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Gaze training supports self-
organization of movement 
coordination in children with 
developmental coordination 
disorder
piotr Słowiński  1,2,3, Harun Baldemir1,2, Greg Wood4,5, Omid Alizadehkhaiyat5, 
Ginny Coyles5, Samuel Vine6, Genevieve Williams6, Krasimira tsaneva-Atanasova  1,2,7 & 
Mark Wilson  6

Children with developmental coordination disorder (DCD) struggle with the acquisition of coordinated 
motor skills. This paper adopts a dynamical systems perspective to assess how individual coordination 
solutions might emerge following an intervention that trained accurate gaze control in a throw and 
catch task. Kinematic data were collected from six upper body sensors from twenty-one children with 
DCD, using a 3D motion analysis system, before and after a 4-week training intervention. Covariance 
matrices between kinematic measures were computed and distances between pairs of covariance 
matrices calculated using Riemannian geometry. Multidimensional scaling was then used to analyse 
differences between coordination patterns. The gaze trained group revealed significantly higher 
total coordination (sum of all the pairwise covariances) following training than a technique-trained 
control group. While the increase in total coordination also significantly predicted improvement in task 
performance, the distinct post-intervention coordination patterns for the gaze trained group were not 
consistent. Additionally, the gaze trained group revealed individual coordination patterns for successful 
catch attempts that were different from all the coordination patterns before training, whereas the 
control group did not. Taken together, the results of this interdisciplinary study illustrate how gaze 
training may encourage the emergence of coordination via self-organization in children with DCD.

Children with developmental coordination disorder (DCD) have significant difficulty in acquiring and executing 
the essential, coordinated motor skills involved in self-care (e.g., dressing), recreational activities (e.g., ball skills), 
and academic performance (e.g., handwriting) compared to their typically developing counterparts1. DCD is 
estimated to affect around 6% of children1 and can have a significant impact on their socio-emotional wellbeing2 
and future health status3. As such, there is a need for carefully designed and executed randomised control trials 
(RCT) to investigate the efficacy of interventions for children with DCD4,5. Additionally, given that children 
with DCD represent a very heterogeneous population; in terms of the range and variability of impairment, and 
the influence of co-occurring disorders, it is important that RCT outcome measures are sensitive to subtle and 
individual changes in coordination6. The current paper applies recently proposed statistical learning techniques 
to explore how children with DCD might find individualised, self-organising movement solutions following a 
group-based training intervention.
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The intervention itself is grounded in research that has demonstrated that the quiet eye (QE)7 - an objective 
measure of visuomotor control in targeting and interception tasks - can be trained, with significant benefits for 
performance8,9. Wilson et al. were first to determine that the QE mediated performance differences between 
children of varying motor coordination abilities in a throw and catch task10. Highly proficient children revealed 
longer QE pursuit tracking durations – locating the ball more quickly and tracking it for longer - prior to more 
accurate catch attempts. This finding was not wholly surprising, as a body of evidence has linked DCD to signif-
icant impairments in general visuomotor control and the processing of task-relevant, visual information11; the 
ability to use predictive information to guide action12; and the pursuit tracking of objects13. However, particular 
strengths of the study10 were the use of a ‘real world’ throw and catch task that represents the building blocks for 
sport and playground games, and the collection of eye movement videos (from mobile eye trackers) of expert 
performers that could be used as feed-forward models for subsequent training interventions. Specifically, QE 
training videos were created that showed the expert eye movements from a first-person perspective alongside an 
auditory commentary that identified the key targets to be attended (see14 supplementary files, or http://see2learn.
co.uk/videos/ for example videos).

Two separate RCTs subsequently showed that while children with DCD do have impairments in visual control 
– as evidenced by later and shorter QE durations on the incoming ball - this could be improved via QE train-
ing. Importantly, these improvements in gaze control (longer QE durations) also translated into performance 
improvements14,15. In comparison, a control group who received typical movement-focused video instructions 
(Technical Training; TT), revealed no improvement in QE or catching technique after training. The authors con-
cluded that QE training served to improve the attentional control of these children, providing earlier information 
with which to prepare the interceptive catch attempt.

