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A vegetation configuration pattern 
with a high-efficiency purification 
ability for TN, TP, AN, AP, and 
COD based on comprehensive 
assessment results
Guirong Hou1,4, Huaxing Bi1,2,3,4,5, Xinxiao Yu1, Guodong Jia1, Dandan Wang1, Zhenyao Zhang1 
& Ziqiang Liu1

To identify a vegetation configuration pattern with a high-efficiency purification ability for total 
nitrogen (TN), available nitrogen (AN), total phosphorous (TP), available phosphorous (AP), and 
chemical oxygen demand (COD) based on comprehensive assessment results, a water discharge 
experiment was performed in the Luan River in China with the following riparian forests: I, pure broad-
leaved; II, mixed broad-leaved; III, mixed coniferous and broad-leaved; IV, mixed coniferous; and 
V, pure coniferous. From the riparian buffer zone to the river channel, the evaluation showed that 
pattern I had the highest purification ability at 1 m and 2 m; at a width of 4 m, pattern III had the highest 
purification ability; at a distance of 7 m, pattern V showed the highest purification ability; at 10 m, 
pattern IV showed the highest purification ability, pattern II the lowest. It is advisable to give priority to 
plant coniferous species from 0 m to 4 m from the river bank, while it is advisable to give priority to plant 
broad-leaved species from 4 m to 10 m from the river bank. We therefore recommend these vegetation 
configuration patterns in the development and management of runoff purification systems.

As water source pollution is a global challenge, improving the quality of surface runoff water is a focus of ecolog-
ical restoration1,2. The accumulation of harmful substances from urban areas and overuse of fertilizer in agricul-
tural are primary factors causing surface water quality degradation and water source pollution. Such degradation 
is not only a concern for agriculture and industry but also seriously affects the quality of life of residents3,4. Thus, 
identifying a vegetation configuration pattern with highly efficient purification ability for surface runoff water 
nutrients to prevent eutrophication and decrease risks for human health and aquatic ecosystems is imperative.

Planting buffer riparian vegetation is an effective strategy to intercept non-point-source pollution and improve 
river water quality. This measure plays an important role in reducing sediment and nutrient deposition in the 
river ecosystem protection zone, and it can effectively control the river pollution load2,5,6. A riparian vegetation 
buffer zone is a complex soil-plant-microorganism ecosystem that performs an ecological function by incorpo-
rating the synergistic effects of the physical, chemical and biochemical responses of natural ecosystems7. A vege-
tation buffer zone along a river bank can reduce surface water and groundwater pollution by filtering, absorbing, 
retaining, and depositing pollutants in addition to having physical, chemical and biological effects8–10. Previous 
studies have shown that a riparian zone vegetation buffer can reduce nitrogen (N) and phosphorus (P) concentra-
tions in both surface runoff and subterranean water11, but there is a lack of comparative studies on the effect and 
control of nitrogen (total nitrogen (TN) and available nitrogen (AN)) and phosphorus (total phosphorous (TP) 
and available phosphorus (AP)) pollutants in surface runoff.
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Riparian ecosystems are not only main pathway of transition of pollutants but also hubs of communication 
between aquatic and terrestrial ecosystems11–13, and they have an important function of improving water quality, 
mainly through their role in overland flow purification. The ecological service value of riparian vegetation buffer 
zones has been underestimated, and improving river water quality is an enormous challenge in China due to 
improper land use and agricultural pollution14,15.

Forests differ in their ability to purify water, and the chemistry of ground water changes significantly as it 
passes through a riparian vegetation buffer zone. Previous studies have shown that N and P concentration can be 
decreased by such buffer zones (Table 1). For example, Sharpley reported that the removal effectiveness of P from 
surface water is as high as 80% in a riparian zone dominated by pure forest16, and Schoonover suggested that the 
removal effectiveness of N from surface water can reach 78% and that for P is as high as 97% in riparian zones 
dominated by forest and herbaceous cover17. However, Guo reported that the removal effectiveness of N and P 
from surface water is 30% and 52%, respectively, in a riparian zone dominated by herbaceous cover15. Therefore, 
riparian vegetation buffer zones are critical for decreasing N (TN and AN) and P (TP and AP) levels18,19.  
Chemical parameters are measured to evaluate water quality and contamination with pollutants, aiding in the 
development of effective management strategies4.

