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expression, activity and 
localization of lysosomal sulfatases 
in Chronic obstructive pulmonary 
Disease
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Jaro Ankerst1, Gunilla Westergren-thorsson3, Leif Bjermer1, Jonas s. erjefält2 & 
ellen tufvesson1

Chronic obstructive pulmonary disease (CopD) is a leading cause of death world-wide. Recently, we 
showed that CopD is associated with gene polymorphisms in SUMF1, a master regulator of sulfatases. 
Sulfatases are involved in extracellular matrix remodeling and activated by SUMF1, but their role in the 
lung is poorly described. We aimed to examine how sulfatases are affected in the airways of patients 
with CopD compared to ever smokers and never smokers. We observed that mRNA expression of 
the sulfatases GALNS, GNS and IDS was increased, while protein expression of many sulfatases was 
decreased in COPD fibroblasts. Several sulfatases, including GALNS, IDS, and SGSH, showed increased 
activity in COPD fibroblasts. Examination of different sulfatases by immunofluorescence showed that 
IDS, ARSB, GNS and SGSH in fibroblasts were localized to sites other than their reported destination. 
Using a master panel from different organs, RNA expression of all sulfatases could be observed in 
lung tissue. Additionally, immunohistochemistry on lung biopsies indicated differing expression of 
sulfatases in CopD patients. In conclusion, mRNA, protein expression, sulfatase activity levels, and 
localization of sulfatases are altered in lung fibroblasts and lung tissue from COPD patients and may 
be mechanistically important in CopD pathogenesis. this could contribute to the understanding of the 
disease mechanism in CopD and in the long run, to lead to more individualized therapies.

Chronic obstructive pulmonary disease (COPD) has become one of the main causes of morbidity and mortality 
worldwide1. It is a heterogeneous disease which includes thickening of the small airways and destruction of the 
alveoli, leading to emphysema2. One of the main causes of COPD is cigarette smoking, though other environmen-
tal and genetic factors3 can lead to development of the disease4. Although much is known about the development 
of COPD, there is currently no treatment to cure the disease. Furthermore, the molecular and cellular changes 
that occur in the lungs of COPD patients versus ever smokers and never smokers remain to be fully explored.

The sulfatase modifying factor, SUMF1, is the highly conserved master regulator of all sulfatases in eukaryotic 
cells5. There are 17 known human sulfatases which are all activated by SUMF1 through the alteration of a con-
served cysteine residue to a c-alpha formylglycine6,7. Sulfatases are critical molecules that act to modify proteogly-
can chains through the removal of sulfate groups8,9, thereby changing the characteristics of these molecules10. In 
this study, we focused on five sulfatases (ARSB, GNS, GALNS, IDS and SGSH) which are known to be involved in 
desulfation of glycosaminoglycan chains on proteoglycans5,6. Glycosaminoglycans are important components in 
extra cellular matrix turnover in the lungs11, and the altered extra cellular matrix composition is an important fac-
tor in COPD12. ARSA, -G and -K are also categorized as lysosomal sulfatases6,13,14, but the role of these sulfatases 
in extracellular matrix remodeling is not apparent, especially not in the context of COPD. Recent studies have 
observed a link between the destruction of alveoli and SUMF115,16. SUMF1 deficient mice (Sumf1−/−) developed 
a lung phenotype similar to the emphysema that is seen in humans. Additionally, these mice accumulated sulfated 
glycosaminoglycans, which had an inhibitory effect on the alveolarization of the lung.
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Several lysosomal storage disorders have already been attributed to lack of, or alterations in, various sulfa-
tases17–19. Knockout mice for several of the sulfatases have been created and are giving insight into the effects 
that changes to sulfatase levels have in the body5,6,20–22. These diseases often manifest during childhood and, 
thus far, the only known treatments are through bone marrow transplant and gene therapy22,23. Examples of 
diseases caused by deficiency of sulfatases include Mucopolysaccaridosis II (Hunter’s syndrome24) and 
Mucopolysaccharidosis III (Sanfilippo Syndrome25), which present developmental delays, developmental regres-
sion and a much shorter life expectancy.

Recently, we have reported that polymorphism in the SUMF1 gene is associated with having COPD and that 
several single nucleotide polymorphisms (SNPs) in SUMF1 affect mRNA expression of SUMF126. This associa-
tion of the SUMF1 gene with COPD, led us to question whether the sulfatases, which are directly influenced by 
SUMF1, were also affected in COPD. Additionally, little is known about the expression of sulfatases and their role 
in the human lung or in the context of COPD. Therefore, we aimed to examine a subgroup of sulfatases, the lyso-
somal sulfatases involved in desulfation of glycosaminoglycans, and to characterize their role in COPD.

