, and spent ammunition), large 
amounts of Sb enter sediments, soils, and water2, leading to elevated Sb concentrations. Elevated soil concen-
trations of Sb reduce crop yields and quality in polluted areas and ultimately affect human health through the 
soil–crop food chain3. Human exposure to Sb damages the liver, lungs, and cardiovascular system4. Sb and its 
compounds are listed as priority pollutants by the U.S. Environmental Protection Agency (USEPA 1979). As 
the world’s leading producer of Sb, China has accounted for approximately 80% of global annual Sb production 
during the last decade2. The Xikuangshan mine (XKS), located in Lengshuijiang City, Hunan Province, is one of 
the largest Sb mines in the world5. Previous studies have shown that the Sb content of soils around XKS ranges 
from 101–5045 mg/kg6, far higher than the average global soil Sb concentration (approximately 1 mg/kg)1 and the 
average concentration in Chinese soil (approximately 1.06 mg/kg)7. However, XKS soil is polluted not only with 
Sb but also other heavy metals such as arsenic (As), mercury (Hg), cadmium (Cd), chromium (Cr), lead (Pb), and 
zinc (Zn)5,8. Levels of As, Sb, Hg, Cd, Cr, Pb, and Zn have been measured in both soil and plant samples, and the 
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heavy metal concentrations in topsoil are generally higher than background values5,8. High levels of toxic metals 
may pose health risks to humans and plants.

Due to the toxicity and the severity of mine pollution, great attention has been focused on phytoremediation 
for heavy-metal removal. Plants can extract, transfer, and stabilize various heavy metals, which makes them suit-
able for removing heavy metals from contaminated environments9. Eichhornnia crassipes has been reported to 
be an ideal accumulator of iron (Fe), manganese (Mn), and copper (Cu) from industrial effluents10. Yoon et al.11 
showed that several native herbaceous plants had the potential to accumulate Pb, Cu, and Zn at a contaminated 
Florida site. Chen reported that Ligustrum lucidum, Broussonetia papyrifera, Boehmeria nivea, and Ailanthus 
altissima can be considered accumulators of major heavy metals (Sb, As, Pb, Cd, and As)12. Currently, however, 
full-scale applications of this technique are very limited13,14. Soil microbes play an important role in the plant–soil 
system and can affect the phytoremediation of metal/metalloid-contaminated soils by influencing the bioavaila-
bility of metals15. A number of microbes, particularly plant-growth-promoting rhizobacteria and arbuscular myc-
orrhizal fungi (AMF), can enhance the biomass yield and/or heavy metal accumulation of plants16,17. As the most 
abundant group of soil microorganisms, bacteria are actively involved in various biogeochemical processes of the 
rhizosphere and bulk soils18. Compared to bulk soil bacteria, rhizosphere bacteria are more directly beneficial to 
root patterns and supply nutrient elements to plants18. At the same time, rhizosphere microbes are affected by the 
release of phytochemicals (i.e., root exudates) of plants19.

Several studies have investigated microbial communities in Sb mines. Xiao et al.20 investigated microbial 
community profiles and their responses to Sb and As pollution in a watershed contaminated by Sb tailing in 
Guizhou and found that several taxonomic groups were positively correlated with the Sb and As extractable 
fractions. Another study investigated the abundance and diversity of the bacterial community across different 
Sb-contaminated soils in XKS and found that the abundance and diversity of the bacterial community varied 
along a metal contamination gradient21. There was even a study on the AMF diversity in the rhizosphere of hyper-
accumulators (ramie) in XKS Sb mines22; however, it detailed only rhizosphere AMF and ignored rhizosphere 
bacteria. Few studies have attempted to investigate the diversity of rhizosphere microbial communities of plants 
in the XKS area.