The Luan River is an important watershed in northern China, a region of agricultural activities, with different 
riparian forest types distributed along the river. Approximately 3.5 million people live in Chengde City, and the 
Luan River is the main water source for the city. In addition, at the outlet of the Luan River is the Miyun Reservoir, 
which provides domestic water for Beijing City, where approximately 21.73 million people live. Therefore, pre-
venting water source pollution has become a problem demanding prompt solution. A water discharge experiment 
was carried out to evaluate the purification effects of riparian vegetation patterns on the overland runoff nutrients 
in the Luan River in China.

Accordingly, the first objective of this research was to analyse the distribution characteristics of TN, TP, AN, 
AP, and chemical oxygen demand (COD) in five riparian vegetation configuration patterns in a riparian tran-
sect in the Luan River in China. The second objective was to identify a vegetation configuration pattern with a 
high-efficiency purification ability for TN, TP, AN, AP, and COD based on comprehensive assessment results.

Materials and Methods
Study area. The Luan River located in Hebei Province, China (N41°47′–42°06′, E116°51′–117°45′) was 
selected as the study area (Fig. 1). The altitude of the study area is from 750 to 1,829 m, and its annual temperature 
is approximately −1.44 °C, with a maximum temperature of 38.9 °C and a minimum temperature of −42.9 °C. 
The mean annual precipitation is 454.7 mm, 70% of which occurs from June to August. The mountainous plateau 
region has a continental monsoon climate and contains seven different soil types (sand soil, meadow soil, boggy 
soil, black soil, brown soil, cinnamon soil, and grey wooded soil). The characteristic area is a transitional commu-
nity of warm temperate broad-leaved deciduous forests and temperate grasslands on the eastern plateau.

Experimental design and data collection. Five riparian vegetation configuration patterns were 
selected to reveal the impacts of riparian vegetation patterns on overland runoff nutrients in the Luan River: I, 
broad-leaved pure forest dominated by Betula pendula Roth.; II, broad-leaved mixed forest composed of Betula 
pendula Roth. and Betula dahurica Pall; III, coniferous and broad-leaved mixed forest composed of Betula pendula 

Vegetation type

N P

Reference

Removal 
effectiveness (%)

Removal  
effectiveness (%)

SW GW SW GW

Forest 80 Sharpley45

Herbaceous 57 Dillaha et al.46

wetland 76 Clausen et al.20

Forest 98 39 Sabater et al.47

Herbaceous 60 98 Vidon and Hill48

Forest/Herbaceous 97 78 Schoonover et al.17

Wetland 60 Fox et al.49

Forest 30 15 Zaimes et al.18

Forest 77 98 Woodward et al.50

Forest 92.1 91.8 Mankin et al.51

wetland 34.9 43.81 62.05 74.81 Wang et al.27

Forest 83 Johnson et al.52

Forest/Herbaceous 98 Hill et al.53

Herbaceous 52 30 Guo et al.15

Forest/Herbaceous 42.9 Lin et al.54

Forest/Herbaceous 67 69 Liolios et al.55

Table 1. The removal effectiveness of nitrogen and phosphorus in riparian zones for surface water (SW) and 
ground water (GW).
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Roth. and Larix principis-rupprechtii Mayr.; IV, coniferous mixed forest composed of Larix principis-rupprechtii 
and Pinus tabulaeformis Carr.; V, pure coniferous forest dominated by Larix principis-rupprechtii. The length and 
width of transects of the riparian vegetation buffer zone was 10 m (from the upper parts of the riparian vegetation 
buffer zone to the river channel) (Fig. 2).

The experiment was conducted during the growing season of vegetation (from April to October), and avoided 
the dormant period of vegetation (from November to March of the following year). This study involved a forest-
land investigation between April and May in 2016, including topographic features, stand structure characteristics 
and soil characteristics. The stand structure characteristics of these five vegetation types are shown in Table 2, and 
their soil characteristics and topographic features are shown in Table 3.

