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Spectral-Topological Superefficient 
Quantum Memory
N. s. Perminov & s. A. Moiseev

In this work, we propose a universal (spectral-topological) approach towards the realization of the 
quantum memory, consisting of a small number of controlled absorbers, providing a super-high 
quantum efficiency of more than 99.9% required for practical quantum information science. In this way, 
we have found a series of spectral-topological matching conditions for the spectroscopic parameters of 
the absorbers which ensure the maximal efficiency in the broadband spectral range due to controlling 
the relative position (topology) of the eigenfrequencies in the absorbers spectrum. We also discuss the 
implementation of the proposed approach using the modern microwave and optical technologies.

The development of the optical quantum memory (QM) is of decisive importance for quantum information 
technologies1–4. Impressive experimental results on the way to create the efficient QM were achieved in the last 
decade5–7. At the same time, the further improvement of the quantum efficiency (QE) to the values extremely 
close to 100% remains a complicated unsolved problem. In addition to a number of related tasks, first of all the 
solution of this problem requires the creation of the high performance quantum interface for the reversible stor-
age of photons in long-lived coherent systems.

One of the promising approaches for creating multimode QM is based on the reversible photon echo on the 
resonant ensembles in free space8,9 and high-Q resonators10–14. Owing to the enhancement of the interaction 
between the resonance system of atoms and light, it was possible to increase considerably the QE and decrease the 
working number of atoms as it was firstly demonstrated in works12,15. Herein, the increase of the QE in a wider 
spectral range is possible by providing the additional spectral matching conditions11,16,17. The general solution of 
this problem remains unknown that strongly hampers the search for practical ways of creating the high perfor-
mance broadband multi-qubit QM.

In this work, based on the multiresonator QM18,19, we show that a system of a small number of resonant 
absorbers (quantum dots, artificial atoms, miniresonators etc.) makes it possible to implement the super-high 
spectral quantum efficiency and fidelity (QEF) larger than 99.9% in the working frequency band. We found that 
so high QEF could be realized in the vicinity of the parameters, where a topological restructuring of the sys-
tem spectrum and a change in the number of observed resonance lines are recorded. In comparison with the 
well-known quantum storage techniques in continuous media, our scheme does not require complex preparation 
of the storage media9 and only needs adjustment of a small number of controlled parameters. In contrast to the 
previous works10,19,20, where only one parameter is optimized, in this work we solve the problem of optimizing all 
the available parameters of QM by using the spectral-topological (ST) matching condition. The possible experi-
mental implementations of the predicted super-high QEF are discussed for the optical and microwave schemes 
with realistic experimental parameters.

Results
Cascade QM with controllable spectrum. The general theoretical concept corresponds to the so-called 
impedance matching photon echo QM in a single mode cavity10,11,16,21, which was further extended to ring reso-
nator systems connected with the nanofiber22 and other schemes17–19,23. The principle cascade scheme of ST QM 
(Fig. 1) with total control of spectral characteristics consists of several absorbers (microresonators) connected 
with a common broadband cavity, which is coupled to an external waveguide, where one can also control both 
coupling with the absorbers and its frequencies. We assume that the absorbers are characterized by a discrete 
system of narrow resonant lines. Herein, we generalize the realization of so-called AFC-protocol10,20, where the 
resonant atomic frequencies constitute a periodic structure with spectral period ∆. In this case, the excited atomic 
coherence leads to the echo pulse emission due to automatic atoms rephasing with time delay τ π= ∆2 /  after the 
entrance of an input signal field.
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Using the input-output formalism of quantum optics24 for the studied system, we obtain the equations for the 
excited modes of absorbers sn(t) and common cavity field a(t):

γ δ∂ + ∆ + + − =⁎i s t g a t F t[ ] ( ) [ ] ( ) ( ) 0, (1)t n n n n n
0

∑κ κ∂ + − =a t g s t a t[ /2] ( ) ( ) ( ),t n n n in
0

where ∫π ν= ν
ν

− −a t d e f( ) [2 ]in
i t1/2  is the input pulse, fν is the spectral profile of the input pulse, for which the 

normalization condition for the single-photon field is fulfilled ∫ ν| | =νd f 12 , ν is the frequency counted from the 
central frequency of the radiation ω0, ∆n is the frequency detuning of n–th absorber, ∈ − …n N N{ , , }\{0}, γn is 
the attenuation decrement (decay constant) of the n-th absorber coherence and Langevin force δFn(t) associated 
with the relaxation25, κ is the coupling coefficient of the external waveguide with the common cavity mode, gn