Results
sulfatase mRNA levels. We set out to ask if mRNA levels of sulfatases, the downstream targets of SUMF1, 
were affected in COPD patients. When comparing mRNA expression in lung fibroblasts from never-smokers, 
ever smokers, and COPD patients, we found that there was a significant increase in mRNA expression from 
COPD patients in GALNS, GNS and IDS mRNA (Fig. 1). Furthermore, amongst COPD patients, there was some 
clustering of subjects based on current smoking status, which was most apparent in ARSB and GNS expression, 
but was not significant.

Lysosomal sulfatase activity is altered in CopD. As the mRNA levels of certain sulfatases were altered 
in COPD patients, we next asked if activity levels of these sulfatases were affected in lung fibroblasts. The activity 
levels of the lysosomal sulfatases: ARSB, GALNS, GNS, IDS, and SGSH were therefore measured (Fig. 2). We 
found that in all COPD patients examined, IDS activity was increased above the reference range (Fig. 2D), and 
in some, but not all, COPD patients we also observed an increase of GNS and SGSH activity (Fig. 2C and E). The 
ARSB and GALNS activity were within the reference range in the majority of patients (Fig. 2A,B). In all COPD 
subjects, the activity of the reference enzyme, beta-galactosidase, was within the reference range (Fig. 2F)

Lowered sulfatase protein levels in CopD patients. Next we wanted to determine if the changes in 
mRNA expression and sulfatase activity levels were reflected at the protein level. Interestingly, we found that 
compared to never smokers and ever smokers, COPD patients showed a decrease in protein levels (Fig. S1). This 
change in protein expression was also evident when intensities of the bands were quantified (Fig. 3A–E).

Localization of sulfatases in lung fibroblasts. Due to changes in expression and activity levels of lyso-
somal sulfatases in cells from COPD patients, we aimed to examine their respective localization within the cells. 
ARSB, GALNS, GNS, IDS, and SGSH were stained in conjunction with marker proteins for the Golgi or lyso-
somes (Fig. 4). GALNS indeed showed a lysosomal localization in both ever smokers and COPD patients. IDS, 
on the other hand, was found to localize as expected to lysosomes5 in ever smokers, but not in COPD patients. 
Additionally, IDS appeared to partially co-localize with the Golgi in both ever smoker and COPD fibroblasts. 
SGSH appeared to partially co-localize to the lysosomes in ever smoker and COPD fibroblasts. GNS did not 
appear to co-localize with the Golgi or lysosomes, but instead showed a more reticulated structure throughout 
the cells in both ever smokers and COPD patients. Interestingly, in COPD fibroblasts, lysosomes appeared more 
perinuclear and the GNS staining more towards the periphery of the cell whereas in ever smokers the opposite 
pattern- GNS perinuclear and lysosomes closer to the periphery-was observed. Lastly, ARSB was found to localize 
to the Golgi in COPD fibroblasts, while its localization in ever smokers remained elusive.

sulfatase mRNA expression in the lung. In addition to lung fibroblasts, sulfatase RNA expression in 
total lung tissue was investigated using the Human Total RNA Masterpanel Kit that includes 20 different tissues 
in the body. All sulfatases examined were found to be expressed in whole lung tissue (Figs 5 and S2). The five 
examined lysosomal sulfatases previously investigated in this study were all expressed in lung tissue, and specifi-
cally GNS, IDS and SGSH showed relatively high levels in lung tissue compared to other body tissues (Fig. 5A–E). 
GNS and IDS also showed the highest expression levels among the lysosomal sulfatases in whole lung tissue 
(Fig. 5B,C), and SGSH showed lowest levels (Fig. 5E), although detectable levels were still present. Of the other 
(non-lysosomal) sulfatases examined, ARSJ showed the highest expression in the lung compared to all other tis-
sues and SULF2 was the most highly expressed sulfatase of the 17 examined (Fig. S2).