This study established a small ditch along the four sides of the riparian vegetation buffer zone to separate 
the study site from the adjacent area. The depth of the ditch was 5 cm, which is the maximum depth of the 
interaction between runoff and soil. The water discharge experiment was performed with a water aspirator that 
pumped water from the channel to the upper parts of the riparian vegetation buffer zone at a speed of 10 to 15 
m3·h−1 in the five study areas from June to October 2016. Therefore, the contents of N, P and COD from the river 
were regarded as the initial concentration values of experiment. To avoid contamination of river water by sur-
face runoff from the buffer zone after purification, water samples were taken from the river channel before each 
experiment, and the water quality index concentration detected by these water samples was regarded as the initial 
concentration of surface runoff.

Each experiment started at approximately 10:00 a.m., and each water discharge experiment lasted for 1 h. The 
water samples were collected from the surface runoff at different widths of the buffer zone with a new ethylene 
sample bottle (1000 ml per sample) from the upper part of the riparian vegetation buffer zone to the river channel. 
The widths of the buffer zone are 1 m, 2 m, 4 m, 7 m and 10 m. From June to October 2016, water discharge exper-
iments were carried out in each riparian buffer zone a total of 5 times; a total of 30 water samples were collected 
from 6 sampling points each time. Therefore, 25 experiments were conducted in total during the experiment 
period, and a total of 150 water samples were collected for water quality testing.

Before water quality test and analysis, all water samples were filtered through qualitative filter paper, and the 
filtrate was taken for water quality testing. Before the water samples were tested, they were filtered through quali-
tative filter paper until the solution was no longer cloudy, and the water samples were colourless. Each index was 
measured 3 times, and the average value was calculated to represent the water quality index at the sampling point. 
In this research, COD, TN, TP, AN, and AP were detected in the water samples with an automatic chemistry 
analyser (Smart Chem 200, Alliance, France).

Figure 1. Location of Luan River study area. The figure of location of Luan River study area were generated 
with ArcGIS 10.1 (Environmental Systems Research Institute, Inc., Redlands, California, USA).
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The data for the concentrations of COD, TN, AN, TP and AP at 0 m, 1 m, 2 m, 4 m, 7 m and 10 m were used to 
estimate the removal ability of the five riparian vegetation configuration patterns. The removal rate was calculated 
using the following equation (1):

=
−

×E C C
C

100%
(1)N

n

n

0

where EN is the water nutrient indicator (COD, TN, AN, TP and AP) removal rate (%) and Cn is concentration of 
the water nutrient indicator (COD, TN, AN, TP and AP) (mg·L−1) at different widths of the riparian vegetation 
buffer zone (in this research, n = 0, 1, 2, 4, 7, 10). C0 is the initial concentration of water nutrient indicator (COD, 
TN, AN, TP and AP) (mg·L−1) replaced by the concentration of river water.

The comprehensive coordinate evaluation method was employed to assess the purification capacity of the 
five types of riparian buffer zones on surface runoff water quality at different widths, and the evaluation factors 
included TN (X1), TP (X2), AN (X3), AP (X4) and COD (X5).

Figure 2. Experimental design and water samples collection. The sketch map of experimental design and water 
samples collection were generated with AutoCAD 2006 (Autodesk, Inc., San Rafael, California, USA).

Land use 
types

Diameter at breast 
height (cm)

Height of 
tree (m)

Forest density 
(plants/ha2)

Age of 
stands (a)

Leaf area 
index

Simpson 
index (H´)

Pielou Index 
(Jsi)

I 12.7 ± 0.31 10.0 ± 0.23 1400 25 1.98 ± 0.01 0.82 0.87

II 13.9 ± 0.15 10.1 ± 0.31 2400 23 2.74 ± 0.08 0.84 0.92

III 18.5 ± 0.21 13.3 ± 0.12 2750 25 3.24 ± 0.03 0.90 0.96

IV 12.7 ± 0.32 11.8 ± 0.21 2200 21 1.78 ± 0.11 0.58 0.82

V 11.8 ± 0.16 11.7 ± 0.33 1200 23 1.61 ± 0.09 0.82 0.61

Table 2. Characteristics of stands under five vegetation patterns. Note: The data in the table are mean ± SE.