Based on our previous determination of the enriched heavy metal contents of several plant organs from plants 
around the XKS Sb mines, we identified four strongly heavy metal-accumulating plants, L. lucidum, B. papyrifera, 
A. altissima, and B. nivea12. Considering the importance of soil rhizosphere microbes, it is crucial to under-
stand the rhizosphere bacterial diversity and community structure in soils contaminated with heavy metals. We 
attempted to investigate the changes in the rhizosphere microbial communities of plants in the XKS area. Based 
on our previous study12, we conducted our experiment at the same experimental sites and selected two tree spe-
cies, L. lucidum and B. papyrifera, which are considered to be heavy metal-accumulating plants. The aims of 
the study were to analyze the changes in each plant’s rhizosphere bacterial community at contaminated sites, 
to investigate the factors influencing rhizosphere bacterial community structures and diversity, and to unravel 
the effects of the plants on rhizosphere bacterial communities at XKS. This study will provide a theoretical basis 
for combined remediation using microbes and plants through the descriptions and evaluations of rhizosphere 
microbial communities.

Results
soil properties and concentrations of major heavy metals. Soils from different sites varied in their 
physiochemical properties and heavy metal concentrations, as listed in Tables 1 and 2. For both tree species, the 
rhizosphere soils generally contained higher moisture content than the bulk soils. The organic matter (OM) of all 
samples ranged from 1.06% to 5.29%, and the total nitrogen (TN), total phosphorous (TP), and total potassium 
(TK) were 0.48–1.12, 0.03–0.70, and 9.54–21.02 g/kg, respectively. The soil pH fluctuated widely, from 4.74 (CLR) 
to 7.49 (LLR). There was a clear difference in pH between the two sites, with acidity at Changlongjie (4.74–5.18 
[CBR]) and near-neutral pH at Lianmeng (6.92–7.49 [LBR]). The heavy metal contents of rhizosphere and bulk 
soils differed. At both sites, lower concentrations of Sb and Cr were measured in the rhizospheres of both tree spe-
cies compared to the bulk soil samples. The same phenomenon was also observed with Zn and Cd content, except 
in the bulk and rhizosphere soils of B. papyrifera at Lianmeng. The As concentration was lower in the rhizosphere 

Samples pH MoisCont (%) OM (%) TN (g/kg) TP (g/kg) TK (g/kg)

LLR 7.49 ± 0.09a 28.56 ± 0.83a 4.53 ± 0.79a 0.95 ± 0.012a 0.18 ± 0.030b 16.19 ± 0.315b

LLB 7.43 ± 0.03a 23.53 ± 0.96bc 4.28 ± 0.33a 0.93 ± 0.005a 0.20 ± 0.003b 21.02 ± 0.192a

LBR 6.92 ± 0.08b 24.83 ± 0.12b 3.66 ± 0.18a 0.68 ± 0.014c 0.29 ± 0.003a 11.91 ± 0.298c

LBB 7.34 ± 0.04a 22.24 ± 0.76c 2.61 ± 0.28b 0.78 ± 0.016b 0.30 ± 0.001a 9.54 ± 0.106d

CLR 4.74 ± 0.04b 25.20 ± 0.56a 2.87 ± 0.48b 1.12 ± 0.032a 0.47 ± 0.010a 14.82 ± 0.249b

CLB 4.58 ± 0.02c 23.55 ± 0.37b 2.88 ± 0.11b 0.83 ± 0.003b 0.23 ± 0.015b 10.73 ± 0.128c

CBR 5.18 ± 0.09a 23.77 ± 0.18b 1.06 ± 0.02c 0.48 ± 0.007d 0.70 ± 0.043a 16.10 ± 0.137a

CBB 4.75 ± 0.02b 22.20 ± 0.58c 5.29 ± 0.33a 0.76 ± 0.010c 0.03 ± 0.001b 10.45 ± 0.127c

Table 1. Physicochemical parameters of the soil. The first letter in the sample name represents the sampling 
area; the second represents tree species; the third indicates rhizosphere or bulk soil; C, Changlongjie; L, 
Lianmeng; L, Ligustrum lucidum; B, Broussonetia papyrifera; R, rhizosphere; B, bulk soil. Data are reported as 
means ± standard deviations (n = 3). Different letters indicate significant differences between the four samples 
at same site (p < 0.05).
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of B. papyrifera than in bulk soil, whereas that in the L. lucidum rhizosphere was greater than in bulk soil. The Pb 
concentration displayed no obvious patterns between rhizosphere and bulk soils. Compared to global soil back-
ground values, the levels of Sb, As, Cr, and Cd contamination were more severe at our study sites.