0 is 
the coupling constant of the common mode and n-th absorber. Below we ignore the Langevin forces δFn(t) in Eq. 
(1) by focusing only to the searching of QEF in the studied scheme and we obtain the output field 

κ= −a t a t a t( ) ( ) ( )out in  in terms of the transfer function (TF)26 ν ν ν=  S a a( ) ( )/ ( )out in  where

ν ν ν= + −S iP iP( ) (1 ( ))/(1 ( )), (2)

ν ν κ γ ν= + ∑ ∆ − −P g i( ) 2 / /( )n n n n , ∫π ν ν= ν− −
a t d e a( ) [2 ] ( )in out

i t
in out,

1/2
, , κ| | =g g2 /n n

0 2  is the effective 
line width of a separate absorber inside the common broadband resonator (for γn = 0). The TF completely deter-
mines all the spectral characteristics of the system and its eigenfrequencies are the poles of TF. In the general case TF 
(2) has a complicated spectral property due to the strong interaction of the absorbers in the common cavity. 
However, we show that TF can provide a nearly ideal QM under certain condition. In the next part, for the optimi-
zation procedure, we will use the approximation γn = 0, which has a negligible effect on the parameters for γ  1n .

Spectral-topological matching conditions. Introducing the spectral delay time ν ν ν= −T i S( ) Arg( ( ))/  
on frequency ν, we can rewrite transfer function (TF) in the form ν ν= | | ν νS S e( ) ( ) i T( ), which is a natural charac-
teristic of the studied linear device in the theory of filters26. From here we can formulate the principle for obtain-
ing the high performance broadband QM: delay time (rephasing time) is the same for all frequencies in the given 
spectral range Ω, i.e.,

ν ν≅T T( ) ( ), (3)0

which provides perfect rephasing of all the spectral components for any input light field, where ν0 is the central 
frequency of the given range Ω (below we assume ν0 = 0). In particular ν| | =S( ) 1 and ν =T T( ) (0) for an ideal 
AFC protocol characterized by the fixed storage time T(0).

It was found earlier that the condition (3) can be fulfilled with the accuracy to terms ~ν4 11,16 and ~ν6 17 in the 
vicinity ν = 0 that limits anyway the spectral range of the high QE. Below we show that the high QE can be 
obtained in a wider spectral range by the fulfillment of the equality (3) with higher accuracy. Imposing the larger 
number of conditions on physical parameters of the system (a set ∆g{ , }n n ), by using the Taylor decomposition of 
T(ν), we consider (3) as an equality in series ν ν− ≅ ∑ →α

αT T H( ) (0) 0:
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Figure 1. Principle cascade scheme of ST QM: absorbers are connected to the external waveguide through a 
common cavity with the ability to control the couplings and frequencies of the absorbers.
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where ρ αH( )q  is the discrepancy function, α ∈ … −N{0, , 4 1} is determined by the maximal number of free 
parameters of the system. Thus, the fulfillment of the requirement (4) provides high accuracy of equality (3) for 
the widest possible spectral range.

In analytical calculations we consider the case of small intrinsic losses of resonant absorbers (for example 
high-Q mini-resonators) under the assumption of the fulfilment of the regime “broadband cavity”, when 

κ γ〈∆ − ∆ 〉 ≤ 〈∆ − ∆ 〉+ + N / / 1n n n n n1 1 . With allowance for the spectral symmetry of QM ( ν ν= −T T( ) ( )), 
we find the conditions = ∆ = −∆− −g g ,n n n n which facilitate the creation of high QE in the broad frequency 
band. The numerical simulations confirmed this property of the QM, although the analytical proof of necessity 
condition of the spectral symmetry for maximum QE requires additional studies. By using (2) with γ = 0n  in T(ν) 
in the direct analytical calculation of Eq. (4), we find the following algebraic system of 2N spectral-topological 
matching conditions on the parameters ∆g{ , }n n :
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 (which is equivalent to (4)) and Bm are 

Bernoulli numbers ( = = …B B1, 1/6,0 2 ). For optimization in a relatively broad frequency band, we assume 
that q in ρq is equal to the number of free parameters, and for optimization in a fairly wide frequency band, we put 

= −q N2 1, which leads us to the spectrally flat function T(ν) in the central region of the frequency interval and 
on its borders.