Localization of sulfatases in lung tissue biopsies. As we primarily examined cultured fibroblasts, we 
aim to determine if the histological pattern of lysosomal sulfatase differed in biopsies from the airways. We found 
that overall, there was expression of all examined lysosomal sulfatases in bronchial biopsy tissue from ever smok-
ers and COPD patients (Fig. 6c,f,i,l,o,d,g,j,m,p, respectively). When the overall intensity was analyzed, we found 
that there was a non-significant trend towards increased intensity in GALNS, IDS, and SGSH (Fig. 6h,n,q). When 
comparing ever smokers to COPD patients, it became apparent that there was a prominent staining of cells in 
the lamina propria and this staining was observed in all COPD subjects. There were also differences in staining 
amongst the five sulfatases. For example, ARSB showed a reduced staining in epithelial cells from COPD patients 
compared to ever smokers (Fig. 6c,d). Furthermore, ARSB, IDS and SGSH showed prominent staining in the 
epithelium of ever smokers and COPD patients (Fig. 6c,d,l,m,o,p), whereas this staining of GALNS and GNS was 
not as readily observed (Fig. 6f,g,I,j).
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Figure 1. mRNA expression of lysosomal sulfatases is increased in COPD patients. mRNA expression of ARSB 
(A), GALNS (B), GNS (C), IDS (D), and SGSH (E) were observed in lung fibroblasts from never smokers, 
ever smokers and COPD patients. Line indicates the median value. Former smokers are represented as filled 
triangles and current smokers are represented by open squares. K-W = Kruskal-Wallis test was used, followed 
by Dunn’s multiple comparison post-tests (=D). In some cases, relationships were also determined by Mann-
Whitney test = M.W. **= significance at p < 0.01, *= significance at p < 0.05. Data are depicted as 2−∆Ct 
showing the expression of the respective specific mRNA normalized against the average expression of the two 
reference genes β-actin and GAPDH. A.U. = arbitrary units.
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SUMF1 mRNA variants correlate with sulfatase mRNA expression. Correlation analyses were per-
formed between mRNA expression of SUMF1 splice variants and lysosomal sulfatases in lung fibroblasts from 
ever smokers and COPD patients. SUMF1 splice variants 1–3 (Sv1-3) as described previously26 were examined 
and strong significance was found between both Sv1 and Sv2 and the sulfatases ARSB, GALNS, and IDS (Table 1). 
Additionally, Sv3 significantly correlated with GNS.

When only COPD subjects were examined, Sv1 still correlated with ARSB, GALNS and IDS. Interestingly, only 
ARSB and IDS correlated with Sv2 and none of the sulfatases correlated with Sv3. When taking into account the 
total expression of SUMF1 (including all splice variants) there was only a correlation with GNS in COPD patients.

Discussion
In our study, we show that sulfatase expression, both in mRNA and protein, as well as sulfatase activity was 
altered in lung fibroblasts and lung tissue from patients with COPD. Recently, our group has found that changes 
of the sulfatase modifying factor, SUMF1, was associated with COPD26. Thus, we explored if sulfatases, which are 
directly activated by SUMF1, were also affected in COPD patients. The role of sulfatases in the body has been the 
topic of several studies in recent years. Sulfatases are best known for their role in disease, most notably mucopol-
ysaccharidosis where one or more sulfatases are non-functional5,6. Despite the advancements in our knowledge 
of sulfatases, there are still a plethora of unanswered questions.

Although COPD is a heterogeneous disease, we found altered sulfatase patterns in our subjects. We found 
that mRNA expression of the five examined lysosomal sulfatases was increased in COPD patients (Fig. 1). 
Interestingly, when examining smoking status in our COPD subjects (all ever smokers represented in Fig. 1 were 
former smokers), we found that there was some clustering based on current or former smokers (Fig. 1A,C). This 
finding suggests that smoking status may influence the expression of particular sulfatases. Additional investiga-
tion into the effect of smoking on sulfatase expression would be interesting for future experiments.

In several patients, we also found increases in the activity of one or more sulfatases (Fig. 2). This increase in 
sulfatase activity in COPD could point to overactive sulfatases or even increases in the activity of the modify-
ing factor SUMF1. In contrast, protein expression of lysosomal sulfatases in COPD patients showed an overall 
decrease (Figs 3 and S1). When examining intracellular localization of the sulfatases in cultured primary fibro-
blasts, we found that some sulfatases (ARSB, IDS, SGSH and GNS) showed mis-localization from their reported 
lysosomal compartments (Fig. 4). Perhaps the mis-localization of these sulfatases led to the protein decrease (due 
to increased protein degradation) seen by western blotting. These findings, taken together, may suggest a yet 
undetermined feedback loop for sulfatases that is present in COPD patients. Additionally, fibroblasts are known 
to produce many of the factors responsible for shaping the extracellular matrix of the cell27. Many lysosomal 
sulfatases can be exported to the intercellular space/extracellular matrix and later internalized28. Due to this rein-
ternalization, there is the possibility that the decrease in intracellular sulfatase protein levels could be partially 
due to an increase in exported proteins. An alternative possibility is that the mis-localization of sulfatases seen 
in fibroblasts by immunofluorescence may be due to shuttling through the anterograde transport system or even 
modifications of re-internalized proteins as these are currently indistinguishable from newly synthesized sulfa-
tases. Though in this current study we did not examine re-internalization of the enzymes via retrograde transport. 