While group-based changes in measures of QE and performance quality were evident in both these studies, 
examining the movement patterns underpinning an improvement in performance provides important infor-
mation from the perspective of motor control in DCD. Specifically, identifying if there were common or unique 
characteristics in technique change would help inform knowledge of how movement coordination emerges, and 
what training might be useful to underpin learning. Indeed, it is possible that children found different motor 
solutions to the catching problem. It has been suggested that by focusing on an external target, QE training allows 
the body to self-organise to meet the end point goal of getting the hands into position at the right time and place 
to make catching possible15,16. Research to date has not been able to test this hypothesis for both methodological 
and theoretical reasons. First, the focus in RCT studies is the detection of common improvements in the treat-
ment group compared to the control group. Any variability in response to treatment is seen as a limitation of the 
generalizability of the intervention, as opposed to potential individualised solutions to the problem. This limita-
tion is in turn related to the fact that few studies take a dynamical systems perspective to the self-organisation of 
movement under constraints6,17–19.

The dynamical systems perspective has its roots in biological systems theory and contends that the timing and 
coordination of movement are emergent properties of the individual physical system in its interaction with the 
environment17,18. Specifically, according to Newell’s17 model of constraints, movement coordination emerges as 
a consequence of the interaction of organismic, environmental and task constraints on the system. Optimal pat-
terns of coordination and control therefore emerge from the unique confluence of constraints impinging on indi-
vidual neuro-musculoskeletal systems through a process referred to as ‘self-organizing optimality’17–20. As such, a 
key principle of a dynamical systems approach to skill acquisition is that there is no single optimal technique for 
a goal-directed action (like catching a ball)21, which may be further exaggerated in the heterogeneous population 
of children with DCD6. While end point variability may be evidence of poor task performance, coordinative varia-
bility is associated with multiple ways of achieving the task goal via exploration of the perceptual-motor space22,23.

This dynamical systems perspective is under-represented in the DCD literature6 and has implications for 
how research into DCD is conducted. First, it calls into question how useful comparisons of endpoint variability 
between groups of typically developing (TD) children and children with DCD may be for understanding the 
particular constraints acting on an individual6,24. Recent reviews have lamented that while such comparisons 
are plentiful, they do not address either the ‘developmental’ or ‘coordination’ aspects of the disorder6,24,25. It is 
therefore important for research to assess intra-individual changes in coordination over time. The current study 
answers these calls by examining how children with DCD might learn to adopt different coordination solutions 
following a four-week intervention designed to improve throw and catch performance. Specifically, to measure 
the complexity inherent in biological systems, we applied methodology inspired by Kerkman et al.26 and used 
tools routinely applied in neuroscience and data mining27–29. Namely, we quantified coordination patterns using 
covariance matrices and Riemannian geometry and visualised the relationships between the patterns using mul-
tidimensional scaling.

The current study therefore has two main aims: (1) to provide additional support for a novel intervention14 
and (2) to examine the emergence of coordination from a dynamical systems perspective, using novel measures. 
We have previously reported a training advantage for this intervention in terms of a subjective rating of ‘end point’ 
performance quality14 so wanted to examine if mathematically derived coordination measures would reveal sim-
ilar group differences. Specifically, we hypothesized that (1) the QET participants would reveal increased coordi-
nation (movements occurring concurrently rather than subsequently), as evidenced by increased covariance of 
the kinematic measures following training, compared to their TT counterparts. Additionally, if the QE training 
intervention supported the creation of self-organizing solutions, we would hypothesize that (2) there would be 
high variability in the post training coordination patterns between and within individuals.
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Results
We first checked if covariances between pairs of kinematic measures increased after the intervention. We chose to 
use covariances rather than correlations, because they capture not only coordination between the measures but 
also inform us about the range of motion. In the QE trained group, we found a significant increase in absolute 
values of covariance (medians over trials) in 10 out of the 15 pairs of measures, while there was no such increase 
in the technique-trained (TT) control group (see Table 1). We interpret an increase in the absolute value of covar-
iance as an increase in coordination; in practice it might for example mean that left and right arm were moving 
together or that movement of an arm was ‘smoother’ (e.g., elbow and shoulder were moving concurrently).