Land use 
types

Altitude 
(m)

Slope 
(°)

Soil bulk density 
(g∙cm−1)

 < 0.01 mm 
Physical clay (%)

Soil TN 
(g∙kg−1)

Soil AP 
(mg∙kg−1)

Soil organic 
matter (g∙kg−1) Soil pH

I 1298 21.0 1.33 ± 0.03 38.58 ± 3.96 1.08 ± 0.29 58.89 ± 4.39 1.05 ± 0.42 6.08 ± 0.06

II 1350 20.5 1.40 ± 0.14 42.55 ± 6.09 1.05 ± 0.52 56.67 ± 3.71 1.08 ± 0.52 6.57 ± 0.09

III 1253 22.0 1.22 ± 0.13 65.51 ± 6.13 1.67 ± 0.42 61.44 ± 1.60 1.67 ± 0.17 6.71 ± 0.08

IV 1281 23.0 1.23 ± 0.11 56.03 ± 6.11 0.64 ± 0.16 51.11 ± 3.06 0.64 ± 0.16 6.71 ± 0.08

V 1240 19.5 1.09 ± 0.04 58.18 ± 18.11 0.65 ± 0.17 70.33 ± 7.58 0.65 ± 0.29 6.47 ± 0.03

Table 3. Characteristics of soil under five vegetation patterns. Note: The data in the table are mean ± SE.
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First, dimensionless processing was carried out for all data, and the original data table was represented as Xij, 
where i indicated the type of buffer riparian zone and j indicated TN, TP, AN, AP or COD. Second, each data 
point was compared to the maximum value (Xj) for that index to construct the matrix coordinate as represented 
by dij using the following equation (2):

=d
X
X (2)

ij
ij

j

The distance of the i index from the standard point was then calculated using the following equation (3), and 
the next step was to calculate the sum of the distances of each treatment to the standard point using the following 
equation (4). Finally, the order was ranked according to the M value, and the smallest value among the compre-
hensive results was considered best.

∑= −p d(1 )
(3)i

i
ij

2

∑=
=

M p
(4)i

n

i
1

where n is the numbers of indicators evaluated in this study, n = 5.
I, broad-leaved pure forest dominated by B. pendula; II, broad-leaved mixed forest composed of B. pendula and 

B. dahurica; III, coniferous and broad-leaved mixed forest composed of B. pendula and L. principis-rupprechtii; 
IV, coniferous mixed forest composed of L. principis-rupprechtii and P. tabulaeformis; V, pure coniferous forest 
dominated by L. principis-rupprechtii.

Data analysis. Differences in the measured parameters among the different samples were analysed using 
one-way analysis of variance and Fisher’s protected least significant difference test. All statistical analyses were 
conducted using SPSS software (v. 19.0, SPSS Inc., Chicago, IL, USA), at the P = 0.05 level of significance. The 
sketch map of experimental design and water samples collection were generated with AutoCAD 2006 (Autodesk, 
Inc., San Rafael, California, USA). The comprehensive evaluation of water nutrients in runoff was conducted 
using PCA; the higher comprehensive score indicates a better purification effect on water nutrients of a riparian 
buffer zone.