Figure 2. Sulfatase activity is increased in some COPD patients. The activity of the five lysosomal sulfatases: 
ARSB (A), GALNS (B), GNS (C), IDS (D), and SGSH (E) as well as a control, beta-galactosidase (F), was 
examined in cultured lung fibroblasts from COPD patients. Data are depicted as individual values and reference 
range depicts the range clinically used as normal range for healthy subjects.
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Both of these topics would, thus, be of interest to better decipher the changes to lysosomal sulfatase levels in 
COPD patients. Furthermore, the lack of discrepancy between mRNA and protein levels could also be due to 
other mechanisms, such as, for example, post-translational modifications, regulation by RNA binding proteins, 
regulation by small RNA species or difference in protein half-lives.

Figure 3. Protein expression of lysosomal sulfatases is decreased in COPD patients. Quantification of sulfatase 
expression (ARSB (A), GALNS (B), GNS (C), IDS (D) and SGSH (E)) versus GAPDH (control) from western 
blotting are shown in never smokers, ever smokers and COPD patients (A–E). GNS is comprised of a full length 
form and two bands formed through internal cleavage. Quantification for GNS was performed using all three 
defined bands. Each dot represents a different subject. **= significance at p < 0.01, *= significance at p < 0.05. 
A.U. = arbitrary units. K-W = Kruskal-Wallis test was used, followed by Dunn’s multiple comparison post-tests (=D).
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Although our immunofluorescence staining indeed indicated that not all examined lysosomal sulfatases were 
correctly localized in our fibroblast cultures, they are only a snapshot of what is happening in the cell. To further 
delve into the localization of sulfatases such as SGSH and ARSB, for example, it would be beneficial to stain for 

Figure 4. Localization of sulfatases in central airway fibroblasts. The sulfatases (ARSB, GALNS, GNS, IDS 
and SGSH) were examined for localization within cultured lung fibroblasts from ever smokers and COPD 
patients. Panels shown are representative images of at least three ever smokers and at least three COPD patients. 
Sulfatases are represented in green. Golgi (stained for Golgin97, left panels) or lysosomes (stained for LAMP1, 
right panels) are shown in red. Nuclei are shown in blue (DAPI). Yellow indicates co-localization of sulfatase 
and compartment. Scale bar equals 20 μm.
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more marker proteins, such as endosomal components, where sulfatases may be found en route to anterograde or 
retrograde transport. Ideally, live cell imaging and in vivo examination of sulfatase trafficking would answer many 
questions, such as if there are potential blocks in the endocytic system in COPD patients or whether sulfatases 
in COPD patients are more readily exported to the intracellular space/extracellular matrix, which may explain a 
decrease in their protein expression within the cellular fraction.

Figure 5. Lysosomal sulfatases are differentially expressed in whole lung tissue. Expression of the lysosomal 
sulfatases: ARSB (A), GALNS (B), GNS (C), IDS (D) and SGSH (E) using RNA from different body tissues were 
explored via a Human Total Master panel II RNA kit. The black bar indicates mRNA expression from whole 
lung. Data are depicted as 2−∆Ct showing the expression of all specific mRNA normalized against the average 
expression of the two reference genes β-actin and GAPDH. A.U. = arbitrary units.
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The five lysosomal sulfatases analyzed in this study are involved in modifying the sulfation pattern of the gly-
cosaminoglycans chondroitin/dermatan sulfate and heparan sulfate in the extra cellular matrix. ARSB, GALNS 
and IDS target the sulfate groups of chondroitin/dermatan sulfate chains, and GNS, IDS and SGSH target the 