taxonomic distribution and comparisons between the two sites. The rarefaction curves for bacte-
rial communities indicated that variation in operational taxonomic unit (OTU) density within the soil samples 
was sufficiently captured at the sequencing depth used (Fig. S1). Therefore, the data were sufficient to allow anal-
yses of microbial communities. There were 609,268 valid reads identified for all soil samples collected (including 
repetition) through the Illumina MiSeq platform after filtering out the low-quality reads and chimeras, and trim-
ming the adapters, barcodes, and primers (Table S2). These reads were clustered into 3,285 bacterial OTUs and 
37 bacterial phyla, whereas only 16 phyla presented a sum abundance greater than 99% and approximately 1% of 
the sequences remained unidentified.

The soil bacterial diversity and abundance were evaluated in the samples by estimating OTUs at a 3% sequence 
dissimilarity level. The Chao 1 index was used as an indicator of species richness (Fig. 1 and Table S1). The PD_
whole-tree index was used as an indicator of phylogenetic diversity. The Shannon and observed_species indices 
were used to show the diversity of the microbial community in each sample. The results indicated that bacterial 
richness and diversity differed between the two sites. There were also differences between the rhizosphere and 
bulk soils of each tree species, except in the LBR and LBB samples. Notably, the differences between the rhizos-
phere and bulk soil samples of the tree species were greater at Changlongjie than at Lianmeng. The CBR sample 
showed the highest overall bacterial diversity and richness. The above results indicate that soil biodiversity dif-
fered between sampling locations, and different soil properties and tree species had an effect on bacterial diversity 
and richness.

The bacterial community composition of each sample at the phylum level is shown on the right side of Fig. 2. 
The dominant taxa across all soil samples were Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria, and 
Gemmatimonadetes; these groups accounted for more than 80% of the bacterial phyla sequenced. The rela-
tive abundance of each bacterial phylum indicates that each bacterial group responded to differences between 
the sites. The differences between the two sites can be seen in Figs 1 and S2. More Proteobacteria, Chloroflexi, 
Actinobacteria, and Nitrospirae were detected in Lianmeng samples than in Changlongjie samples. By compari-
son, Acidobacteria were relatively more abundant in Changlongjie samples than in Lianmeng soil samples. This 
may be closely related to the acidic environment in the Changlongjie soils23.

The cluster tree on the left side of Fig. 2 is based on the Bray-Curtis distances. The branches indicate the 
distances of the genetic relationships among all samples. The bacterial community structure was classified into 
two large groups with good similarity between parallel samples. The first group was composed of the samples 
from Lianmeng, with a pH range of 6.92–7.49. The second group was composed of samples from Changlongjie, 
with a pH range of 4.58–5.18. The bacterial communities at the two sites were clearly separated, likely due to the 
difference in pH.

Bulk soils vs. rhizospheres of the different plant species at each site. Principal component anal-
ysis (PCA) was used to visualize differences in community structure between rhizosphere and bulk soil samples 
(Fig. 3). Principal components 1 and 2 explained 45.61% and 12.44% of the total sample variability, respectively. 
The results indicated a relatively clear separation between the samples from the two sites. However, compared 
to those at Changlongjie, the rhizosphere and bulk soil samples of both tree species at Lianmeng were closer 
together on the PCA plot. This is may be due to the difference in pH values between the two sites. The analysis 
revealed clear differences between the bacterial community structures of rhizospheres and bulk soils.

For each site, significance analyses of the bacterial community were conducted to determine the selective/
enrichment effects of the rhizosphere in each tree stand (Fig. 4). These analyses were performed at the class level 

Samples Sb (mg/kg) As (mg/kg) Pb (mg/kg) Zn (mg/kg) Cr (mg/kg) Cd (mg/kg)

LLR 24.63 ± 1.68b 126.7 ± 34.44a 31.12 ± 1.04a 167.68 ± 15.79b 174.62 ± 2.84b 1.04 ± 0.04b

LLB 117.46 ± 13.81a 88.66 ± 32.08b 41.79 ± 1.45b 223.93 ± 11.63a 205.38 ± 13.95a 2.58 ± 0.12a

LBR 17.36 ± 1.13b 58.78 ± 4.63b 35.84 ± 2.93b 141.62 ± 2.73a 171.40 ± 4.28b 0.54 ± 0.02a