Results
Distribution characteristic of surface runoff water nutrients. The variability in the concentrations 
of COD, TN, AN, TP and AP from runoff water under different vegetation patterns are shown in Fig. 3, and 
the findings indicated a decreasing trend in the five different riparian vegetation buffer zones from the upper 
parts of the riparian vegetation buffer zone to the river channel. Both the highest and the lowest TN concentra-
tion (6.97 ± 0.14 mg·L−1 and 3.01 ± 0.05 mg·L−1, respectively) were found in the broad-leaved forest dominated 
by B. pendula at 10 m and 0 m from the upper part of the riparian vegetation buffer zone to the river channel. 
Similarly, the highest and lowest AN concentration (2.82 ± 0.16 mg·L−1 and 0.00 ± 0.00 mg·L−1, respectively) were 
detected in the mixed broad-leaved forest composed of B. pendula and B. dahurica at 10 m, 3 m and 0 m from 
the upper part of the riparian vegetation buffer zone to the river channel. The highest TP and AP concentrations 
(1.75 ± 0.09 mg·L−1 and 1.84 ± 0.08 mg·L−1 at 10 m from the upper part of the riparian vegetation buffer zone to 
the river channel) and the lowest TP and AP concentrations (0.06 ± 0.02 mg·L−1 and 0.04 ± 0.01 mg·L−1, respec-
tively, at 0 m from the river) were detected in the pure coniferous forest (dominated by L. principis-rupprechtii). 
Figure 3 also illustrates the highest COD concentration (530 ± 50.52 mg·L−1) and the lowest COD concentration 
(12.4 ± 1.6 mg·L−1), which were measured in the pure coniferous forest dominated by L. principis-rupprechtii at 
10 m and at 0 m from the upper part of the riparian vegetation buffer zone to the river channel.

Comparison of the average nutrient contents of overland runoff. The concentrations of COD, TN, 
AN, TP and AP from runoff water differed among the riparian vegetation configuration patterns (Fig. 4). The 
highest mean TN (5.31 ± 0.87 mg·L−1) appeared in riparian vegetation pattern II (mixed broad-leaved forest com-
posed of B. pendula and B. dahurica), and the lowest mean TN (3.81 ± 0.09 mg·L−1) appeared in riparian vegeta-
tion pattern IV (mixed coniferous forest composed of L. principis-rupprechtii and P. tabulaeformis) (*P > 0.05). 
However, the highest mean AN (1.48 ± 0.17 mg·L−1) appeared in riparian vegetation pattern IV (mixed coniferous 
forest composed of L. principis-rupprechtii and P. tabulaeformis), and the lowest mean AN (0.85 ± 0.42 mg·L−1) 
appeared in riparian vegetation pattern II (mixed broad-leaved forest composed of B. pendula and B. dahurica). 
The highest mean TP and mean AP (1.09 ± 0.26 mg·L−1 and 1.05 ± 0.29 mg·L−1, respectively) appeared in ripar-
ian vegetation pattern V (pure coniferous forest dominated by L. principis-rupprechtii), and the lowest mean TP 
and mean AP (0.31 ± 0.06 mg·L−1 and 0.19 ± 0.06 mg·L−1, respectively) appeared in riparian vegetation pattern I 
(pure broad-leaved forest dominated by B. pendula) (*P > 0.05). The highest mean COD (237.57 ± 75.16 mg·L−1) 
appeared in riparian vegetation pattern V (pure coniferous forest dominated by L. principis-rupprechtii), and the 
lowest mean COD (123.45 ± 23.05 mg·L−1) appeared in riparian vegetation pattern IV (mixed coniferous forest 
composed of L. principis-rupprechtii and P. tabulaeformis) (*P > 0.05).

Purification ability of a single parameter. The removal rates of COD, TN, AN, TP and AP in the five 
riparian vegetation configuration patterns are shown in Fig. 5. The ability to remove COD, TN, AN, TP and AP 
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from runoff water gradually increased from the upper part of the riparian vegetation buffer zone to the river 
channel. When the removal rates of the nutrient indicators (TN, AN, TP, AP and COD) in the five riparian 
vegetation configuration patterns were compared, the significant removal effectiveness of TN and AN as well 
as COD appeared in riparian vegetation pattern III, with removal rates of 58.41%, 100%, 98.27%, respectively. 
Accordingly, TN, AN, COD were adsorbed at an average rate of 0.41 (mg∙L−1∙m−1), 0.30 (mg∙L−1∙m−1) and 56.65 
(mg∙L−1∙m−1), respectively, along the transect. The highest removal effectiveness of TP and AP appeared in ripar-
ian vegetation pattern V, with removal rates of 58.41% and 100%, respectively. Correspondingly, TP and AP were 
adsorbed at an average rate of 0.18 (mg∙L−1∙m−1) and 0.19 (mg∙L−1∙m−1), respectively, along the transect.