Figure 6. Examination of sulfatases in bronchial biopsies. Bronchial biopsies were stained for the lysosomal 
sulfatases. Tissue sections from ever smokers (a,c,f,i,l,o) were compared to COPD patients (b,d,g,j,m,p). Panels 
a and b were stained with hematoxylin (HTX) to label cells and nuclei, whereas the remaining panels were 
stained with anti-ARSB (c,d), anti-GALNS (f,g), anti-GNS (i,j), anti-IDS (l,m) and anti-SGSH (o,p). All panels 
are representative images of ever smokers and COPD patients. Graphs (e,h,k,n,q) show quantifications of the 
different individuals, and each dot represents one subject. Scale bar equals 50 µm.
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sulfate groups of heparan sulfate chains5. Though, in this study the altered sulfatase expression does not differ 
between sulfatases targeting chondroitin/dermatan5,6 sulfate versus heparan sulfate. This suggests an overall effect 
of the sulfation pattern of the glycosaminoglycan chains in COPD, similar to what has been shown, for example, 
in idiopathic pulmonary fibrosis29. This may result in an altered extracellular matrix remodeling balance related 
to the emphysema formation in COPD.

It appears in the hematoxylin and eosin (HTX) staining that there is an increase in cells in the lamina propria 
of COPD patients (Fig. 6) and these cells also appear to contribute to the increased staining of sulfatases. Perhaps 
these cells, seen in whole tissue by IHC, are fibroblasts or another sulfatase-rich cell type and this increased stain-
ing might suggest an increase in the production of exported proteins. Marker proteins would be helpful to aide in 
the further identification of these cells by IHC analysis and what their potential role is in COPD. We should also 
keep in mind that we are investigating former and current smoking subjects, both healthy and COPD patients. 
This study does not include never smoking COPD patients, which might have a totally different pathological 
picture, but this aspect is yet to be determined.

Strengthening the important role of SUMF1 in relation to sulfatases, we found that gene expression of SUMF1 
variants correlated with the gene expression of several of the lysosomal sulfatases Table 1). Sv1 represents the 
entire transcript whereas Sv2 and Sv3 are lacking exon 3 and 8, respectively. Our correlations suggest that Sv3 acts 
in a different manner than the other variants as only GNS was seen to correlate when ever smokers and COPD 
patients were collectively taken into account. The entire mRNA transcript (Sv1) strongly correlated with 3 of the 
5 lysosomal sulfatases, ARSB, IDS, and GALNS. Furthermore, IDS activity levels were also elevated in all COPD 
patients that we examined. These findings strengthen the relationship between SUMF1 and its downstream tar-
gets, the sulfatases. One could think that either there is a direct feedback loop so that when more sulfatase mRNA 
is produced, then more of the regulator, SUMF1, is also produced putting the whole system into a constant state 
of checks and regulation. Further work in the direct relationship between SUMF1 in the lung and lysosomal sul-
fatases would further help to uncover the important role of sulfatases in the lung.

As with any study, we were faced with a number of limitations. One such limitation of this study was the ina-
bility to test the activity of all 17 human sulfatases. Currently, sulfatase activity assays are only clinically available 
on the five described lysosomal sulfatases as they are often mis-regulated in lysosomal storage disorders5,6,30–36. 
Thus, we were unable to test the majority of sulfatases for changes in activity. It would have been especially inter-
esting to also examine the ARSJ as it was most highly expressed transcript in lung tissue (Fig. S2). Furthermore, 
it would be of interest to see if the other described lysosomal sulfatases: ARSA, -G, and –K, behave in a similar 
manner to the five lysosomal sulfatases that we have currently examined. Another limitation was the number of 
never smokers and ever smokers used in this study. Recruitment of these subjects, especially age matched, for 
bronchoscopy proved difficult. Finally, our bronchoscopy samples, were obtained from the central airway. COPD 
is a disease that strongly manifests in the peripheral airways, so material from the periphery would have been 
interesting to analyze in comparison. As mentioned previously, glycosaminoglycan accumulation was seen in 
Sumf1−/− mice in the alveoli16. Perhaps in humans the effects of sulfatases in the lung are also more pronounced 
in the distal airways and the alveoli.