In fact, the conditions (5) are the statement of the problem of the multiparametric optimal control of spectral 
properties of the QM written in the algebraic form that makes it possible to apply algebraic geometry27–29 to 
search for the ways to improve the QM. In addition, the ST matching conditions (5) can be rewritten through 
the spectrum {En} (eigenfrequencies of the system) and can be considered as the conditions for optimizing the 
spectrum of TF30. Below we show that the conditions of the implementation of highly performance broadband 
QM (3) are associated with the change of the topology of its spectrum and are fulfilled near the point of the 
spectral-topological transition.

Topological transitions in the QM spectrum. For the case of the 2N-particle system, when the initial 
frequency modes are detuned equidistantly ∆ = ∆ ±± n( 1/2)n  (further ∆ = 1, i.e., the consideration is per-
for me d in  unit s  of  ∆) ,  and  t he  l ine  widt hs  of  mo des  are  t he  s ame g n  =  g ,  we  f ind 

ν ν ν= ∑ − −=
−P g n( ) 2 [( 1/2) ]n

N
1

2 2 1. Here there is only one free parameter g and, for simplicity, we demonstrate 
the optimization method in a relatively broad frequency band: we put ρ ρ= 1 that leads to single equation for gcr 
(such optimization leads to the previously studied matching conditions10,11). From (5) for this case and arbitrary 
N, we obtain the following exact relationships for the optimal quantity g = gcr and the time T(0) of the signal 
recovery:
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where ψ x( )m( )  is the polygamma function. Expanding (6) over 
N
1  we have +

π

π∆
 1

g

N
3cr
2  and 

−
π

π∆
 ( )T(0) 1

g

N

2 2cr
2

2 2 . We see that for optimal QM (at g = gcr), the difference in time of the echo signal emission 

= +π

π∆ ( )T(0) 1
N

2 1
2  with the case of the absorbers containing an a quite large number of frequencies = π

∆
T(0) 2  

(for N 10)10,20 is negligible. But at lower number of the absorbers (N < 10) this difference becomes essential. 
F r o m  ( 6 )  f o r  N  =  2  w e  o b t a i n  t h e  f o l l o w i n g  s e t  o f  s p e c t r o s c o p i c  d a t a 
∆ = ± . ∆ = ± . ≅ . ≅ .± ± ± ±g g{ 0 5, 1 5, 0 37, 0 37}1 2 1 2  which corresponds to the efficient storage of narrow-

band signal obtained in the numerical calculation.
We observed the effect of line merging which reveals the spectral-topological transition in the studied system 

in the region of the parameters (g, ∆n) for which the conditions for achieving a high spectral quantum efficiency 
are obtained. Physically, the line merging effect demonstrates a sufficiently strong coupling of the absorbers with 
the common cavity mode which provides large spectral shifts and merging of the original resonant lines. The 
numerical analysis of the eigenfrequency modes (2) carried out for the broadband common cavity mode 
( κ∆ / 1) and weak relaxation (γ ∆ / 1) shows the curve ν ν= + +T v T A O( )/ (0) 1 ( )2

2 3  for the case g = 0.37 
(from (6)). The spectral behavior of T(v)/T(0) characterizes the accuracy of condition (3) near ν = 0. Herein, the 
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curve is smoother than for the case = .g 0 41 (i.e. for the line merging of eigenfrequencies in Fig. 2): 
= . = .A g( 0 37) 0 052 , = . = − .A g( 0 37) 0 782  and | = . | < | = . |A g A g( 0 37) ( 0 41)2 2 . It is also seen that the max-

imal QEF ( =g gcr) occurs near the point of the ST transition in the TF spectrum. Thus the TF spectrum of reso-
nant lines consists of 2N lines at rather weak coupling constant <g gcr, while the number of lines decreases by 
unity, i.e., it is 2N − 1 at the coupling strength ≥g gcr . The ST matching conditions (5) can be also rewritten 
through the spectrum {En} and it can be considered as the conditions for optimizing the spectrum of TF.