LBB 51.19 ± 6.04a 85.07 ± 0.99a 25.34 ± 1.14a 123.28 ± 5.69b 194.80 ± 4.60a 0.12 ± 0.03b

CLR 20.96 ± 2.49b 165.26 ± 11.53a 33.50 ± 2.20a 206.69 ± 5.64b 291.44 ± 1.75a 0.78 ± 0.06b

CLB 150.18 ± 6.37a 127.47 ± 8.86b 27.83 ± 2.14b 230.07 ± 21.15a 291.96 ± 3.03a 1.27 ± 0.07a

CBR 1.54 ± 0.19b 65.36 ± 2.82b 20.91 ± 1.75b 102.32 ± 12.56b 173.33 ± 14.82b 0.04 ± 0.03b

CBB 32.07 ± 3.93a 130.39 ± 7.13a 31.19 ± 1.98a 152.72 ± 1.95a 240.55 ± 6.41a 0.78 ± 0.08a

Global soil background 1 6 35 90 70 0.35

Multiple 1.54–117.46 9.80–27.54 0.60–1.19 1.14–2.56 2.45–4.17 0.11–7.37

Table 2. Concentrations of heavy metals in the soil samples. “Multiple” is the heavy metal concentrations in all 
samples, expressed as a range calculated from the heavy metal content of each sample/Global soil background 
value. Data are reported as means ± standard deviations (n = 3). Different letters indicate significant difference 
between the rhizosphere and bulk soil at the 0.05 level. Note: The English in this document has been checked 
by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.
textcheck.com/certificate/606Jrh.
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because the bacteria were not fully identified at other levels. We selected the bacterial taxa with an average abun-
dance ≥1% for analyses using ANOVA (P > 0.05 for each taxon tested). At the Lianmeng site, the rhizosphere 
samples of L. lucidum were significantly enriched in Alphaproteobacteria, Thermoleophilia, Acidimicrobiia, 
Sphingobacteria, and OPB35_soil_group. The B. papyrifera rhizosphere samples were significantly enriched in 

Figure 1. Number of sequences analyzed and diversity/richness indices of the 16S rRNA bacterial libraries 
obtained from clustering at 97% identity.

Figure 2. (Left) The UPGMA tree showing clusters of bacterial communities based on weighted UniFrac with 
100% support at all nodes. (Right) The bacterial communities and their diversity at the phylum level in all soil 
samples. Samples were named with letters indicating their collection location (L, Lianmeng; C, Changlongjie), 
tree species (L, L. lucidum; B, B. papyrifera), substrate (R, rhizosphere; B, bulk soil), and number of replications 
(1–3).
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Alphaproteobacteria, Acidobacteria, Betaproteobacteria, Gammaproteobacteria, Solibacteres, Sphingobacteria, 
and OPB35_soil_group. The rhizospheres of both plants were significantly enriched in Alphaproteobacteria, 
Sphingobacteria, OPB35_soil_group, and Betaproteobacteria. At the Changlongjie site, the L. lucidum rhizos-
phere samples were significantly enriched in Betaproteobacteria and Sphingobacteria. The B. papyrifera rhizos-
phere samples were significantly enriched in Betaproteobacteria, Subgroup_6, Blastocatellia, Nitrospira, S085, 

Figure 3. Principal component analysis of bacterial 16S rDNA sequences of all samples based on total OTU 
level.

Figure 4. Comparison of the relative bacterial abundance in rhizospheres and bulk soils. The error bars show 
the calculated standard deviation in triplicate samples and asterisks (*) indicate categories significantly more 
abundant in the rhizosphere (P < 0.05).
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KD4–96, TK10, and Subgroup_17. The rhizospheres of both plants at Changlongjie were significantly enriched 
in only Betaproteobacteria.