SUMF1

SUMF1 total Splice variant 1 Splice variant 2 Splice variant 3

Ever smokers and COPD patients

ARSB r = 0.16
p = 0.53

r = 0.86
p < 0.0001

r = 0.66
p = 0.0052

r = 0.37
p = 0.15

GALNS r = −0.05
p = 0.85

r = 0.56
p = 0.020

r = 0.64
p = 0.0071

r = 0.24
p = 0.36

GNS r = 0.41
p = 0.11

r = 0.19
p = 0.47

r = 0.32
p = 0.22

r = 0.50
p = 0.045

IDS r = −0.02
p = 0.94

r = 0.81
p = 0.0001

r = 0.80
p = 0.0002

r = 0.28
p = 0.27

SGSH r = −0.06
p = 0.83

r = −0.47
p = 0.065

r = −0.34
p = 0.19

r = −0.15
p = 0.57

COPD patients only

ARSB r = 0.05
p = 0.88

r = 0.87
p = 0.0002

r = 0.66
p = 0.017

r = 0.28
p = 0.35

GALNS r = 0.14
p = 0.64

r = 0.62
p = 0.028

r = 0.52
p = 0.071

r = 0.36
p = 0.22

GNS r = 0.60
p = 0.034

r = −0.09
p = 0.76

r = 0.02
p = 0.96

r = 0.40
p = 0.18

IDS r = 0.28
p = 0.35

r = 0.93
p < 0.0001

r = 0.66
p = 0.017

r = 0.42
p = 0.16

SGSH r = −0.06
p = 0.86

r = −0.50
p = 0.085

r = −0.30
p = 0.32

r = −0.15
p = 0.63

Table 1. Correlations between SUMF1 mRNA variants and sulfatase mRNA expression. Spearman correlation 
test was performed to identify correlations between SUMF1 mRNA and mRNA from the various examined 
sulfatases. Correlations were performed on ever smoking and COPD samples as well as on COPD patients only. 
Bold italics indicate statistical significance.
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To our knowledge, this is the first study exploring sulfatases in-depth in the human lung. We have investigated 
never smokers, ever smokers and COPD patients and have shown altered expression, localization, and activity 
of five lysosomal sulfatases. In each of these cases, we have found that COPD patients differed from our control 
groups, indicating that an altered pattern of sulfatases may play a role in the pathophysiology of the disease. We 
hope that new advances into the study of sulfatases will continue to piece together this very interesting puzzle, 
which in turn could lead to improve treatment of COPD.

Methods
patients. All subjects performed spirometry and COPD was defined according to the GOLD criteria: Force 
Exhaled Volume in 1 sec/Forced Vital Capacity (FEV1/FVC) < 0.74. Lung function measurements were per-
formed according to the manufacturer’s instructions and European Respiratory Society/American Thorax Society 
guidelines/recommendations37–39. Twenty ever smoking (current or former) COPD patients, 8 ever smokers 
(current or former) with normal spirometry and 6 never smokers without any respiratory disease and normal 
spirometry were included. Patients had no other significant cardiorespiratory disease, no lower respiratory tract 
infection within three weeks prior to bronchoscopy and ever smokers had at least 15 pack years. Detailed patient 
characteristics can be found in Table 2. The methods were carried out in accordance with the relevant guidelines 
and regulations. All patients signed the written informed consent and the study was approved by the Regional 
Ethical Review Board in Lund, Sweden (431/2008).

Bronchoscopy sampling and Cell culture. The bronchoscopy procedure was performed as previously 
described by Tufvesson, et al.40. In summary, the bronchoscopies were performed under local anesthetics and 
were done in accordance with clinical routines. A flexible bronchoscope (Olympus IT60, Tokyo, Japan) with a 
working channel of 2.6 mm was used in combination with biopsy forceps (Olympus FB211D). Bronchial biopsies 
were taken from the central airways in segmental and subsegmental carina, and lung fibroblasts were isolated via 
outgrowth from these biopsies. Cells were grown in Dulbecco’s modified eagle medium (DMEM; (SigmaAldrich, 
St Louis, MO) supplemented with 10% FetalCloneTM III Serum (Fischer Scientific, Waltham, MA), 1% ampho-
tericin, 0.5% gentamicin and 0.1% L-Glutamine (all from SigmaAldrich) and were cultured for 3–4 passages 
before harvesting. Cells were harvested via addition of trypsin (SigmaAldrich) to the cells, then rinsing with 
1xPhosphate buffered saline (PBS; SigmaAldrich) and spinning the cells at 500 x g for 5 minutes to pellet them. 
Pelleted cells were then used for RNA extraction.

For cells used in immunofluorescence staining, fibroblasts were seeded into 4 well chamber slides 
(SigmaAldrich) at a density of 20,000 cells per well and allowed to grow to semi-confluency. Media was then 
removed and cells were fixed with 4% paraformaldehyde (SigmaAldrich) and subsequently washed 3x with PBS 
and stored in PBS at 4 °C until staining.