We then checked to what extent change in the total coordination - defined as sum of absolute values of medi-
ans (over trials) of covariances between the 15 pairs of the 6 kinematic measures - explained improvement in 
catching performance. Figure 1 depicts the relationship between post-intervention change in total coordination, 
∆TOTAL COORDINATION, for each participant against their change in catching score, ∆SCR. The change in total coor-
dination predicted 39% of the variance in change of catching performance (Pearson’s correlation, p = 0.004); the 
greater the total coordination, the greater the improvement in catching performance. Overall, the QE trained 
group revealed an increase in total coordination after training; median ∆TOTAL COORDINATION = 2463.2, whereas 
the total coordination of the technique-trained control group decreased; median ∆TOTAL COORDINATION = −230.1, 
(p = 0.0175 one-sided Mann-Whitney-Wilcoxon test).

However, this basic analysis of the total coordination only provides a group-level understanding. To analyse 
changes in individual coordination patterns, we computed Riemannian distance between all the pairs of covar-
iance matrices for all participants in all baseline and retention trials. We then used multidimensional scaling 
(MDS) to represent the matrices as points in an abstract geometric space given by two first principal dimension 
of the MDS. The two first principal dimensions represented 78% of the relations encoded in the raw Riemannian 
distances, meaning that they are suitable for visualization and analysis of the data29.

Figure 2 shows intra- and inter-personal variability. Points corresponding to all of the participants’ trials in a 
given condition form a cluster in the MDS space that we encircled with an ellipse representing a bivariate normal 
distribution fitted to the cluster of points on the plane (see30 for details of methodology for computing the ellipse). 

Pair of measures QET FDR TT FDR

1: Left elbow flexion,
216.6 0.0342 231.7 0.7341

2: Right elbow flexion

1: Left elbow flexion,
111.7 0.048 0.7 0.7935

3: Left shoulder total flexion

1: Left elbow flexion,
104.7 0.2789 −37.6 0.8513

4: Right shoulder total flexion

1: Left elbow flexion,
220.9 0.0386 26.1 0.7935

5: Left shoulder flexion

1: Left elbow flexion,
55.8 0.2854 37.8 0.7341

6: Right shoulder flexion

2: Right elbow flexion,
114.2 0.0423 −20.3 0.7935

3: Left shoulder total flexion

2: Right elbow flexion,
131.9 0.0480 57.6 0.7341

4: Right shoulder total flexion

2: Right elbow flexion,
120.4 0.1162 42.6 0.7341

5: Left shoulder flexion

2: Right elbow flexion,
115.2 0.1104 132 0.7043

6: Right shoulder flexion

3: Left shoulder total flexion,
159.2 0.0386 17.6 0.7935

4: Right shoulder total flexion

3: Left shoulder total flexion,
287.4 0.0386 45.6 0.7935

5: Left shoulder flexion

3: Left shoulder total flexion,
142.4 0.0423 −18.2 0.8513

6: Right shoulder flexion

4: Right shoulder total flexion,
189.6 0.0165 43.2 0.7935

5: Left shoulder flexion

4: Right shoulder total flexion,
175.8 0.1575 37.5 0.7935

6: Right shoulder flexion

5: Left shoulder flexion,
160.9 0.039 −144.9 0.8513

6: Right shoulder flexion

Table 1. Differences of median pair-wise absolute covariance values between the kinematic measures in the 
gaze (QET) and technique (TT) trained groups. Statistical test: one-sided Mann-Whitney-Wilcoxon test with 
Benjamini Hochberg false discovery ratio (FDR) correction for 15 tests in each group. In bold FDR < 0.05.
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Interestingly, the QET participants showed a greater change in the coordination patterns than the TT participants 
but the nature of each change was individual specific. To measure the change in coordination patterns, we com-
puted overlap ω between baseline and retention ellipses, with ω = 0 meaning that the ellipses did not overlap at all 
(i.e. the movements are completely different), and ω = 1 reflecting complete overlap (i.e. the movements did not 
change); median ωQET = 0.2, median ωTT = 0.31 (p = 0.0564 one-sided Mann-Whitney-Wilcoxon test).