Relationships between bacterial communities and environmental variables. Redundancy anal-
ysis (RDA) showed that the relative abundance of bacteria was affected by both growing position and soil prop-
erties (Fig. 5). The first two axes explained 66.50% and 12.88% of the total variance, respectively. The strongest 
determinant of bacterial communities was pH, followed by Cr, Sb, As, Zn, and moisture content. The samples at 
Lianmeng were positively correlated with pH, whereas the samples from Changlongjie, except for CBR, were neg-
atively correlated with pH. The first component of the RDA (RDA1) separated Lianmeng soil samples from the 
four Changlongjie soil samples. These results imply a clear difference in bacterial abundance at the two sites. In 
addition, the bacterial abundance of the three rhizosphere samples (LLR, LBR, and CLR) was positively correlated 
with moisture content, whereas the distribution in bulk soils was relatively dispersed. Separately, the abundance 
in Lianmeng samples was positively related to pH and moisture content, and the abundance in Changlongjie 
samples was positively related to Cr, Sb, and As. Thus, ecological habitat had a significant effect on bacterial abun-
dance. Soil pH had a positive effect on Latescibacteria and a negative effect on Acidobacteria and Firmicutes. Soil 
moisture had a positive effect on Proteobacteria, Bacteroidetes, and Planctomycetes. Soil Sb had a negative effect 
on Actinobacteria. As and Zn had negative effects on Gemmatimonadetes and Nitrospirae.

Discussion
Soil pollution with Sb from mining and manufacturing has become increasingly severe6. The pollution from the 
XKS Sb mine is due not only to Sb, but also As, Cd, Cr, Pb, and other heavy metals. Compared to traditional meth-
ods of soil remediation for heavy metals, such as physical and chemical approaches, phytoremediation is consid-
ered effective and more environmentally friendly24. In this study, successful plant establishment was observed in 
the XKS area after ecological restoration for more than 10 years. The plant species had diverse effects in altering 
the soil properties and heavy metal concentrations. With phytoremediation practice, the microbial diversity in 
the rhizosphere was remarkably changed.

We investigated the composition and diversity of the bacterial communities of L. lucidum and B. papyrifera at 
two different sites. We observed clear differences between the two sites as well as differences between bulk soil and 
rhizosphere samples (Fig. 3), indicating that changes in the bacterial community structure were related to plant 
species and soil characteristics25. By comparing the bacterial communities in bulk soils or rhizospheres at the phy-
lum level for the same tree species at two sites, we demonstrated that these communities were impacted by their 
ecological habitats. For example, Acidobacteria communities were more abundant in L. lucidum rhizospheres at 
Changlongjie than at Lianmeng, and Nitrospirae communities were more abundant in B. papyrifera bulk soils at 
Lianmeng than at Changlongjie. RDA revealed that bacterial community structures were influenced by pH, Cr, 
Sb, As, Zn, and moisture content, but pH was the dominant factor. Previous studies have shown that pH is a key 
factor in the distribution of bacterial populations26,27 and bacterial community diversity is highest in soils with 
near-neutral pH and lowest in soils with pH < 521. In this study, pH values differed between Changlongjie (4.74–
5.1) and Lianmeng (6.92–7.49). It has been suggested that pH affects bacterial survival directly and/or by con-
trolling ancillary environmental parameters that are closely related to soil pH, such as cationic metal solubility28. 
Many bacteria have near-neutral intracellular pH levels, and their growth is sustainable over a relatively narrow 
pH range (3–4 pH units)29. Indeed, pH had a significant effect on the bacterial communities in this study (Fig. 5). 

Figure 5. Redundancy analysis ordination diagram of bacteria in relation to measured physicochemical 
parameters and major heavy metals for all samples.
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The effects of Cr on the bacterial communities at XKS were greater than the effects of Sb and As, which has not 
been reported in previous studies on the structure of XKS microbial communities. One potential explanation is 
that the metal speciation of Cr affected the organic acid exudation rate and the composition of root exudates, and 
the root exudates greatly affected the microbial activity and bacterial communities in the soil30,31.