Comprehensive purification ability of five riparian vegetation buffer zones. This study measured 
the parameters COD, TN, AN, TP and AP as indicators to evaluate the runoff purification abilities of different 
riparian vegetation buffer zones at 1 m, 2 m, 4 m, 7 m and 10 m by applying the comprehensive coordinate method. 
The comprehensive evaluation results indicated that the runoff COD, TN, AN, TP and AP purification capacities 
at 1 m, 2 m, 4 m, 7 m and 10 m differed among the five buffer riparian zones (Table 4). Ranking in terms of the 
removal of COD, TN, AN, TP and AP from runoff water at 1 m and 2 m showed that riparian vegetation pattern I 
showed the highest purification ability; patterns II and IV had the lowest impact.

However, at a width of 4 m, riparian vegetation pattern III had the highest purification ability, and pattern II 
still had the lowest impact. At a distance of 7 m, riparian vegetation pattern V exhibited the highest purification 
ability and pattern II the lowest. At 10 m, riparian vegetation pattern IV showed the highest purification ability 
and pattern II the lowest.

Discussion
Effects of riparian buffer vegetation zone width on nutrient removal from runoff water. The 
purification of runoff water revealed a positive relationship with the riparian vegetation buffer zone width20–22. 
Identifying the proper width of the riparian vegetation buffer zone is a key strategy to improving nutrient removal 
ability23,24. The concentrations of COD, TN, AN, TP and AP in the five riparian vegetation configuration patterns 
gradually declined from the upper parts of the vegetation zone to the river channel. In addition, this research 
showed that the concentrations of COD, TN, AN, TP and AP at different sites (0 m, 1 m, 2 m, 4 m, 7 m, 10 m) were 
very different in the five riparian vegetation configuration patterns (Fig. 3). Logically, the element concentration 
should be reduced after purification by the buffer zone, while the concentration of elements along the transect 
increases locally, which is attributed to the contamination of groundwater25,26. Differences among the purification 
effectiveness may be attributed to mechanisms in each forest buffer. Settling, infiltration, and dilution processes 
can explain this change trend. When surface water flows through the buffer zone along the river bank, it moves 

Figure 3. Distribution of concentrations of COD, TN, TP, AP and AN in different width transect of five 
riparian vegetation buffer zones.
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vertically along the soil pore in addition to the horizontal movement, and the two movements always coexist 
in the case of water flow. The water movement in these two directions has an effect on leaching26, settling27,28, 
infiltration29, and dilution9,25. The elements originally contained in soil are washed and transported to the next 
location under the action of water dissolution and force30–33, which is also the reason for the increased element 
concentration in certain water sampling points in Fig. 3. Overall, the concentrations of these elements were 
decreased after the purification of the buffer zone in this study, and the purification effectiveness reached 30–80%.

Generally, the distance from the channel to the riparian vegetation buffer zone bank is not great. Therefore, 
the risk of river pollution from soil and water erosion is higher in these areas, and the management of these 
five riparian forests should be considered to strengthen management. Previous studies have found a decline in 
nutrients with distance from the river34,35. Additionally, there was a close relationship between nutrient removal 
capacity and the absorption or transformation of potential pollutants36. Therefore, the width variation and vege-
tation characteristics are important factors in understanding riparian vegetation buffer zone purification ability.

Effects of riparian buffer zone vegetation and soil on nutrient removal from runoff water.  
Identifying rational vegetation configuration patterns to control river pollution is imperative37. Previous stud-
ies have found that vegetation configuration patterns have a remarkable effect on the distribution and removal 
capacity of TN and TP15,18,38–41. The comprehensive evaluation results of this study showed that different plants 
show different purification ability with respect to TN, AN, TP, AP and COD. The results (Table 4), indicate a high 
removal effectiveness under vegetation type I (broad-leaved pure forest dominated by B. pendula) at a distance of 
0 to 2 m. However, from 2 m to 4 m, vegetation type III showed the maximum removal effectiveness (coniferous 
and broad-leaved mixed forest composed of B. pendula), while at a distance of 4 m to 7 m, the highest removal 
rate was achieved in vegetation type V (pure coniferous forest dominated by L. principis-rupprechtii). From 7 m to 
10 m, vegetation type IV presented the maximum removal effectiveness (coniferous mixed forest composed of L. 
principis-rupprechtii and P. tabulaeformis).