It is also evident that the variability of the coordination pattern does not change in a consistent way. For 
example, Fig. 2(a) or (d) show less variability after QE training (the green ellipse is smaller than the grey), while 
Fig. 2(b) or (h) show higher variability after QE training (the green ellipse is larger than the grey). In order to fur-
ther examine variability in coordination, we attempted to control for performance. First, we compared the reten-
tion test coordination patterns of all participants who improved performance after training (i.e. with ∆SCR ≥ 1). 
Figure 2(t) shows that while there is some similarity between these coordination patterns - there is a large degree 
of overlap between ellipses - the overlap is not complete, meaning that there are inter-personal differences.

To further investigate variability in the coordination patterns underpinning successful trial performance, we 
analysed covariance matrices from trials where participants achieved a catching score of 8 or higher (all trials 
where the ball was caught, even if not cleanly caught on the first attempt – see Methods). There were 29 such trials 
in the baseline condition, 30 among the retention trials of the TT group and 66 among the retention trials of the 
QET group. Figure 3(a) shows that there were a number of successful coordination patterns from the retention 
trials of the QET group (green diamonds) that were not similar to any of the baseline trials (11 green diamonds 
are outside of the big grey ellipse). It also shows that the successful coordination patterns from the retention trials 
of the TT group (red-brown circles) were always similar to the successful coordination patterns from the baseline 
trials (blue squares). Overall, this demonstrates that gaze training allowed for self-organization and emergence of 
individual coordination patterns that were different from all the movements in the baseline trials.

Discussion
The main aim of this study was to investigate a dynamical systems approach to examining changes in coordi-
nation following training of children with DCD. This approach considers the role of self-organization under 
multiple constraints present at various levels within the child-task-environment interaction6. Both experimental 
and robotics fields have identified that an epistemological shift towards understanding the dynamics of a system 
within constraints - where redundancy and variability of the system are used to satisfy collective dynamics - may 
be mathematically, theoretically, and practically more fruitful31. It may also be particularly relevant for the study 
of children with DCD, who are a heterogeneous population in themselves6. The current study therefore addresses 
recent calls6,24,25 for this approach to be applied to better understand the coordination deficits inherent in DCD. 
Additionally, a dynamical systems approach enables us to explore the hypothesis that gaze (quiet eye) training 
might guide children with DCD to find individual coordination solutions via exploration of the perceptual-motor 
space, rather than creating a single ‘optimal’ pattern of coordination.

Our findings were supportive of both hypotheses. First, we found that the QE trained group had signifi-
cantly higher coordination (as indexed by covariance values between the pairs of kinematic measures) than the 
technique-trained control group (Table 1) and that change in total coordination predicted 39% of the variance in 
change of catching performance (Fig. 1). In this way we validated our measure of coordination against a meas-
ure of end point performance and supported previous research claiming benefits of QE training for children 
with DCD14,15. Second, we showed that this group performance benefit occurred with significant intra- and inter 
person variability in the coordination patterns, as predicted (Fig. 2). In other words, while the coordination 
patterns of the QET participants changed more than their TT counterparts, this was not in a consistent manner 
(Fig. 2(a–j)). Indeed, we showed that the coordination patterns of some QET participants became more variable 
after training, while others became less variable.

Figure 1. Plot of the change in total coordination (normalized), ∆TOTAL COORIDNATION, versus ∆SCR, the differences 
between the medians of catching scores of the participants (Pearson’s correlation coefficient R = 0.6279, 
p = 0.004). Green diamonds and red brown dots represent participants in QET and TT groups respectively and 
the grey line represents the regression line, y = 3.4834x + 2.0215.
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Even when we controlled for performance, individual differences in coordination were evident. First, we com-
pared the post-training coordination patterns of all participants who improved their catching performance from 
baseline to retention. While there was a large degree of overlap between ellipses (i.e. coordination patterns were 
similar), individual variability meant that this overlap was not complete (see Fig. 2(t)). Second, we compared 
coordination patterns for all trials in which participants managed to catch the ball. Again, there was evidence of 
individual variability in coordination patterns despite all reflecting successful (end point) performance (Fig. 3). 
Importantly - and in support of our second hypothesis - QE training allowed for self-organization and emergence 
of individual coordination patterns that were different from all patterns in the baseline trials. The successful coor-
dination patterns from the retention trials of the TT group on the other hand, were always similar to those from 
baseline trials (Fig. 3).