Bronchoscopy was performed on all subjects, but for ever smokers with normal spirometry, biopsy fibroblasts 
from only 4 out of 8 subjects grew out ex vivo, yielding viable fibroblast cultures.

RNA extraction and qpCR analysis. Cells pelleted, as mentioned above, were lysed using RNeasy Lysis 
Buffer (Qiagen, Hilden, Germany) with 1% β-mercaptoethanol. RNA was prepared using an RNeasy Mini kit 
according to manufacturer’s instructions (from Qiagen GmbH, Hilden, Germany). cDNA was synthesized using 
iScript™ cDNA Synthesis Kit from Bio-Rad Laboratories (Hercules, CA) following the manufacturer’s instructions 
and synthesis program: 5 min 25 °C, 30 min 42 °C and 5 min 85 °C. Semi-quantitative real-time PCR (qPCR) was 
performed using 1 ng cDNA per well using iTaq™ SYBR Green Supermix with ROX from Bio-Rad Laboratories on 
an Applied Biosystems 7900 thermocycler (ThermoFisher, Waltham, MA) as described previously26. All primers, 
forward and reverse (Invitrogen), were used at a final concentration of 300 nM. Primers against the lysosomal sul-
fatases ARSB, GALNS, GNS, IDS, and SGSH were examined in lung fibroblasts. The qPCR program was as follows: 
95 °C 10 min, then 45 cycles: 15 sec at 95 °C, 30 sec at 60 °C, 30 sec at 74 °C, followed by a melt curve. The cycle thresh-
old value (Ct) was determined by the Applied Biosystems software. Data are depicted as 2−∆Ct

.
All 17 reported human sulfatases were examined in RNA from the Human Total Master Panel II Lot# 

1505145 A (TakaraBio-Clontech, Saint-Germain-en-Laye, France).
Expression of all mRNA was normalized against the average expression of the two reference genes beta-actin 

(β-actin) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)26. For all primer sequences, see Table S1.

sulfatase Activity Assays. All sulfatase activity assays were performed according to clinical routine 
at Clinical Chemistry, Sahlgrenska Hospital (Gothenburg, Sweden) on lung fibroblasts isolated from COPD 
patients. The clinically used normal ranges for healthy subjects were used as the respective reference ranges. The 

Never smokers, n = 6 Ever smokers, n = 8 COPD, n = 20

Gender (female/male), n 4/2 3/5 8/12

Smoking status (current/former), n 0 1/7 11/9

Pack years* 0 33 (24–38) 43 (35–49)

FEV1, L 3.4 (3.2–3.6) 3.3 (2.6–3.4) 1.7 (1.5–2.1)

FEV1, % of predicted 114 (95–139) 95 (93–98) 54 (49–70)

FEV1/FVC 0.84 (0.81–0.88) 0.78 (0.74–0.81) 0.50 (0.44–0.60)

Table 2. Characteristics of study subjects. *A pack-year is defined as smoking 20 cigarettes (=one pack) per day 
for a year. Pack years, FEV1, FEV1 (%p) and FEV1/FVC are given as median with interquartile range (25–75%).
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method was based on previously published assays for ARSB, GALNS, GNS, IDS, and SGSH, and measurement of 
beta-galactosidase was used as a control to ensure correct estimation of sulfatase activity31–36.

Western blotting. Cultured lung fibroblasts were manually lysed using NP-40 cell lysis buffer (Invitrogen, 
Bender MedSystems GmbH, Vienna, Austria). Briefly, cell culture media was removed from confluent fibroblasts. 
NP-40 lysis buffer was added to cells and incubated for 5 minutes on ice. Cells were then scraped, lysate was 
collected and spun at 10 000 × g for 10 min at 4 °C. The supernatant was removed and used to determine total 
protein using a BCA assay (ThermoFisher). Laemmli sample buffer (4X, Bio-Rad) was added to 20 μg of total pro-
tein to make the final Laemmli concentration 1x and the sample was placed at 95 °C for 5 minutes. Samples were 
allowed to cool to room temperature before loading. Immunoblotting was performed according to the Bio-Rad 
mini PROTEAN system protocols (Bio-Rad), and samples were run on 4–20% Mini-PROTEAN TGX stain free 
protein gels in 1x Tris/Glycine/SDS (Bio-Rad). Proteins were then transferred to PVDF membranes (Bio-Rad; 
PVDF transfer packages) using a Bio-Rad Trans-Blot® Turbo™ Transfer System. After transfer, membranes were 
imaged to ensure transfer of protein from the gel and membrane were then rinsed once in distilled water before 
transferring into blocking solution (3.5% milk in 1xTris Buffered Saline with 0.1% Tween20 (TBST)). Membranes 
were blocked for 1 h at room temperature. After 1 h the blocking solution was discarded and primary antibody 
(for concentrations used see Table S2) in blocking solution was added and the gels were allowed to incubate 
with shaking at 4 °C overnight. Primary antibody was discarded and blots were washed 3x in 1x TBST before 
adding secondary antibody coupled to HRP (Table S2) in blocking solution and left to incubate 1.5 h at room 
temperature. Finally, the secondary antibody solution was discarded and blots were washed 3x in 1x TBST and 1x 
in MilliQ water. Blots were observed using ECL chemiluminescence (ThermoFisher) and imaged on a Bio-Rad 
ChemiDoc Imaging system (Bio-Rad).