Obviously, the removal effectiveness is very different in the five types of forested riparian zones in this study. 
The nitrogen and phosphorus leaching from riparian zones depended significantly on vegetation type26,42. There 
is a complex relationship between vegetation and soils. Vegetation composition not only affects the soil properties 
but also affects the microclimate in the forest. In this research, the stand characteristics of these five vegetation 

Figure 4. Compare the mean value of concentrations of COD, TN, TP, AP and AN in five riparian vegetation 
configuration patterns.
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Figure 5. Removal rates of COD, TN, AN, TP and AP in different riparian vegetation patterns.

Width 
(m)

Forest 
pattern TN TP AP AN COD

Comprehensive 
evaluation result

Purification 
effect rank

1

I 0.00 0.00 0.00 0.01 0.00 0.01 1

II 0.36 0.68 0.08 0.06 0.63 1.81 5

III 0.06 0.77 0.00 0.13 0.52 1.48 3

IV 0.15 0.31 0.35 0.00 0.42 1.23 2

V 0.34 0.66 0.00 0.03 0.47 1.50 4

2

I 0.00 0.00 0.37 0.03 0.00 0.39 1

II 0.13 0.81 0.25 0.00 0.35 1.54 3

III 0.32 0.54 0.19 0.13 0.29 1.47 2

IV 0.22 0.81 0.88 0.21 0.67 2.79 5

V 0.25 0.77 0.00 0.08 0.62 1.72 4

4

I 0.00 0.47 0.45 0.00 0.21 1.13 2

II 0.49 0.73 0.37 0.02 0.53 2.14 5

III 0.00 0.00 0.26 0.01 0.00 0.27 1

IV 0.26 0.70 0.00 0.12 0.56 1.65 3

V 0.35 0.49 0.19 0.14 0.49 1.67 4

7

I 0.29 0.58 0.00 0.13 0.70 1.71 3

II 0.55 0.58 1.00 0.00 0.49 2.62 5

III 0.00 0.00 1.00 0.00 0.32 1.32 2

IV 0.35 0.33 0.29 0.14 0.60 1.71 4

V 0.02 0.10 0.23 0.05 0.00 0.40 1

10

I 0.79 0.72 1.00 0.09 0.64 3.24 5

II 0.89 0.68 1.00 0.08 0.69 3.34 4

III 0.73 0.72 0.00 0.08 0.49 2.03 2

IV 0.00 0.00 1.00 0.00 0.00 1.00 1

V 0.46 0.81 1.00 0.04 0.22 2.52 3

Table 4. Comprehensive purification effect ranking of five riparian vegetation buffer zones at different widths.
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patterns differed widely (Table 2). The leaf area index (3.24 ± 0.03) and forest density (2750 plants/hm2) of the 
forested riparian zone III was greater than in the other four forested riparian zones, which is beneficial to increas-
ing the amount of litter and organic matter because of the leaves and wood deposited on and decomposed in the 
soils. The organic matter (1.67±0.17 g⋅kg−1) of the forested riparian zone III was greater than in the other four 
forested riparian zones (Table 3). A higher content of organic matter could reinforce nitrogen and phosphorus 
of adsorption and retention from surface runoff water. The removal effectiveness of the forested riparian zone 
III validates this view (Table 4). The results of this study corroborate previous work showing that the forested 
riparian zones can retain water and contaminants associated with agricultural runoff38. In addition, the Simpson 
index (0.90) and Pielou Index (0.96) of the forested riparian zone III were higher than in the other four forested 
riparian zones, indicating abundant herbs and fine roots (root diameter ≤3 mm). Plant roots are the main carrier 
of microbial species27,34, and microorganism growth on the surface of these roots is greater because of the larger 
effective space and opportunity for attachment of microorganisms and nutrient uptake. This phenomenon is 
beneficial to the processes of nitrification/denitrification, which can effectively promote the removal effectiveness 
of water purification26,27,29.