The overall message is that while higher levels of covariance may be related to better performance, the dis-
tinct patterns of this coordination emerged in an individualised manner, depending on the unique constraints 
impinging on individual neuro-musculoskeletal systems17. Within this framework, individualized solutions are 
bound to exist as the specific environmental, individual, and task constraints will vary on a case-by-case (and 
throw by throw) basis32. As such, these findings support the benefit of developing a dynamical systems model of 
coordination in DCD and its applicability for further investigation of therapeutic training responses at the level of 
an individual. From this perspective, variability in movement systems is omnipresent and unavoidable due to the 
distinct constraints that shape each individual’s behaviour. Rather than being seen as something to limit, variabil-
ity in movement systems may help individuals adapt to the unique constraints (personal, task and environmental) 
impinging on them across different timescales17,33.

The consideration of timescale is important when we consider the ‘developmental’ aspect of DCD. The pat-
tern of coordination and control produced by the neuromusculoskeletal system is only optimised in relation 
to the immediately imposed constraints. Since the constraints imposed on an individual dynamical movement 
system (in this case a child with DCD) fluctuate continuously over time, the emergent pattern of coordination 
and control for any given motor activity will also change accordingly33. This is why research like the current study 
is important – in that it considers both the ‘developmental’ (change over time) and ‘coordination’ (interacting 
dynamics of the movement patterns) elements of DCD6,24,25. The ‘disorder’ element of DCD is also considered 
in this approach, in that it is recognised that while coordination patterns may be momentarily self-optimised, 
performance may still be lower than that of their typically developing peers34.

Figure 2. Plot of the changes in coordination patterns of individual participants, illustrated with two principal 
dimensions of multidimensional scaling. (a–j) Data for individual QET participants (green), (k–s) data for 
individual TT participants (brown-red). Small dots represent individual covariance matrices of each participant 
(grey – baseline, colour – retention); the dots are encircled by ellipses that represents 0.7 of the mass of fitted 
bivariate normal distribution. To show how individual participants compare with all others, the two large 
ellipses indicate the entire baseline (grey) and the entire retention (black) data; they represent 0.8 of the mass of 
fitted bivariate normal distribution. (t) Shows overlap between ellipses representing the covariance matrices of 
the retention trials in which on average participants achieved improvement ∆SCR ≥ 1. Title shows participant’s 
identifier, median retention catching score, median baseline catching score and ∆SCR.
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Interventions therefore need to be able to provide benefits within this changing landscape and thus the cur-
rent study has some important implications for therapy. It is important to understand the different compensa-
tory strategies that children with DCD might adopt to find adequate – even if not optimal – solutions to motor 
problems, based on their unique constraints, if interventions are to be personalized for their recipients. If ini-
tial system conditions are different – and constantly changing – it is unlikely that standardized interventions 
designed to coach specific movement solutions will be appropriate for children with DCD. A dynamical systems 
approach to understanding the deficits in perceptual-motor coordination of children with DCD provides a useful 
framework for designing personalized interventions that consider the individual constraints under which a child 
operates35–37.

This paper demonstrates one of the first interventions to show that allowing for self-organisation is actually 
better than prescribing technique in a DCD population. Additionally, while the gaze instructions themselves were 
standardised, they appeared to provide such a launchpad for self-organisation. We propose that this is because 
instructions relate to the perception component (quiet eye) of the perception-action coupling, rather than the 
action (specific technique cues) component. Key task relevant information is prioritised, but the means to achiev-
ing the task goal is via exploration of the perceptual-motor space37. These findings also support previous research 
that suggests that QE training provides a more implicit form of learning, relying less on conscious motor control 
than when providing explicit technical training instructions38. Future research should seek to employ similar 
mathematical approaches as adopted in the current study to explore the coordination between ongoing gaze 
behaviour (e.g., QE) and kinematic measures to further develop QE theory39.