Plant species, as well as ecological habitats, have a substantial influence on the structure of 
rhizosphere-associated microbial populations. The influence of plant species has been clearly shown in several 
studies. Kowalchuk reported that plant species impact the rhizosphere bacterial communities of Cynoglossum 
officinale and Cirsium vulgare32. Uroz et al.33 also reported the effects of plant species on rhizosphere bacterial 
communities. The rhizosphere, a unique microenvironment in terrestrial ecosystems, is described as the portion 
of the soil in which microorganism-mediated processes are under the influence of the root system19. The biomass 
and activity of microorganisms are higher in the rhizosphere than in bulk soils, owing to the exudation of com-
pounds by plant roots34. Indeed, in our study, the diversity (Shannon index) and abundance (Chao1 index) of 
rhizosphere bacterial communities under each tree species were greater than in the bulk soils (Fig. 1), indicating 
that the trees influence the structure and diversity of the microbial community. Sun et al.35 also reported similar 
results in studying changes in the rhizosphere microbial communities of Pennisetum purpureum, Typha angusti-
folia, and Alnus cremastogyne in copper mine tailings in China.

In parallel, Hinsinger et al.36 reported that plants can regulate rhizosphere pH, and a major process con-
tributing to root-induced pH changes in the rhizosphere is the release of charges carried by H+ or OH−. The 
root-mediated pH changes in the rhizosphere depend on constraints from the enviroment37. In this study, 
we found that the soil pH in the rhizosphere of B. papyrifera was obviously elevated compared to bulk soil in 
Changlongjie, whereas B. papyrifera rhizosphere pH was significantly reduced in Lianmeng. These pH changes 
were not observed in L. lucidum. The results indicate that B. papyrifera regulates the rhizosphere soil pH better 
than L. lucidum. These root-mediated pH changes affect the bioavailability of many nutrients and toxic elements 
and improve the growth environment of rhizosphere microorganisms. This indicates that B. papyrifera can create 
better survival conditions for itself and its rhizospheric microbes, in addition to playing a more significant role in 
the restoration of heavy metal-contaminated soil.

Each plant species is thought to select specific microbial populations38. The compartment effect (i.e., rhizos-
phere vs. bulk soil) was used to determine the selective effects of the rhizosphere habitat on bacteria (Fig. 4). The 
sequences generated from the Lianmeng and Changlongjie soil samples were analyzed independently. The rhiz-
ospheres of both tree species at Lianmeng were enriched in Alphaproteobacteria, Sphingobacteria, and OPB35_
soil_group, whereas the other bacteria enriched in the rhizosphere differed between the two species (Fig. 4). At 
Changlongjie, the rhizospheres of both tree species were enriched in Betaproteobacteria only. This indicates that 
the selection of rhizosphere microflora by these two tree species is different. Uroz et al.33 reported the same results 
when comparing the rhizosphere selectivity of beech and Norway spruce trees.

Notably, most bacteria enriched in the rhizosphere belonged to the Proteobacteria, Acidobacteria, 
Actinobacteria, and Bacteroidetes. Researchers have repeatedly demonstrated that Proteobacteria may be the 
most metal-tolerant organisms found at metal-contaminated sites39,40. Their ecological and metabolic abilities 
have been reported to be adaptable to the extreme environment of mine tailings and to reduce the toxicity of heavy 
metals41,42. Acidobacteria are disintegrators of organic matter and are involved resilience in nutrient-deficient 
environments43. At the same time, Actinobacteria are related to defense against soil diseases and improvement of 
root nodulation efficiency44. Bacteroidetes are involved in the degradation of high-molecular-weight organic mat-
ter in the rhizosphere45. These rhizospheric microorganisms are involved in the toxicity reduction of heavy metals 
in soil, the prevention and control of soil diseases, the improvement of root nodulation efficiency, and adaptation 
to the extreme environment of mine tailings. The resistance of plants can be promoted in extreme environments, 
which will be helpful for phytoremediation. Therefore, we can artificially add microbes that are enriched in the 
rhizosphere to the rhizospheres of other plants, which will promote plant repair. This has been done previously in 
heavy metal-contaminated rice fields46.

The effects of heavy metals on bacterial communities cannot be ignored. Cr, Sb, and As affected the distri-
bution of bacterial communities, and the levels of each differed between the plant rhizospheres and bulk soils. 
At both sites, Sb and Cr levels were lower in the rhizospheres of both tree species than in bulk soils, whereas As 
content was greater in the rhizosphere of B. papyrifera than in bulk soil, but lower in the rhizosphere of L. lucidum 
than in bulk soil. The diversity of the bacterial community was somewhat greater in the B. papyrifera rhizosphere 
than in that of L. lucidum (Fig. 1). The bacterial diversity index is negatively correlated with heavy metals in for-
est soils47. Due to the decreased concentrations of heavy metals in the rhizosphere, the bacterial diversity may 
showed an obvious increasing trend48.