A previous study showed that certain biological processes can explain the purification mechanism involved 
in the removal of nitrogen and phosphorous in soil, such as infiltration, gravitational settlement, interception, 
ammonification, nitrification, denitrification, and uptake by vegetation27. Therefore, the soil provides impor-
tant microenvironments supporting those biological processes11,27. Furthermore, the removal of nitrogen and 
phosphorus is often closely bound to soil particles29. Compared with that in the other four forested riparian 
zones, the physical clay (<0.01 mm) of the forested riparian zone III was largest (65.51 ± 6.13), the soil bulk 
density of the forested riparian zone III was in the middle of the five zones (1.22 ± 0.13), and the organic matter 
(1.67 ± 0.17 g⋅kg−1) of the forested riparian zone III was highest, which indicates that the soil conditions of the 
forested riparian zone III are beneficial for infiltration, gravitational settlement, interception, ammonification, 
nitrification, denitrification, and uptake by vegetation. Phosphorus leaching loss from riparian zones depended 
significantly on vegetation types42. The average removal rate of nitrogen and phosphorus as well as chemical 
oxygen demand are equal to the ratio (V = ΔC/D) of the difference (ΔC = C10 − C0) between the concentration 
at the entrance and at the exit with the width (D = 10 m) of the riparian vegetation buffer zone. Thus, the pure 
coniferous forest can absorb P at a rate of 0.19 (mg∙L−1∙m−1) along the transect, as illustrated in Figs 3 and 5. The 
results of this study corroborate previous work showing that the forested riparian zones can retain water and 
contaminants associated with agricultural runoff27,43,44.

Water purification is strongly related to the functional characteristics of the plants. In present study, the results 
demonstrated a vegetation configuration pattern with a highly efficient purification capacity based on compre-
hensive evaluation results regarding the removal of nitrogen and phosphorous and chemical oxygen demand. 
However, how to select plants that can increase the nutrient removal rate in forested buffer zones has not been 
determined. According to the present results, plant species with larger fine-root biomass should be considered 
first in the selection of vegetation for the restoration or construction of forest riparian buffer zones.

Conclusion
In this study, runoff water quality measurements of TN, AN, TP, AP and COD were recorded in five riparian veg-
etation configuration patterns in the Luan River in China. The aim was to identify a pattern with a high-efficiency 
purification ability for these pollutants. The results showed that vegetation configuration types may have a crucial 
effect on COD, TN, AN, TP and AP. There was a decreasing trend for all concentrations from the upper part of the 
riparian buffer zone to the river channel, and the different forest types showed varying abilities to remove these 
nutrients.

In terms of the removal rate of a single indicator, vegetation pattern III exhibited the highest purification 
ability for TN and COD (with removal rates of 58.41% and 98.27%, respectively) among the studied vegetation 
patterns. In addition, vegetation pattern V had a higher purification ability for TP and AP (with removal rates of 
as high as 96.56% and 96.74%, respectively) than did other vegetation patterns. Additionally, vegetation patterns 
I, II and V presented higher purification abilities for AN (the removal rate was as high as 100%).

From the upper part of the riparian buffer zone to the river channel, the comprehensive evaluation results 
showed that pattern I had the greatestest purification ability at 1 m and 2 m, at a width of 4 m, pattern III had 
the highest purification ability. At a distance of 7 m, riparian vegetation pattern V showed the highest purifica-
tion ability, however, pattern IV showed the highest purification ability and pattern II the lowest at 10 m. It is 
recommended that planting broad-leaved species (such as B. pendula and B. dahurica) be prioritized from 0 m 
to 4 m (from the upper part of the riparian buffer zone to the river channel) and that conifer species (such as L. 
principis-rupprechtii and P. tabulaeformis) be prioritized from 4 m to 10 m. Constructing a complex stand con-
figuration and stand structure will improve the ecological function of the riparian buffer zone and thus surface 
runoff purification capacity. Therefore, this study suggests the use of these vegetation configuration patterns in the 
development of runoff purification systems.
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