From a practical, therapeutic perspective, the data also suggest that while children with DCD may reveal 
greater spatial variability than their TD counterparts34, reducing variability should not be the sole focus of any 
intervention designed to improve movement outcomes for this group. Therapeutic sessions may then be best 
structured around guiding DCD children to utilize task-specific sources of information rather than attempting 
to guide movement effectiveness directly, particularly through explicit instruction40. Support for this contention 
is also underlined by previous research that has suggested that the deficits associated with DCD are linked with a 
child’s persistence with ineffective strategies rather than a generalized inability to learn motor movements41. We 
have now shown that – when guided appropriately via targeted videos - children with DCD can learn to optimise 
effective gaze control14,15 and, in doing so, become more coordinated. While14 provided some indication (from 
parental reports) that QE training had a positive impact on subsequent sporting participation, future research 

Figure 3. Plot of the changes in coordination patterns of trials in which participants achieved scores ≥ 8, 
illustrated with two principal dimensions of the multidimensional scaling. (a) Markers represent individual 
covariance matrices from all the baseline trials (grey crosses), 29 baseline trials with score ≥ 8 (blue squares), 
30 retention trials from TT group with score ≥ 8 (red-brown circles), 66 retention trials from QET group with 
score ≥ 8 (red circles). The markers are encircled by ellipses that represents 0.7 of the mass of fitted bivariate 
normal distribution. The large grey ellipse encircles all the baseline markers and represents 0.8 of the mass of 
fitted bivariate normal distribution. (b–e) are representative examples of the covariance matrices; values in the 
matrices are colour coded. Markers in panel (a) that correspond to these exemplar matrices are indicated with a 
black circle and corresponding label.
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needs to explore whether this newly learned strategy can transfer to other skills, and impact on ongoing and 
extended physical activity and social integration2,3.

To conclude, the current study reveals the potential advantages of applying data science techniques to assess 
trial by trial variability in movement patterns for intervention studies involving clinical groups; in this case, chil-
dren with DCD. We provide additional support for the efficacy of gaze training interventions, as evidenced by 
increased coordination between kinematic measures following training. Despite these group differences in coor-
dination, there was considerable variability in the individual coordination patterns within and between groups 
(and trials). Evidence was therefore found for a self-organization approach, where improved post-training move-
ment coordination emerged from the unique constraints impinging on individuals. These findings suggest that 
interventions that train the perception element of a visually guided movement task (e.g., QE Training) do not 
enforce a particular, rigid movement solution, but instead provide perceptual information by which individuals 
develop their own individual solutions.

Methods
Data Collection. The participants were twenty-one children (aged 7–10) who scored below the 5th per-
centile on the Movement Assessment Battery for Children-2 (MABC-2)42. In line with the additional DSM-5 
criteria for DCD1, all children were classified as of ‘normal’ intelligence based on their teacher/parent reports 
and scored below the cut-off (98th percentile) on parental reports of the Attention Deficit/Hyperactivity Disorder 
(ADHD) Rating Scale-VI43. NHS ethical approval (15/NW/0279) was granted by the RES Committee North 
West-Greater Manchester South, before any testing was carried out, and parents and children provided written 
informed consent before taking part. All methods were carried out in accordance with these ethical guidelines 
and regulations. Figure 4 shows a CONSORT flow diagram outlining participant recruitment and analysis (The 
CONSORT checklist is available as supplementary data in14). The trial was registered on the 19th September 2016 
(see https://clinicaltrials.gov/ct2/show/NCT02904980) and more detail on the full trial protocol is provided in 
Supplementary Methods.