Chen12 demonstrated that the two tree species can be used as heavy metal-accumulating plants at the two sites; 
thus, the reduction in heavy metals in the rhizosphere may be due to absorption by plants.

This study considered the effects of tree species and XKS sites on bacterial communities. We concluded that 
the bacterial community structure was influenced by both ecological habitat and tree species. However, the effects 
of each on bacterial communities differed between acidic and near-neutral soils. In addition, B. papyrifera may 
serve as a better accumulator plant than L. lucidum at Changlongjie. This speculation is based on the evidence that 
the bacterial diversity of the B. papyrifera rhizosphere was greater than that of the L. lucidum rhizosphere, and lev-
els of Sb, As, and Cr in B. papyrifera rhizospheres were lower than those in bulk soil, although there was a similar 
trend in Sb and Cr, but not As, in the L. lucidum rhizosphere. However, this is only a preliminary evaluation based 
on bacterial community structure and heavy metal content. Further research elucidating the mitigation effects 
of the tree species and the functions of the bacteria that were significantly enriched in the rhizosphere is needed.
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Conclusions
We observed the rhizosphere bacterial communities of heavy metal-accumulating plants at two sites near XKS 
in Lengshuijiang City, Hunan Province. By analyzing the changes of plant rhizosphere microflora in two regions, 
we found that plant species and ecological habitats cooperatively shaped the structure of microbial communi-
ties in the rhizosphere. In particular, B. papyrifera modified the soil pH and several heavy metal levels in the 
rhizosphere. Also, the diversity and abundance of the microbial community in the B. papyrifera rhizosphere 
was higher than in bulk soil and other plants. Therefore, we hypothesize that B. papyrifera may be more suit-
able for phytoremediation than L. lucidum at these two sites. We also made a preliminary assessment of the 
significant rhizobacterial communities of each tree species at the two sites to provide a theoretical basis for joint 
restoration using plants and microbiota. Most bacteria enriched in the rhizosphere belonged to Proteobacteria, 
Acidobacteria, Actinobacteria, and Bacteroidetes. These bacterial groups have been reported to be associated with 
heavy metal resistance, decomposition of organic matter, enhancement of root nodulation efficiency, and adap-
tation to extreme environments. In future studies, we should attempt to isolate these bacteria and explore their 
functions in phytoremediation. This will provide a theoretical basis for combined remediation using microbes 
and plants. Finally, we found that the effects of Cr on the bacterial communities at XKS were greater than the 
effects of Sb and As, which has not been reported in previous studies.

Materials and Methods
site location and sample collection. The study site is located at the XKS Sb mine, Lengshuijiang City 
(27°30′49″–27°50′38″N, 111°18′57″–111°36′40″E), Hunan Province, Southwest China (Fig. 6, generated by 
Photoshop CC 2015). The mine is one of the world’s major producers of Sb. It is renowned as the “world’s anti-
mony capital”. In this region, mining and smelting activities have resulted in the pollution of soil, water, and 
sediments with Sb and other metals over the past approximately 100 years2. In November 2015, rhizosphere and 
bulk soil samples from L. lucidum and B. papyrifera were collected from two sites near the XKS mine, Lianmeng 
and Changlongjie. The rhizosphere soil samples were collected from soils adhering to plant roots (ca. 1–2 mm 
to roots) from different locations within each plant stand and systematically pooled together. Bulk soil ~50 cm 
from the trees was collected using a soil corer at soil depths of 0–20 cm. Each sample was randomly collected 
using the five-point sampling method, then pooled together into one composite sample. We set up three plots 
(20 × 20 m) for each tree species at each site. We took one rhizosphere and one bulk soil sample from each plot; 
the three soil plots were three repetitions of one sample. A total of 24 composite samples were collected (two tree 
species × three replicates × two sites × [rhizosphere + bulk soil]). Samples were encoded with letters indicating 
their collection location (L, Lianmeng; C, Changlongjie), tree species (L, L. lucidum; B, B. papyrifera), and sub-
strate (R, rhizosphere; B, bulk soil).