Immunofluorescence and Microscopy. Fibroblasts grown in chambered slides, as mentioned above, were 
used for staining. Cells were permeabilized with PBST (1% Tween20 in PBS) and blocked with blocking buffer 
(2% Normal Goat Serum (NGS) for all sulfatases, except IDS which was blocked in 2% Normal Donkey Serum 
(NDS), both from Abcam, Cambridge, UK, in PBST). Cells were incubated with primary antibodies in blocking 
buffer, washed with PBST, and thereafter incubated with secondary antibodies in blocking buffer. Cells were 
washed with PBST, followed by a PBS wash and a final deionized water wash. Anti-fading mounting solution 
containing DAPI (Invitrogen, Massachusetts, USA) and a coverslip was then added to each slide. Slides were 
stored at 4 °C until analyzed. Images were taken using an Olympus DP80 camera mounted on a Nikon Eclipse 
80i fluorescence microscope with a 40x Plan-Apochromat objective. The software used for imaging was CellSens 
Dimension (CellSens, The Netherlands). Image processing was performed using ImageJ (NIH, Maryland, USA).

Immunohistochemistry. At the bronchoscopy, bronchial biopsies from each patient were immediately 
immersed into 4% buffered paraformaldehyde. Tissues were processed and dehydrated, and paraffin-embedded 
tissue blocks were prepared for histological analysis. Sections from 5–6 biopsies from each ever smoking individ-
ual or COPD patient were placed on the same slide to ensure a similar staining protocol for all biopsies.

Immunostaining was performed on 4 µm tissue sections using an automated slide staining robot (Autostainer 
Plus, Dako). After deparaffinization, antigen retrieval was performed using PT link (Dako) by heating the tissue 
sections in a target retrieval solution buffer at pH 6.0 (Dako). The immunohistochemistry protocol incorporated 
anti-mouse/rabbit polymer HRP as a secondary antibody from EnvisionTM Flex (K8010, Dako) Peroxidase/DAB 
Rabbit/Mouse detection systems. A single staining protocol was used for staining ARSB+, GALNS+, GNS+, IDS+, 
and SGSH+ cells using DAB as detection chromogen. Details of primary and secondary antibodies are presented 
in Table S2. Each slide was counterstained with Mayer’s haematoxylin. Specificity was confirmed by omitting the 
primary antibody, and a subsequent lack of staining.

All stained slides were digitally scanned using an automated Scanscope digital slide scanner (Aperio 
Technologies, CA, USA) to obtain high-resolution digital images of stained bronchial biopsies. Immunoreactivity 
was calculated by dividing the strong positive pixels for a marker with the total positive and negative pixels 
obtained by using Imagescope software (Aperio Technologies) in a selected tissue area.

Antibodies. For western blotting (WB), immunofluorescence (IF) staining, and immunohistochemistry 
(IHC) antibodies against sulfatases and various marker proteins against cellular organelles were used. Antibodies 
and concentrations used in this study can be found in Table S2.

statistics. Descriptive statistics are presented as median (interquartile range (IQR)). P < 0.05 was considered 
significant.

The differences in gene expression and protein expression in fibroblasts amongst never smokers, ever smokers, and 
COPD patients were analyzed using Kruskal-Wallis test including Dunn’s Multiple Comparison Post Test. Comparison 
of sulfatase immunohistochemistry staining was analyzed using a non-parametric t-test (Mann-Whitney test). 
Spearman correlation test was performed to determine the relationship between SUMF1 and sulfatase mRNA levels. 
Statistical analysis was performed using Graph Pad Prism 6 (Graph Pad software Inc. San Diego, CA).
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