Participants performed 50 trials of the throw and catch task from the MABC-2 at three time points: before 
(baseline) and after training (retention), and at a 6-week delayed retention test. The throw and catch task required 
children to throw a ball against a wall two meters away and try to catch it on its return – without letting the 
ball bounce - using both hands42. Based on baseline measures, participants were pseudo-randomly divided into 
either Quiet Eye training (QET) (8 male 3 female, mean age of 8.6 years (SD = 1.04); mean MABC-2% of 2.6 
(SD = 2.09); mean ADHD% of 87.9 (SD = 17.1)) or technical training (TT) groups (7 male 3 female, mean age of 
8.6 years (SD = 1.84); mean MABC-2% of 1.9 (SD = 2.19); mean ADHD% of 90.5 (SD = 14.7)).

Training consisted of a 4-week group therapy intervention, involving a combination of observational learn-
ing via videos, and team games/exercises designed to reinforce the learning points (see https://doi.org/10.1371/
journal.pone.0171782.t002 and supplementary data for details). Week 1 of training focused on accurate throw-
ing, week 2 on effective catching, week 3 on linking the throw and catch, and week 4 served as a summary week 
in which children selected their favourite activities from the previous three weeks. The TT group were given 
movement-related instructions via video, relating to the throw and catch phases; specifically, by training them 
to adopt a smooth arm swing during the throw, and to ready themselves and use soft hands to catch. The QET 
group’s video instructed them how to adopt expert-like gaze control; specifically, by training them to fixate a tar-
get location on the wall prior to the throw and to track the ball prior to the catch (videos available as supplemen-
tary files in14). The training games (e.g., throwing to targets, catching on the move) were the same for each group 
but the instructions provided related to the instructions provided in the training videos.

Data Acquisition. A 3D motion analysis system (MyoMotion Research Pro, Noraxon Inc., Scottsdale, AZ, 
USA) was used to collect kinematic data from six upper limb 3D inertial motion capture sensors fitted according 
to the Noraxon standard manual (Noraxon Inc., Scottsdale, AZ, USA). Two sensors were located on each upper 
and lower arm, and one sensor on both the pelvis and cervical spine, allowing shoulder and elbow angles and 
range of motion (ROM, degrees) to be determined for both arms (sampling frequency of 100 Hz). In total, six 
kinematic measures were computed by the Noraxon software; left and right elbow flexion, shoulder total flexion 
(taking into account flexion and abduction around the shoulder), and shoulder flexion. Calibration was per-
formed in the standing position to define the 0° of ROM.

Kinematic data were only collected for the first 10 of the 50 trials at each time point, as (1) pilot testing showed 
that participants frequently struggled to not interfere with the sensors and the eye tracker when worn for too long, 
and (2) our previous studies had only used 10 trials in each condition10,14,15. Due to calibration problems, we only 
had complete kinematic data for 19 participants (9 TT and 10 QET) and in this analysis we focus on pre-post 
intervention data (i.e. baseline to immediate retention) in order to access immediate individual differences due 
to training.

Data Processing and Analysis. Data were recorded as time series continuously during the task, so each 
time series contains ten task trials for each participant. First, we divided the time series into trials (time series seg-
ments) by detecting the throwing and catching periods. In our analysis, we focus on the “catching period” (from 
ball release to catch), which is expected to have highest variability between participants and can be more closely 
compared to a measure of catching performance.

Coordination Patterns Evaluation. Figure 5(a) provides a summary of the three-step approach adopted to 
compare coordination before and after training. To consider the temporal relationships (coordination) between 

https://doi.org/10.1038/s41598-018-38204-z
https://clinicaltrials.gov/ct2/show/NCT02904980
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kinematic measures, we first computed the covariance between them. The covariance between two data sets A 
and D is defined as:

∑ μ μ=
−

− −
=

cov A D
N

A D( , ) 1
1

( )( )
i

N

i A i D
1

where μA and μD are the mean values of the sets A and D respectively, and N is the number of samples in the sets. 
Figure 5(b,d) shows exemplar time series data of the catching period of two different trials. Covariances between 
pairs of the time series were next saved in a matrix; Fig. 5(c,e).