The ST restructuring in the parametric space occurs in the rather small region of the variation of parameters 
and is the universal condition of the high quality QEF implementation irrespective of the certain form of the 
input signal field. For large N, the point of maximum QEF and the point of line merging coincide with each other 
(condit ion  ν π− = ⇒ = ∞ = ∆ν iP g NDiscriminant [1 ( )] 0 ( ) /merg  ( for  ca lcu lat ions  s ee 29,31)  and 

π= ∞ = ∆g N( ) /cr , see (6)). Moreover, by using Eq. (2) we get after algebraic calculations the following form for 
TF: ν ν= ∑ −S i E D( ) exp(2 arctg[( )/ ])n n n  (γ = 0n ). Broadband high QEF of the signal pulse retrieval (i.e. 

ν ν≅S i T( ) exp{ }0 ) is achieved only if the dispersion parameters Dn are close to each other which takes place only 
for g gmerg . Thus, the merging point indicates an area of the optimal parameters where the high QEF is 
achievable.

Poles of TF and the effect of line merging are also widely used in the signal processing32 and in the theory of 
filters which deals with spectral efficiency improvement30. The finer spectral optimization of the QEF can depend 
on the used frequency band and the form of signal pulses, which, however, requires an additional study taking 
into account certain parameters of light fields analogous in meaning to that used in the QM scheme based on 
slow light33.

Optimization of the efficiency in the wide frequency band. To study the properties of the QM in the 
wide spectral interval irrespective to the form of the signal, we introduce the function of TF spectral errors (cost 
function analogous30) δ ν ν ν= | − |S S S( ) ( ) ( )2 2

0
2  showing the deviation of TF from the TF of an ideal broadband 

memory ν = |ν
γ =S e( ) i T

0
(0)

0n
. The physical meaning of δS2(ν) for small γ  1n  is the energy loss during the storage 

per unit of frequency (δ η≅ −S (0) 1 (0)2  where η ν ν= | |S( ) ( ) 2). For optimization in a wide frequency band, we 
can assume that ρ ρ= −N2 1 which leads us to a smoother function T(ν) in the central region of the frequency 
interval, and on its borders. Further in the simulation, we assume ∆ = 1 without loss of generality, that is, subse-
quent calculations are performed in units of ∆. For N = 2 when the initial frequencies of particles are detuned 
equidistantly ∆ = ∆ ±± n( 1/2)n  and the linewidths of the modes are the same =g gn  (where π= ∆T(0) 2 /  
a n d  ∆ = .± 0 51 ) ,  w e  o b t a i n  t h e  f o l l o w i n g  s e t  o f  t h e  s p e c t r o s c o p i c  d a t a 
∆ = ± . ∆ = ± . = . = .± ± ± ±g g{ 0 5, 1 5, 0 318, 0 318}1 2 1 2  (partial optimization, see (6)). After the complete 

optimization according (5) suppressing the negative spectral dispersion, for the same values π= ∆T(0) 2 /  and 
∆ = .± 0 51  we obtain the following topological structure of optimal parameters for frequency detuning and line-
w i d t h s :  ∆ = ± . ∆ = ± . = . = .± ± ± ±g g{ 0 5, 1 92, 0 318, 1 09}1 2 1 2  f o r  f o u r- p a r t i c l e  s y s t e m  a n d 
∆ = ± . ∆ = ± . ∆ = ± . = . = . = .± ± ± ± ± ±g g g{ 0 5, 1 4, 3 0, 0 32, 0 24, 1 6}1 2 3 1 2 3  for six-particle system.

It is seen from the results of the numerical calculation of Eq. (2) given in Fig. 3, the comparison of the initial 
and optimized variants with allowance for internal losses γ ∼ −10n

4 achievable, e.g., upon using superconducting 
microwave resonators34 shows clearly the considerable improvement of spectral properties of the optimized var-
iant (γ ∼ −10n

4 corresponds to the quality factor = ⋅Q 5 106 of superconducting resonators for ∆ = ⋅3 107 and 

Figure 2. Position of lines E g D g( ), ( )n n  (in units ∆) of the TF spectrum of the four-particle system (blue solid 
and red dashed lines) as a function of the coupling constant g (in units ∆). In the simulation, we assume ∆ = 1 
without loss of generality, so all the quantities on the figure are dimensionless.
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ω = ⋅3 1010). Namely, in the second case the spectral quality of QM weakly depends of the frequency in the 
spectral interval from − . ∆0 6  to . ∆0 6  and δ ν ∼ −S ( ) 102 3 at γ = −10n

4. Thus, the optimization of parameters 
∆g{ , }n n  makes it possible to create the almost ideal quantum interface in this frequency region with the QE: 

η ν ≅ .( ) 0 999. As it is seen in Fig. 3, it is possible only upon using the controlled multifrequency system. For com-
parison, we note that the AFC protocol on the atomic ensemble in the optical resonator with four resonance lines 
was recently implemented experimentally12, where the authors achieved the QE of 58% record for the AFC pro-
tocol. The result obtained in the work12 can be considerably improved in the proposed approach due to the opti-
mization of the parameters related to the individual spectral lines.