Each soil sample was collected and passed through a 2-mm sieve, then stored in a sterile polyethylene bag 
at 4 °C for measuring physicochemical parameters, and at −20 °C for DNA extraction.

physicochemical analyses of soil and determination of target metals. Soil moisture content, 
pH, organic matter (OM), total nitrogen (TN), total phosphorus (TP), and total potassium (TK) were assessed. 

Figure 6. Location of the two sampling sites of soil samples around XKS of China. Map in this figure was 
generated by sofware Photoshop cc2015.
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Moisture was estimated using the oven dry-weight method. Soil pH was measured using a glass electrode pH 
meter (Sartorius PB-10; Sartorius Scientific Instruments Co., Ltd., Beijing, China) in a suspension of 1 g soil in 
5 mL distilled water. OM content was determined by the Walkey and Black method49. The determination of TN, 
TP, and TK were carried out in accordance with the national standards of the People’s Republic of China. Briefly, 
0.2 g of soil was added to 5 ml of perchloric acid and 5 ml of hydrofluoric acid for low-temperature digestion, 
followed by determination of TP and TK by the Mo-Sb colorimetric method and the flame photometer method, 
respectively. TN was extracted from 0.2 g of soil by digestion with 5 ml of concentrated sulfuric acid, and then 
determined by the Kjeldahl method. According to Wilson50, heavy metal contaminated soil was analyzed by 
digestion of 0.5 g of soil with 10 mL of concentrated HNO3, following the microwave-nitric acid method. The 
concentrations of Sb, As, Pb, Zn, Cr, and Cd in the soil samples were measured using inductively coupled plasma 
optical emission spectrometry.

High-throughput sequencing of the V3–V4 regions of 16S rRNA genes. Total genomic DNA was 
extracted from each soil sample using a FastDNA spin kit (MP Biomedicals, Santa Ana, CA, USA) following the 
manufacturer’s protocol. The concentration and purity of the extracted DNA were confirmed using 1% agarose 
gel electrophoresis.

The hypervariable V3–V4 region of the bacteria 16S rRNA gene was amplified using the 338 f/806r primer 
set (338 f: 5′-ACTCCTACGGGAGGCAGCA-3′, 806r: 5′-GGACTACHVGGGTWTCTAAT-3′)51. These primers 
contain a set of 8-nucleotide sequences unique to each sample. The PCR program was as follows: a 5-min initial 
denaturation at 95 °C, 25 cycles at 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s, with a final extension at 72 °C 
for 10 min. PCR reactions were performed in triplicate. The high-throughput sequencing of the 16S rRNA ampli-
cons was carried out on an Illumina Miseq PE300 sequencing platform (Illumina, Inc., San Diego, CA, USA) at 
Allwegene Tech, Ltd. (Beijing, China). All datasets were analyzed using QIIME, based on sequence length, quality, 
primers, and tags; the raw sequences were selected and the low-quality sequences were removed52. High-quality 
sequences were trimmed using the Illumina Analysis Pipeline version 2.6. The SILVA Classifier tool was used to 
classify the unique sequence set into operational taxonomic units (OTUs)53, with a threshold of 97% identity54.

Data analyses. All sequences were analyzed using the bioinformatics platform Mothur (v.1.33.0)55. The 
similarity of bacterial communities among different soil samples was determined using both weighted and 
unweighted UniFrac. PCA based on weighted UniFrac distances was performed to quantify differences in com-
munity composition at the OTU level. Rarefaction analyses were used to measure whether sequences sampled 
were sufficient to capture the total richness at a genetic distance of 0.03. Shannon, Chao1, observed_species, and 
the PD_whole-tree indices were determined for the diversity and richness of the bacterial community. RDA was 
used to identify the effects of environmental factors on bacterial communities, based on a relative abundance 
greater than 1% of bacterial communities at the phylum level, with Canoco 5.0 software. Before we did the RDA 
analysis, we unified the units of various environmental factors. The effects of tree species on the abundance of 
the different taxa at the class level were tested using analysis of variance (ANOVA) at a threshold level of P = 0.05 
using IBM SPSS Statistics v.19.0 (IBM Corp., Armonk, NY, USA).
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