Second, after computing the covariance matrices for all trials for all participants, we then estimated the dis-
tance between these covariance matrices by applying a Riemannian geometry approach27,28. Riemannian geom-
etry allows us to analyze data that lie in a curved space, where we can no longer apply Euclidian space operators, 
which is the case for covariance matrices27. The Riemannian distance between two covariance matrices CM1 and 
CM2 is given by:

∑δ λ=
=

CM CM log( , )
n

N

n1 2
1

2

where λn are the N eigenvalues of matrix − −CM CM CM1
1/2

2 1
1/2 (or equivalently −CM CM1

1
2)28.

Figure 4. Consort 2010 Flow diagram for participant selection into the trial.
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Third, once the distances between all the pairs of the covariance matrices were calculated, we used 
Multidimensional Scaling (MDS) to analyse and visualise the differences and similarities between coordination 
patterns. MDS is a data analysis technique widely applied to visualise the similarities/ differences between data 
sets29 (see30 for an example in movement analysis). MDS allows us to represent the covariance matrix of each 
participant as a dot in an abstract geometric space. For visualisation purposes we used the first two (i.e. most 
significant) dimensions of this abstract space. Figure 5(f) shows a visualisation of all the covariance matrices 
from all trials using two first principal dimension of the MDS of all the Riemannian distances between pairs of 
the covariance matrices from the current study.

Catching Score. The catching performance scale14,15 was used to assess the quality of each attempted catch on an 
11-point scale, between ‘0’ (Makes no move towards the ball as it comes back) and ‘10’ (The catch is made exclu-
sively with the palms and fingers). The assessment was made by a researcher - blinded to training group status 
– from video recordings taken of all catching attempts. Each number on the scale has an associated description 
(e.g., ‘6’ – Ball hits body and is trapped with arms but not hands – see https://journals.plos.org/plosone/arti-
cle?id=10.1371/journal.pone.0171782). A mean value was then computed for baseline and retention conditions 
and used in subsequent analyses. We have previously reported a significant difference in training effect for catch-
ing score for the participants of this trial14: The control group did not significantly improve (Bonferroni-corrected 
p = 0.028) from baseline (M = 3.73, SD = 2.02) to retention (M = 5.45, SD = 2.30), whereas the QE Trained group 
did (M = 4.10, SD = 1.58, to M = 6.54, SD = 2.06; Bonferroni-corrected p < 0.001).

Statistical and Computational Methods. To test statistical significance of our findings we used non-parametric 
Mann-Whitney-Wilcoxon test as implemented in Matlab with command ranksum44. Additionally, where 

Figure 5. (a) Data processing and analysis pipeline. (b,d) Time series of kinematic measures: 1: Left elbow 
flexion, 2: Right elbow flexion, 3: Left shoulder total flexion, 4: Right shoulder total flexion, 5: Left shoulder 
flexion, 6: Right shoulder flexion. (c,e) Their covariance matrices CM1 and CM2, covariance values are colour 
coded. (f) Two first principal dimensions of the multidimensional scaling. Each dot represents a covariance 
matrix from a single trial. Dots representing covariance matrices CM1 and CM2 are indicated with black circles. 
Distances between the dots on the plane of the principal MDS dimensions (black line) are an approximation of 
the Riemannian distance, δ(CM1,CM2), between the covariance matrices.
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appropriate we control for multiple comparison using Benjamini Hochberg false discovery ratio method45 as 
implemented in Matlab with command mafdr (…,‘BHFDR’, 1). To assess correlations we used Pearson R coeffi-
cient of linear dependence [R, p] = corr(x,y, ‘type’, ‘Pearson’). Covariance matrices and distances between them 
were computed in Matlab using cov and distance_riemann, commands respectively. The function distance_
riemann computes the Riemannian distances, and can be found in a freely available toolbox called Covariance 
Toolbox (https://github.com/alexandrebarachant/covariancetoolbox). The Matlab command for MDS is cmdscale.

Detailed methods and preliminary performance and qualitative data from this trial (ClinicalTrials.gov 
NCT02904980, 19th September 2016) were published in Wood et al. (2017) PLoS ONE 12(2): e0171782. 
doi:10.1371/journal. pone.0171782.

Data Availability
The datasets generated and analysed during the current study are available at the University of Exeter online 
repository; DOI:10.24378/exe.783.
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