Numerical simulation shows that the spectral behavior of high performance QM (spectral error δS2, respec-
tively) is quite similar for =N 40 , =N 60  and for larger number of mini-resonators (see Fig. 3). Herein, a larger 
number N can improve the spectral QEF and lead to the broader QM spectral width ∝ ∆N0 . However it should be 
necessary to find optimal parameters of all the absorbers due to the quite strong interaction in common resonator. 
Herein, the subsequent reversible transfer of the light field stored in the mini-resonators to the long-lived 
electron-nuclear spin system19 (for example in the rare-earth ions35) could provide on demand retrieval of the 
signal light.

Discussion
We found that the merging of the eigenfrequencies (ST transition) can be observed in the discrete system of 
absorbers (atoms, mini-resonators etc.) interacting with common broadband cavity mode connected with the 
external waveguide. The considered QM is a linear device with respect to the input fields in accordance with the 
used linear system of Eq. (1) (i.e. the device works for arbitrary number of photons in the input light field), but 
the En eigenfrequency distribution depends nonlinearly on the controlled parameters of the studied system. A 
merging of the eigenfrequencies is an indicator of the range of optimal parameters near which the efficient quan-
tum storage is achieved.

It was observed that the growth of the interaction constants gn increases the QM spectral width for relatively 
weak interaction of the absorbers with the common mode, while considerable shifting and convergence of the 
central resonant lines and eigenfrequencies occur for larger gn. The detailed algebraic analysis of the observed line 
merging effects indicated to the presence of ST transition for the eigenfrequencies in this area of the spectroscopic 
parameters. Herein, the merging area of the two central lines determines the optimal value of the coupling con-
stants gn where the QM spectral width reaches its maximum and provides high QEF.

It is worth noting that control of eigenfrequencies topology is an important and necessary tool in the modern 
theory of broadband filters30, which we naturally extend here to the area of broadband QM. The proposed ST 
method for controlling the basic parameters of QM is universal for discrete multiparticle systems, where the num-
ber of controlled spectral parameters is finite and is implemented in practice. The used algebraic approach29,31 
allows for analytically analyzing and optimizing all the physical parameters of the considered system (5) and also 
gives an exhaustive answer to the fundamental question of how to construct a superefficient QM corresponding 
to the theoretical limit.

In optics the proposed approach can be implemented in integral optical schemes containing systems of 
mini-resonators connected with a nanofiber36,37, where it is possible to control the frequencies of individual 
mini-resonators as well as its coupling with nanofibers38, and the usage of several atoms with tunable frequencies 
being in the common cavity is also possible. Superconducting resonators connected with planar waveguides34 is 

Figure 3. Spectral error of TF in the log scale ν δ ν=DBS S( ) 10log ( ( ))10
2  for the four-particle system: red 

(solid) line – the complete parameter optimization and γ ∼ −10n
4, blue (dot) – the partial optimization and 

γ ∼ −10n
4, green (dash) – the complete optimization and γ ∼ −10n

3, gray (dash-dot) – the complete 
optimization and γ ∼ −10n

2; and for the six-particle system: magenta (dash-dot-dot) line – the complete 
optimization and γ ∼ −10n

4.
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the most technological in the microwave frequency range. The developed ST approach of the multiparametric 
optimization of the QM opened the practical possibility of creating broadband high performance quantum inter-
face with the non-destructive control39,40 consisting of a small countable number of resonance absorbers.

The spectral errors of quantum interface operation can be decreased to the extremely small values 
δ ν ∼ −S ( ) 102 3 that meets the technological requirements to QMs and its integration into quantum communica-
tion lines and quantum computer schemes. It is significant that the super-high quantum efficiency of more than 
99.9% can be realized on the basis of current technologies and we have already conducted the first 
proof-of-principle experiments in this direction18.
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